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Chapter 1

Introduction

This document is meant for students to get an introductory look at R (and how it compares to and
differs from STATA), and to facilitate a transition for both students and instructors from STATA
to R, using both the base R functions and the uwIntroStats package developed by Scott S. Emer-
son, M.D. Ph.D., Andrew J. Spieker, and Brian D. Williamson in the University of Washington
Department of Biostatistics.

R is a functional language at the basic level, meaning that even the simple expression 3 + 5 is
handed to a function called evaluate(), which then returns the result. Most objects and functions
have a print function, so we can either print and display results or store them as an object. STATA,
on the other hand, is a command style language. The user types in a command and the result is
displayed. In this file we will present some of the useful R functions, but there are many more that
we leave to the reader to go out and find. Also, even if we do present a function here, we will be
doing so at the most basic level. Many of the functions have more capabilities than what we show.
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Chapter 2

Project Management

2.1 The Workspace

There are a few differences between R and STATA when it comes to data and project management.
The first concept that we must cover is that of the workspace. In STATA, you are only allowed to
read in one data set at a time. This data set is your entire workspace, and thus all functions and
calls manipulate the data set. In R, however, the workspace consists of many different data sets,
values, and functions. Any variable that is assigned a name becomes part of the workspace. Upon
exit from R, the program asks the user if they wish to save the workspace. Saying yes saves all
variables, functions, and data sets and then loads them back in to the workspace upon startup of
the program the next time. It is generally good practice to save the workspace, especially if you
know that you will continue to work with the same data next time.
To start, we will assume you are running R from the command line. Later on, if you wish, we will
introduce a convenient graphical user interface. However, it is good to learn the basics from the
command line and know what is happening behind the buttons in the GUI. Once you navigate to
the correct directory for R (in a Windows machine this is generally in “C:\Program Files\R\R-
version\bin” - substitue the version of R you downloaded for “version”), you simply type “R” and
the program will start, displaying a screen similar to this:
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If you type ‘q()’, you are prompted to Save workspace image? [y/n/c]: , where ‘y’ is yes, ‘n’
is no, and ‘c’ is cancel. If you type ‘y’, then two files are created: a .Rhistory file and a .RData file.
You can load the .RData file at the beginning of a session with the load() function, and it brings in
all of your variables, data sets, and functions. The .Rhistory file saves all of your commands from
the session. If you are working with a few different projects, it is a good idea to have a workspace
for each of these projects. Then any one workspace doesn’t get too cluttered.

2.2 Scripts

Scripts are useful files that can be run by R. A script file can be created in any directory on your
computer. Then it can be “sourced”, using the source() function (given the file path) to run all of
the functions saved in the script file. A script is a useful place to write all of your function calls so
that you can save them for later. For example, on a Windows computer, we could create a script
file on the Desktop by using any text editor (Notepad or any other that you prefer) and saving the
file with the .R extension, such as:

test_script.R

We can then load all of the functions and run all of the code saved in the script by opening R and
typing (recall that our script file is located on the desktop)

source(‘‘C://Users//Brian Williamson//Desktop//test_script.R’’)

2.3 Comments

Commenting your files is always a good idea. Comments provide information as to why you are
using certain functions at certain times. The comment key in R is #. If you type this at any point
on a line, the rest of the line will not be run by R.
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Chapter 3

Data

3.1 Data Types (‘storage.mode’)

A huge reason for using R at all is its data capabilities. There are many types of data in R,
and thus it is important to know what kind of data you are dealing with at a given time. The
“storage.mode()” function returns what type the data is. The basic data types are:

3.1.1 Numeric

Decimal values are numerics. Numeric is the default computational data type in R. Note for the
curious: all real numbers in R are stored as “doubles”, meaning that the IEEE floating point number
is stored as a 64 bit word rather than a 32 bit word. There are two subtypes of numeric values.
Most of the time there is no need to worry about the difference between them, but every once in a
while you need to know which type you are dealing with.

Integer
A whole number.

Double
A real number (whole number plus fractional part).

3.1.2 Character

A character is an object which represents string values. For example, ”3” is a character. To convert
an object into a character, use the as.character() function.

3.1.3 Logical

TRUE and FALSE are the logical values in R, usually produced by comparisons. The standard logical

operators in R are:

“&” and
“|” or
“!” negation
“==” equals

8



3.1.4 NA, NULL, Inf, and NaN

NA denotes a missing value in R. NA is a logical constant of length 1.

NULL is the null object in R. Functions and expressions whose values are undefined sometimes return
NULL. If a NULL value is compared to another (for example, NULL == 0), then the result will be the
expression logical(0). The length of the NULL object is 0.
Inf is returned by dividing any number besides 0 by 0.
NaN (not a number) is returned by the expression dividing 0 by 0.

0/0

[1] NaN

1/0

[1] Inf

3.1.5 Factor

A factor stores the nominal values of the data (starting with 1) in a vector, and stores the associated
names of the data as a vector of character strings. A factor is created with the factor() function.
For example, let’s say that we have a vector with twenty ‘‘male’’’s and twenty ‘‘female’’’s.
Then a factor would store this data as twenty 1s and twenty 2s, and would have a key telling us
that 1 was male and 2 was female. For the really curious: factors are really data structures, since
they are a vector with attributes.

3.2 Data Structures

There are a variety of data structures in R. They include vectors, matrices, arrays, data frames,
lists, and factors.

3.2.1 Vectors

A vector is the most simple data structure in R. A vector stores any number of individual values,
but they must be all of the same type. A vector is created with the c() function.

3.2.2 Matrices

A matrix is a table, is essentially a two-dimensional vector. All values in the matrix must be of the
same data type, and a matrix must be rectangular - that is, each row must have the same number
of columns as the others and each column must have the same number of rows as the others. A
matrix is created with the matrix() function.

3.2.3 Arrays

An array is a high-dimensional matrix. An array is created with the array function.

3.2.4 Data frame

A data frame is a table, like a matrix. However, the columns in a data frame may have different
data types. A data frame is created with the data.frame() function.
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3.2.5 List

A list is an ordered collection of objects. The values in a list can be any data type or data structure,
and they don’t have to have the same size. A list is created with the list() function. A note for
the curious: lists indirectly reference their values. They are stored in different places in memory as
addresses. Lists are sometimes returned from functions.

3.3 Assigning a Value to a Variable

Let’s say we want to creat a variable called junk. Then we must assign junk a value. Here we will
assign it the number 1. Thus, we type

junk <- 1

And now any time that we wish to see what junk is, we type junk and get the output

junk

[1] 1

Any time we wish to assign a value to a variable, we use the “<-” function. This guarantees that
we perform the correct assignment (some functions and packages were developed in a time where
using “=” as assignment will not work correctly).

3.4 Returning a Value from a Data Structure

There are three main ways of accessing data in a data set. The main ways deal with data sets in
vector or matrix form (similar syntax), list form, or data frame form.

3.4.1 The “[ ]” Operator

The first way we will cover is for vectors and matrices. Let’s say we have a vector representing the
numbers 1-10. This vector can be stored as

> test <- c(1,2,3,4,5,6,7,8,9,10)

Now if we wish to access the 6, we type

test[6]

Which returns

[1] 6

Recall that R is a functional language at its base. Thus, if we want to see the sixth value of test,
we can type in any expression which will evaluate to 6. For example:

test[3+3]

[1] 6

Now, a vector is simply a matrix with one row. Thus let’s consider a matrix with 735 rows and 30
columns (we will be using this matrix later as well) called mri. If we wish to access an entry in the
matrix we type in the row and column of interest:

mri[1,1]

[1] 1

Which returns the value in row 1, column 1 as we requested.
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3.4.2 The “$” Operator

A data frame, as we discussed earlier, is a list of vectors. Let’s use the mriTest data frame that we
created earlier. Now we can access a value from the data frame either by the [rownum,colnum] or
[rownum,"colname"] function or by the $colname[rownum] function:

mriTest[1,1]

[1] 1

mriTest[1,"ptid"]

[1] 1

mriTest$ptid[1]

[1] 1

3.5 Indexing Values in a Data Structure

Sometimes, it is useful to access more than one value from a data structure.

3.5.1 The “[ ]” operator

If we want to see the first five elements of the vector, we type

test[1:5]

which returns

[1] 1 2 3 4 5

Now recall the mri data set. If we wish to access the entire first row (a vector!) we type

mri[1,]

Which means that we are selecting the first row and all of the columns. The [row,column] format
is followed for matrices. The output of this call is

ptid mridate age male race weight height packyrs yrsquit alcoh physact chf chd

1 1 120791 72 1 2 173 169 54 0 0 9.84 0 1

stroke diabetes genhlth ldl alb crt plt sbp aai fev dsst atrophy whgrd

1 2 0 3 135 3.7 1.4 275 139 1.0303 1.284 25 20 2

numinf volinf obstime death

1 1 7.4613 2110 0

3.5.2 Special Issues for Indexing a Matrix

However, when we are subscripting a matrix, we may wish to be sure what class our returned value
is. For example, a test matrix

m <- matrix(rep(1, 30), nrow=3)

m

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 1 1 1 1 1 1

[2,] 1 1 1 1 1 1 1 1 1 1

[3,] 1 1 1 1 1 1 1 1 1 1
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If we want the first row of the matrix, and want it to be a matrix, we will run into problems if we
simply type m[1,].

m[1,]

[1] 1 1 1 1 1 1 1 1 1 1

Notice that this returned a vector! If we want a matrix, we must type

m[1,,drop=FALSE]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 1 1 1 1 1 1

Adding the drop=FALSE argument after our row and column specifications told R not to drop
dimensions and create a vector.

3.5.3 The “$” Operator

Let’s use the mriTest data frame that we created earlier. Now we can access a column of the data
frame either by the [,colnum] or [,"colname"] function or by the $colname function, as we see
here (we only get the first three rows to save paper):

mriTest[1:3,1]

[1] 1 2 3

mriTest[1:3,"ptid"]

[1] 1 2 3

mriTest$ptid[1:3]

[1] 1 2 3

Last, variables in matrices, lists, and data frames can both be accessed using the $ operator. Create
sampleList to have a vector of strings, a matrix, and a single number as follows:

sampleList <- list(c("One", "Two", "Three"), mri, 1)

Now we wish to name the elements of sampleList:

names(sampleList) <- c("strings", "matrix", "number")

Now we can access the vector of strings either with the [[1]] function or with the $strings

function, as we can see here:

sampleList[[1]]

[1] "One" "Two" "Three"

sampleList$strings

[1] "One" "Two" "Three"

3.5.4 The “[[ ]]” Operator

In a list, we use the [[ ]] operator to access elements of the list. For example, if sampleList is a
list, then sampleList[[1]] returns the first element in sampleList. Each individual element in a
list can be a different type. Thus we can have a list where the first element is a vector of strings,
the second element is a matrix, and the third element is a single number.
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3.6 Advanced Indexing

3.6.1 Indexing with a Vector

Say we wish to access columns 3, 5, and 30 from mri, along with the first five rows. Then we use a
vector to access these columns:

mri[1:3, c(3,5,30)]

age race death

1 72 2 0

2 81 2 0

3 90 2 0

We can accomplish the same thing by using the names of the columns, in mri[1:3, c("age",

"race", "death")].

3.6.2 Indexing with a Negative Number

Recall our vector test, which has ten values. If we want all of the values of test but the first, rather
than indexing with the sequence 2:10, we can simply write:

test[-1]

[1] 2 3 4 5 6 7 8 9 10

We can do the same thing in a matrix - if we write mri[-1,-1], R will print the whole matrix
minus the first row and the first column.

3.6.3 Indexing using Logicals

Sometimes we wish to exclude values in the data based on some logical comparison. For example,
in mri, we might to only see the values for females, or we wish to only see the values in test which
are greater than 5. We accomplish this by using logical comparisons in our indexing. To get the
values in test which are greater than 5, we type

test[test > 5]

[1] 6 7 8 9 10

To get only the females in mri (and all of the columns) we type mri[mri[,"male"] == 0,].

3.6.4 Indexing with a Matrix

If we have a matrix (say mri) and we wish to reference certain cells, we can use a matrix as a
reference. The reference matrix has two columns, the first corresponding to the row of the cell in
question and the second corresponding to the column of the cell in question. So if we are interested
in seeing cells [1,1], [2,2], and [3,3], we create this matrix:

ref <- matrix(c(1,1,2,2,3,3), ncol=2, byrow=TRUE)

ref

[,1] [,2]

[1,] 1 1

[2,] 2 2

[3,] 3 3
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Notice that when we create a matrix, we can specify how many columns (or rows) we want with
the ncol (nrow) argument, and we can specify how the matrix is filled in with the byrow argument.
Now we use ref to reference these cells of mri

mri[ref]

[1] 1 90192 90

mri[1,1]

[1] 1

mri[2,2]

[1] 90192

mri[3,3]

[1] 90

Notice that using ref has returned the same values as indexing each cell individually!
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Chapter 4

Data Input

4.1 Entering from the Keyboard

We can enter data from the keyboard as we have done before (for example test <- 1:10), or we
can create a data frame or some other data structure and edit using R’s built in spreadsheet editor.

# create a data frame

newdata <- matrix()

# bring up the spreadsheet editor and save changes into newdata

newdata <- edit(newdata)

4.2 Reading in Data from a File

Now we are ready to read in a data set. Since we can assign a value to a variable, assigning a data
set to a variable is easy. For most purposes, the “read.table()” function is sufficient to read in
data (most data is available in .txt format and for those in a .csv format, read.csv is very similar
to read.table). The “read.table(filename, ...)” function can read in files from the internet
or from your computer - you just have to give it the full path name (denoted by filename, and ...

denotes any options you wish to specify). It is also important to view the text file with the data
beforehand to determine if there are headers to include. For example, we can read in the ‘mri’ data
set from Scott Emerson’s webpage:

mri <- read.table("http://www.emersonstatistics.com/datasets/mri.txt",

header=TRUE, quote="\"")

Where here we want to include headers, and the ‘quote’ option determines what character will give
us a quote string. If we had the text file saved on the hard drive, rather than entering in the web
address we would put the path name in quotation marks. Another useful method for reading in
data is the “read.csv()” function, which follows a similar syntax. Also, if we wish to view the
entire data set, use the View(dataname) function. This will pop up a new window with the data.
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Chapter 5

Manipulating Your Data

Before going into some of the more complex data manipulation tools, we will cover some simple func-
tions which give a lot of information about our data. We also go into the difference between element
by element - that is, the function is evaluated at each element in the data structure - and overall
evaluation - that is, the function returns one value after running over the whole data structure.
Sometimes it is necessary to keep track of which kind of evaluation a function is performing.

5.1 Element by element Evaluation

junk <- 1:10

Now junk is a vector containing the elements 1 through 10. If we want to find the value of each
element in junk divided by 10, we simply type

junk/10

which returns

[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

This is an example of element by element evaluation. Multiplication is also an example of this type
of evaluation.

5.2 Overall Evaluation

In order to illustrate overall evaluation, recall the junk vector. If we want to find the sum of the
values, we type

sum(junk)

[1] 55

The sum function (with its basic syntax) evaluates over the whole data structure and returns a
single number. Now if we had a matrix of values, say junk repeated multiple times. First we must
introduce the rep() function, which repeats a value a user specified number of times. For example,

rep(5, 4)

[1] 5 5 5 5

Now we create the junk matrix, and then use the sum() function.
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junkMatrix <- matrix(rep(junk, 3), byrow=TRUE, nrow=3)

sum(junkMatrix)

[1] 165

Notice that 165 is equal to three times the sum of junk. So sum() has worked over the entire
matrix! If we want to only sum one row (or column), we must use a new function.

5.2.1 The apply() function

If we have a data structure with more than one dimension (say a matrix, which has dimension
equal to two) we can specify which dimension we sum over by using the apply() function. This
function takes as arguments first the data, then a dimension (or set of dimensions if it is higher
than dimension two), and last a function. It then applies the function over the specified dimension
in the data. Thus in our example, if we wanted the row sums, we would give apply() junkMatrix

as the data, 1 as the dimension, and sum() as the function:

apply(junkMatrix, 1, sum)

[1] 55 55 55

5.3 Mean, standard deviation, exponentiation, square root, log, ˆ

The functions listed here are all very useful in describing and transforming data. They are also
good examples of the two evaluation types. Both mean() and sd() are overall -

mean(junk)

[1] 5.5

sd(junk)

[1] 3.02765

The others are all element by element. The exp() function takes e (the mathematical constant,
approximately equal (to three digits) to 2.72) to the power of each element:

exp(junk)

[1] 2.718282 7.389056 20.085537 54.598150 148.413159 403.428793 1096.633158

2980.957987 8103.083928 22026.465795

log is the natural log of each element. Square root, as you might expect, takes the square root of
each element. Similarly, the ˆfunction raises each element to the power specified. For example,

junk^2

[1] 1 4 9 16 25 36 49 64 81 100

5.4 Missing Data, Special Values, and Evaluation

Missing data (NA) and special values (NaN, Inf) will affect the evaluation of our functions. For
example if we attach one of these to the end of junk, the is.na() function returns:

is.na(c(junk, NA))

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

is.na(c(junk, NaN))

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

is.na(c(junk, Inf))

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
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Now, what if we want to calculate a mean? Simply asking for a mean of this vector returns

mean(c(junk, NA))

[1] NA

mean(c(junk, NaN))

[1] NaN

mean(c(junk, Inf))

[1] Inf

which we might expect. However, there is an argument to mean (and other functions) which allows
us to remove the NA values when we evaluate the function. This is the na.rm argument. See how it
performs:

mean(c(junk, NA), na.rm=TRUE)

[1] 5.5

mean(c(junk, NaN), na.rm=TRUE)

[1] 5.5

mean(c(junk, Inf), na.rm=TRUE)

[1] Inf

which is again what we expect. We must make sure in our calculations that Inf values are handled
correctly (i.e. don’t divide by zero!).

5.5 Manipulating Data in the Workspace

5.5.1 Adding Variables

As we have covered previously, to add a variable to the workspace you simply use the <- assignment
statement, for example

junk <- 1:10

5.5.2 Changing Variable Names

Say we create a variable in the workspace called junk.

junk <- 1:10

Now, in the interest of being clear with what our variables contain, we wish to give the contents of
junk a more appropriate name - like oneToTen. To change the name we simply type

oneToTen <- junk

This copies all of the contents of junk into our new variable, oneToTen.

5.5.3 Changing Data Types

junk is a vector. What if, for example, we are using a function that requires a matrix? We must
change the data structure of junk from a vector to a matrix. If we want a single column matrix,
this is accomplished with the as.matrix() function, as follows

junk <- as.matrix(junk)

If we want a single row matrix, we must use the matrix(junk, nrow=1, byrow=TRUE) function -
specifying that we want R to fill in the matrix by row first and then by column.
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5.6 Manipulating Data in a Data Frame (or Matrix)

5.6.1 Adding Variables

In the mri dataset, say we wanted to convert physact from kilocalories to calories. We can create
a new variable for this, called calPhysAct. Assume that we have attached the mri data set. Now
we have some choices of where to store this new variable. If we simply type

calPhysAct <- 1000*physact

we will create a variable in the workspace called calPhysAct. However, this variable will not be
part of the mri data set. If we wish to make it part of the data set, we type

mri$calPhysAct <- 1000*physact

Now if we want to access calPhysAct by name like we can access physact, we must attach the data
set again. We use the same functions to add a variable to a data frame.

5.6.2 Changing Variable Names

Say that we read in the data set mri, but we want to change the name of stroke, one of the
variables, to hadStroke. We first make a test data set called mriTest to store this while we make
sure the name is correct, then find which column is the stroke column, and then change the name:

names(mri)

[1] "ptid" "mridate" "age" "male" "race" "weight" "height"

[8] "packyrs" "yrsquit" "alcoh" "physact" "chf" "chd" "stroke"

[15] "diabetes" "genhlth" "ldl" "alb" "crt" "plt" "sbp"

[22] "aai" "fev" "dsst" "atrophy" "whgrd" "numinf" "volinf"

[29] "obstime" "death"

mriTest <- mri

names(mriTest)[14] <- "hadStroke"

names(mriTest)

[1] "ptid" "mridate" "age" "male" "race" "weight"

[7] "height" "packyrs" "yrsquit" "alcoh" "physact" "chf"

[13] "chd" "hadStroke" "diabetes" "genhlth" "ldl" "alb"

[19] "crt" "plt" "sbp" "aai" "fev" "dsst"

[25] "atrophy" "whgrd" "numinf" "volinf" "obstime" "death"

5.6.3 Changing Data Types

Notice that if we type storage.mode(mri) we learn that mri is a matrix. What if we wanted mri

to be a data frame? Data frames are a special concept in R. A data frame is essentially a list of
vectors, which all must be the same length. It is similar to a matrix, but there are some functions
which require the data to be a data frame. If we wish to change mri to be a data frame, we type

mriTest <- as.data.frame(mri)

Now we have a data frame. If we wanted to change it back, we could say

mriTest <- as.matrix(mriTest)

We can also do this with individual columns of the data frame. For instance,

mriTest$male <- as.factor(mriTest$male)
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5.6.4 Attaching a Data Set (Data Frame)

We have the mri data set, but typing out mri[,1] or mri[,"ptid"] is too time consuming for every
time we want to access the patient id vector. Similarly, typing out mriTest$ptid is far too much.
If we want to save ourselves some time, we can use the attach function to simply type the variable
names and use them. However, if we bring in a data set with similar names later on and attach it,
we will lose the ability to refer to the original data set. Thus good data management means that
when we are done with a data set, we will use the detach function. For example,

attach(mri)

ptid[1:3]

[1] 1 2 3

detach(mri)

5.6.5 Attaching with the Same Name

Let’s say that we have attached the mri data set. If we update mri and wish to attach it again, we
will get a message similar to the following:

attach(mri)

The following objects are masked from mri (position 3):

aai, age, alb, alcoh, atrophy, chd, chf, crt, death, diabetes, dsst, fev,

genhlth, height, ldl, male, mridate, numinf, obstime, packyrs, physact, plt,

ptid, race, sbp, stroke, volinf, weight, whgrd, yrsquit

This means that if we refer to one of the names in the list, we are referring to these columns of our
new updated mri. There are ways to look up the values in the old mri, but those are out of the
scope of this document.

5.6.6 Missing Data

In STATA, missing data is coded as a “.”. In R, missing values are treated as NA. To test if there
are missing values, use the is.na() function. When reading in data, be careful of missing values.
Sometimes they may not be coded in a way that R will know to code them as NA. Thus, look at
the data first! If there are odd codings, use the na.strings option in the read.table() function
to set which other strings should be treated as NA.
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Chapter 6

Packages

A package is a suite of functions and methods developed for download and use by anyone who has
R. The base package includes many useful functions, but often these aren’t enough. Other people
- the original developers of R, and other dedicated users - have developed packages which contain
useful functions. For instance, the stats package contains many useful functions for ANOVA
and linear models (we will cover these later, don’t worry). In order to download a package, type
install.packages("packagename"). Then you may be prompted to enter the CRAN mirror
closest to you - this simply tells R where to download the package files from. Once the package has
been downloaded, use the library(packagename) function to load the package. A package must be
loaded only once per R session; however, when you re-open R, you will need to reload the package.
Each package has documentation online.

6.1 Function Help

Recall that R is a functional language. What do we do if we don’t know exactly what a function
does? We can either look up the function online (there is documentation for each function in R
available online) or we can type the request into R itself. Say we want to know more about the
read.table() function. Then we simply type ?read.table(), and the documentation will be
brought up for us.

However, there are many parts of the help file which are cryptic or the beginning user will not
understand. That is okay! Many times, the user doesn’t need to understand all of the arguments
or even all of the output of a function in order to get what is necessary for the task at hand. For
example, consider the mean function that we covered above. Type

?mean

A screen similar to the one presented here will load:
Notice the ellipsis (...) after the comma in the Usage section. The ellipsis means that other
arguments can be passed to the function. For example, the na.rm argument we covered earlier.
However, there are other arguments that we will not cover, and therefore it is best to take on faith
that the ellipsis argument will handle whatever it needs to.
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Chapter 7

Descriptive Statistics

Thus far, all we have covered are functions relating to data and data manipulation. However, R
also has many powerful functions for doing statistics. Many of these must be downloaded from
packages.

7.1 Simple Descriptives

To find the mean or the median, we simply type mean(data) or median(data). Many of the other
simple functions (sum - compute a sum, dim - return the dimensions of an object) operate in a
similar way.

7.2 Other Descriptives and the uwIntroStats package

For some complex descriptive statistics, as well as some statistical tests and plotting, we will turn
to the uwIntroStats package. Developed by Scott S. Emerson, M.D., Ph.D., Andrew J. Spieker,
and Brian D. Williamson at the University of Washington, this package seeks to facilitate an easy
switch from STATA to R. The functions follow a similar syntax to STATA, and simplify the work
of finding some output in R by placing it all in an easy to manage result. However, some of the
functions presented come from other R packages (including the base R package).

7.3 Summarize vs descrip()

Quick view of functions:
STATA R (base) R uwIntroStats

summarize summary(), mean(), sd(), var() descrip()

In STATA, a simple summary of the data may be obtained by the summarize command. In R,
we have a few different options. In the base package, we can get a good summary of the data
by using the summary() function. We can also get simple descriptive statistics using the mean(),

sd(), var() and other functions. Or, using the uwIntroStats package, we will use the descrip()

function. Details can be found in the documentation for the package.

Now, for example, we have a data on FEV1 - the volume of air that can be forcibly blown out
in one second, after full inspiration - in a clinical trial. This data can be found in the BIOST 511
webpage. Here we illustrate the difference between the STATA and R output:
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STATA Code and Output

* Read in data set *

use "https://courses.washington.edu/b511/Data/FEV1ClinTrial.dta"

* Create the table *

summarize

* STATA Output: *

------------------------------------------------------------------------------

Variable | Obs Mean Std. Dev. Min Max

---------+--------------------------------------------------------------------

Y1 | 520 1.546192 .6434104 .31 3.75

Y0 | 520 1.521327 .5980118 .33 3.68

T | 520 .4961538 .5004667 0 1

------------------------------------------------------------------------------

R Code and Output

#- Read in data set -#

clin.trial <- read.table("http://courses.washington.edu/b511/Data/FEV1ClinTrial.dat", sep="")

names(clin.trial) <- c("Y1", "Y0", "T")

attach(clin.trial)

#- Create the table -#

descrip(clin.trial)

#- R Output -#

N Msng Mean Std Dev Min 25% Mdn 75% Max

FEV1_at_24_weeks: 519 0 1.547 0.6433 0.3100 1.0650000 1.430 1.945 3.750

FEV1_at_Baseline: 519 0 1.522 0.5980 0.3300 1.0900000 1.420 1.910 3.680

Treatment: 519 0 0.4971 0.5005 0.0000 0.0000000 0.0000 1.000 1.000

7.4 Chi-square Test

Quick view of functions:
STATA R (base) R uwIntroStats

tabulate chisq.test() tabulate()

cc

cs

The base R function chisq.test performs the chi-squared test on tables, matrices, and vectors.
However, in order to calculate Odds Ratios, Risk Ratios, or other statistics (for example the like-
lihood ratio, Mantel-Haenszel statistic, and others) you must use other functions developed for
different R packages and piece the information together. In our package, the tabulate() function
has options for all of these statistics and more. Also, it calculates stratified values if requested.
Similar functionality is seen in the STATA command tabulate, or cc and cs (for case control and
cohort studies, respectively). We show a few examples to illustrate the performance of the two
functions:

Example 1:
Data: mri.
Goal: Perform a chi-squared test of stroke vs race.

STATA Code and Output
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* First create csv in Excel using "http://www.emersonstatistics.com/datasets/mri.txt" *

* Read in the data *

import delimited "sample_folder/mri.csv"

* Perform chi-squared test *

tabulate stroke race, chi2

| race

stroke | 1 2 3 4 | Total

-----------+--------------------------------------------+----------

0 | 493 93 39 11 | 636

1 | 21 1 2 0 | 24

2 | 58 10 6 1 | 75

-----------+--------------------------------------------+----------

Total | 572 104 47 12 | 735

Pearson chi2(6) = 3.1066 Pr = 0.795

R Code and Output

#- If not already done, load the necessary libraries -#

library(survival)

library(Exact)

library(plyr)

#- Read in the data -#

mri <- read.table("http://www.emersonstatistics.com/datasets/mri.txt", header=TRUE, quote="\"")

attach(mri)

#- create the table -#

tabulate(stroke, race)

#- Output -#

Call:

tabulate.default(stroke, race)

race.1 race.2 race.3 race.4 race.ALL

stroke.0 493 93 39 11 636

stroke.1 21 1 2 0 24

stroke.2 58 10 6 1 75

stroke.ALL 572 104 47 12 735

Point Estimate Test Statistic df 95% CI p-value Warnings

Chi-squared 3.1066 6 0.79536

Example 2:
Data: mri.
Goal: Perform a chi-squared test of stroke vs race, with row and column percentages displayed.

STATA Code and Output

* First create csv in Excel using "http://www.emersonstatistics.com/datasets/mri.txt" *

* Read in the data *

import delimited "sample_folder/mri.csv"

* Perform chi-squared test *

tabulate stroke race male, row column chi2

+-------------------+

| Key |

|-------------------|

| frequency |

| row percentage |

| column percentage |
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+-------------------+

| race

stroke | 1 2 3 4 | Total

-----------+--------------------------------------------+----------

0 | 493 93 39 11 | 636

| 77.52 14.62 6.13 1.73 | 100.00

| 86.19 89.42 82.98 91.67 | 86.53

-----------+--------------------------------------------+----------

1 | 21 1 2 0 | 24

| 87.50 4.17 8.33 0.00 | 100.00

| 3.67 0.96 4.26 0.00 | 3.27

-----------+--------------------------------------------+----------

2 | 58 10 6 1 | 75

| 77.33 13.33 8.00 1.33 | 100.00

| 10.14 9.62 12.77 8.33 | 10.20

-----------+--------------------------------------------+----------

Total | 572 104 47 12 | 735

| 77.82 14.15 6.39 1.63 | 100.00

| 100.00 100.00 100.00 100.00 | 100.00

Pearson chi2(6) = 3.1066 Pr = 0.795

R Code and Output

#- Read in the data -#

mri <- read.table("http://www.emersonstatistics.com/datasets/mri.txt", header=TRUE, quote="\"")

attach(mri)

#- create the table -#

tabulate(stroke, race, stat="@count@ @row%@ @col%@")

Call:

tabulate.default(stroke, race, stat = "@count@ @row%@ @col%@")

race.1 race.2 race.3

stroke.0 493 77.5% 86.2% 93 14.6% 89.4% 39 6.1% 83.0%

stroke.1 21 87.5% 3.7% 1 4.2% 1.0% 2 8.3% 4.3%

stroke.2 58 77.3% 10.1% 10 13.3% 9.6% 6 8.0% 12.8%

stroke.ALL 572 77.8% 100.0% 104 14.1% 100.0% 47 6.4% 100.0%

race.4 race.ALL

stroke.0 11 1.7% 91.7% 636 100.0% 86.5%

stroke.1 0 0.0% 0.0% 24 100.0% 3.3%

stroke.2 1 1.3% 8.3% 75 100.0% 10.2%

stroke.ALL 12 1.6% 100.0% 735 100.0% 100.0%

Point Estimate Test Statistic df 95% CI p-value Warnings

Chi-squared 3.1066 6 0.79536

Example 3:
Data: mri.
Goal: Perform a chi-squared test of stroke vs race, with the likelihood ratio rest and exact test
displayed.

STATA Code and Output

* First create csv in Excel using "http://www.emersonstatistics.com/datasets/mri.txt" *

* Read in the data *

import delimited "sample_folder/mri.csv"

* Perform chi-squared test *

tabulate stroke race, chi2 lrchi2 exact

Enumerating sample-space combinations:
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stage 4: enumerations = 1

stage 3: enumerations = 5

stage 2: enumerations = 63

stage 1: enumerations = 0

| race

stroke | 1 2 3 4 | Total

-----------+--------------------------------------------+----------

0 | 493 93 39 11 | 636

1 | 21 1 2 0 | 24

2 | 58 10 6 1 | 75

-----------+--------------------------------------------+----------

Total | 572 104 47 12 | 735

Pearson chi2(6) = 3.1066 Pr = 0.795

likelihood-ratio chi2(6) = 4.1111 Pr = 0.662

Fisher’s exact = 0.793

R Code and Output

#- Read in the data -#

mri <- read.table("http://www.emersonstatistics.com/datasets/mri.txt", header=TRUE, quote="\"")

attach(mri)

#- create the table -#

tabulate(stroke, race, tests=c("lrchisq", "fisher"))

Call:

tabulate.default(stroke, race, tests = c("lrchisq", "fisher"))

race.1 race.2 race.3 race.4 race.ALL

stroke.0 493 93 39 11 636

stroke.1 21 1 2 0 24

stroke.2 58 10 6 1 75

stroke.ALL 572 104 47 12 735

Point Estimate Test Statistic df 95% CI p-value Warnings

Chi-squared 3.1066 6 0.79536

LR Chi-squared 4.1111 6 0.66164

Fisher’s Exact Test 0.79349

Example 4:
Data: mri.
Goal: Perform a chi-squared test of diabetes vs male by race, ratios displayed and the Mantel-
Haenszel statistic.

STATA Code and Output

* First create csv in Excel using "http://www.emersonstatistics.com/datasets/mri.txt" *

* Read in the data *

import delimited "sample_folder/mri.csv"

* Perform chi-squared test *

cc diabetes male, by(race)

race | OR [95% Conf. Interval] M-H Weight

-----------------+-------------------------------------------------

1 | 1.9152 1.045652 3.587491 8.741259 (exact)

2 | 3.284211 .978571 12.68598 1.826923 (exact)

3 | 2.631579 .1255083 161.3361 .4042553 (exact)

4 | . .2483932 . 0 (exact)

-----------------+-------------------------------------------------

Crude | 2.233841 1.333028 3.814119 (exact)

M-H combined | 2.230293 1.358842 3.660624
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-------------------------------------------------------------------

Test of homogeneity (Tarone) chi2(3) = 1.33 Pr>chi2 = 0.7223

Test that combined OR = 1:

Mantel-Haenszel chi2(1) = 10.40

Pr>chi2 = 0.0013

R Code and Output

#- Read in the data -#

mri <- read.table("http://www.emersonstatistics.com/datasets/mri.txt", header=TRUE, quote="\"")

attach(mri)

#- create the table -#

tabulate(diabetes, male, race, dispRatios=TRUE, tests=c("lrchisq", "mh"))

Call:

tabulate.default(diabetes, male, race, dispRatios = TRUE, tests = c("lrchisq",

"mh"))

race.1 :

male.0 male.1 male.ALL

diabetes.0 266 250 516

diabetes.1 20 36 56

diabetes.ALL 286 286 572

Point Estimate Test Statistic df 95% CI p-value Warnings

Chi-squared 5.0676 1 0.024378

LR Chi-squared 5.132 1 0.023489

Mantel-Haenzsel 2.2303 9.6447 1 [1.36,3.66] 0.001899

Odds Ratio 1.9152 [1.0796, 3.3976]

Risk Ratio 1.8 [1.0686, 3.0321]

race.2 :

male.0 male.1 male.ALL

diabetes.0 48 38 86

diabetes.1 5 13 18

diabetes.ALL 53 51 104

Point Estimate Test Statistic df 95% CI p-value Warnings

Chi-squared 4.6816 1 0.030487

LR Chi-squared 4.8099 1 0.028296

Mantel-Haenzsel 2.2303 9.6447 1 [1.36,3.66] 0.001899

Odds Ratio 3.2842 [1.0761, 10.023]

Risk Ratio 2.702 [1.0376, 7.0362]

race.3 :

male.0 male.1 male.ALL

diabetes.0 25 19 44

diabetes.1 1 2 3

diabetes.ALL 26 21 47

Point Estimate Test Statistic df 95% CI p-value Warnings

Chi-squared 0.62669 1 0.42857

LR Chi-squared 0.62761 1 0.42823

Mantel-Haenzsel 2.2303 9.6447 1 [1.36,3.66] 0.001899

Odds Ratio 2.6316 [0.22181, 31.221]

Risk Ratio 2.4762 [0.24078, 25.466]

race.4 :

male.0 male.1 male.ALL

diabetes.0 4 6 10

diabetes.1 0 2 2

diabetes.ALL 4 8 12

Point Estimate Test Statistic df 95% CI p-value Warnings

Chi-squared 1.2 1 0.27332

LR Chi-squared 1.8161 1 0.17778

Mantel-Haenzsel 2.2303 9.6447 1 [1.36,3.66] 0.001899

Odds Ratio Inf [NaN, Inf]
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Risk Ratio Inf [NaN, Inf]

race.ALL :

male.0 male.1 male.ALL

diabetes.0 343 313 656

diabetes.1 26 53 79

diabetes.ALL 369 366 735

Point Estimate Test Statistic df 95% CI p-value Warnings

Chi-squared 10.588 1 0.0011384

LR Chi-squared 10.777 1 0.0010279

Mantel-Haenzsel 2.2303 9.6447 1 [1.36,3.66] 0.001899

Odds Ratio 2.2338 [1.3635, 3.6597]

Risk Ratio 2.0552 [1.3151, 3.2118]

Overall:

Test Statistic df p-value

Chi-squared 22.164 5 0.0004874

Likelihood Ratio 23.162 5 0.00031429

Example 5:
Data: mri.
Goal: Perform a chi-squared test of diabetes vs male, with Fisher’s Exact test and Barnard’s
Unconditional Exact test displayed.

STATA Code and Output

* First create csv in Excel using "http://www.emersonstatistics.com/datasets/mri.txt" *

* Read in the data *

import delimited "sample_folder/mri.csv"

* Perform chi-squared test *

tabulate diabetes male, chi2 exact

| male

diabetes | 0 1 | Total

-----------+----------------------+----------

0 | 343 313 | 656

1 | 26 53 | 79

-----------+----------------------+----------

Total | 369 366 | 735

Pearson chi2(1) = 10.5877 Pr = 0.001

Fisher’s exact = 0.001

1-sided Fisher’s exact = 0.001
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R Code and Output

#- Read in the data -#

mri <- read.table("http://www.emersonstatistics.com/datasets/mri.txt", header=TRUE, quote="\"")

attach(mri)

#- create the table -#

tabulate(diabetes, male, tests=c("fisher", "uWald", "uScore"))

Call:

tabulate.default(diabetes, male, tests = c("fisher", "uWald",

"uScore"))

male.0 male.1 male.ALL

diabetes.0 343 313 656

diabetes.1 26 53 79

diabetes.ALL 369 366 735

Point Estimate Test Statistic df 95% CI p-value Warnings

Chi-squared 10.588 1 0.0011384

Fisher’s Exact Test 0.0012349

Unconditional Exact Test (Wald) 3.4384 0.13524

Unconditional Exact Test (Score) 3.2539 0.0052114

Example 6:
Data: mri Goal: Print stratified vs overall chi-squared test for stroke vs race by male, with row/-
column/total percentages calculated.
R Code and Output

#- Read in the data -#

mri <- read.table("http://www.emersonstatistics.com/datasets/mri.txt", header=TRUE, quote="\"")

attach(mri)

#- Create the stratified table -#

tabulate(stroke, race, male, stat="@count@ @row%@ @col%@ @tot%@")

Call:

tabulate.default(stroke, race, male, stat = "@count@ @row%@ @col%@ @tot%@")

male.0 :

race.1 race.2 race.3

stroke.0 255 77.3% 89.2% 34.7% 50 15.2% 94.3% 6.8% 21 6.4% 80.8% 2.9%

stroke.1 13 86.7% 4.5% 1.8% 0 0.0% 0.0% 0.0% 2 13.3% 7.7% 0.3%

stroke.2 18 75.0% 6.3% 2.4% 3 12.5% 5.7% 0.4% 3 12.5% 11.5% 0.4%

stroke.ALL 286 77.5% 100.0% 38.9% 53 14.4% 100.0% 7.2% 26 7.0% 100.0% 3.5%

race.4 race.ALL

stroke.0 4 1.2% 100.0% 0.5% 330 100.0% 89.4% 44.9%

stroke.1 0 0.0% 0.0% 0.0% 15 100.0% 4.1% 2.0%

stroke.2 0 0.0% 0.0% 0.0% 24 100.0% 6.5% 3.3%

stroke.ALL 4 1.1% 100.0% 0.5% 369 100.0% 100.0% 50.2%

Point Estimate Test Statistic df 95% CI p-value Warnings

Chi-squared 5.085 6 0.53296

male.1 :

race.1 race.2 race.3

stroke.0 238 77.8% 83.2% 32.4% 43 14.1% 84.3% 5.9% 18 5.9% 85.7% 2.4%

stroke.1 8 88.9% 2.8% 1.1% 1 11.1% 2.0% 0.1% 0 0.0% 0.0% 0.0%

stroke.2 40 78.4% 14.0% 5.4% 7 13.7% 13.7% 1.0% 3 5.9% 14.3% 0.4%

stroke.ALL 286 78.1% 100.0% 38.9% 51 13.9% 100.0% 6.9% 21 5.7% 100.0% 2.9%

race.4 race.ALL

stroke.0 7 2.3% 87.5% 1.0% 306 100.0% 83.6% 41.6%

stroke.1 0 0.0% 0.0% 0.0% 9 100.0% 2.5% 1.2%

stroke.2 1 2.0% 12.5% 0.1% 51 100.0% 13.9% 6.9%

stroke.ALL 8 2.2% 100.0% 1.1% 366 100.0% 100.0% 49.8%

Point Estimate Test Statistic df 95% CI p-value Warnings
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Chi-squared 0.94735 6 0.98753

male.ALL :

race.1 race.2 race.3

stroke.0 493 77.5% 86.2% 67.1% 93 14.6% 89.4% 12.7% 39 6.1% 83.0% 5.3%

stroke.1 21 87.5% 3.7% 2.9% 1 4.2% 1.0% 0.1% 2 8.3% 4.3% 0.3%

stroke.2 58 77.3% 10.1% 7.9% 10 13.3% 9.6% 1.4% 6 8.0% 12.8% 0.8%

stroke.ALL 572 77.8% 100.0% 77.8% 104 14.1% 100.0% 14.1% 47 6.4% 100.0% 6.4%

race.4 race.ALL

stroke.0 11 1.7% 91.7% 1.5% 636 100.0% 86.5% 86.5%

stroke.1 0 0.0% 0.0% 0.0% 24 100.0% 3.3% 3.3%

stroke.2 1 1.3% 8.3% 0.1% 75 100.0% 10.2% 10.2%

stroke.ALL 12 1.6% 100.0% 1.6% 735 100.0% 100.0% 100.0%

Point Estimate Test Statistic df 95% CI p-value Warnings

Chi-squared 3.1066 6 0.79536

Overall:

Test Statistic df p-value

Chi-squared 9.1389 18 0.95644

#- Create the overall table -#

tabulate(stroke, race, male, stratified=FALSE, stat="@count@ @row%@ @col%@ @tot%@")

Call:

tabulate.default(stroke, race, male, stratified = FALSE, stat = "@count@ @row%@ @col%@ @tot%@")

male.0 :

race.1 race.2 race.3

stroke.0 255 8.67% 8.67% 8.67% 50 1.7% 1.7% 1.7% 21 0.714% 0.714% 0.714%

stroke.1 13 0.442% 0.442% 0.442% 0 0% 0% 0% 2 0.068% 0.068% 0.068%

stroke.2 18 0.612% 0.612% 0.612% 3 0.102% 0.102% 0.102% 3 0.102% 0.102% 0.102%

stroke.ALL 286 9.73% 9.73% 9.73% 53 1.8% 1.8% 1.8% 26 0.884% 0.884% 0.884%

race.4 race.ALL

stroke.0 4 0.136% 0.136% 0.136% 330 11.2% 11.2% 11.2%

stroke.1 0 0% 0% 0% 15 0.51% 0.51% 0.51%

stroke.2 0 0% 0% 0% 24 0.816% 0.816% 0.816%

stroke.ALL 4 0.136% 0.136% 0.136% 369 12.6% 12.6% 12.6%

male.1 :

race.1 race.2 race.3

stroke.0 238 8.1% 8.1% 8.1% 43 1.46% 1.46% 1.46% 18 0.612% 0.612% 0.612%

stroke.1 8 0.272% 0.272% 0.272% 1 0.034% 0.034% 0.034% 0 0% 0% 0%

stroke.2 40 1.36% 1.36% 1.36% 7 0.238% 0.238% 0.238% 3 0.102% 0.102% 0.102%

stroke.ALL 286 9.73% 9.73% 9.73% 51 1.73% 1.73% 1.73% 21 0.714% 0.714% 0.714%

race.4 race.ALL

stroke.0 7 0.238% 0.238% 0.238% 306 10.4% 10.4% 10.4%

stroke.1 0 0% 0% 0% 9 0.306% 0.306% 0.306%

stroke.2 1 0.034% 0.034% 0.034% 51 1.73% 1.73% 1.73%

stroke.ALL 8 0.272% 0.272% 0.272% 366 12.4% 12.4% 12.4%

male.ALL :

race.1 race.2 race.3

stroke.0 493 16.8% 16.8% 16.8% 93 3.16% 3.16% 3.16% 39 1.33% 1.33% 1.33%

stroke.1 21 0.714% 0.714% 0.714% 1 0.034% 0.034% 0.034% 2 0.068% 0.068% 0.068%

stroke.2 58 1.97% 1.97% 1.97% 10 0.34% 0.34% 0.34% 6 0.204% 0.204% 0.204%

stroke.ALL 572 19.5% 19.5% 19.5% 104 3.54% 3.54% 3.54% 47 1.6% 1.6% 1.6%

race.4 race.ALL

stroke.0 11 0.374% 0.374% 0.374% 636 21.6% 21.6% 21.6%

stroke.1 0 0% 0% 0% 24 0.816% 0.816% 0.816%

stroke.2 1 0.034% 0.034% 0.034% 75 2.55% 2.55% 2.55%

stroke.ALL 12 0.408% 0.408% 0.408% 735 25% 25% 25%

Overall:

Test Statistic df p-value

Chi-squared 9.1389 18 0.95644
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Chapter 8

Plots

8.1 Boxplots

Quick view of functions:
STATA R (base) R uwIntroStats

graph box boxplot() bplot()

Boxplots can be quite controversial as a descriptive plot of the data. Firstly, the population quar-
tiles are most often not the parameters of interest and so the box plot may not provide meaningful
insight in answering a scientific question. The definition of an ‘outlier” as defined by lying 1.5 ×
the interquartile range away is indeed arbitrary; we don’t have a good sense of what would be a
better replacement. With that said, our new R function - bplot() - has many of the the normal
capabilities of the default boxplot function (boxplot()), but it is straightforward to: 1) add jittered
data to the plot and 2) overlay information about the sample mean and standard deviation. We
use the FEV data set as an example.

STATA Code and Output

* Read in data set *

use "https://courses.washington.edu/b511/Data/FEV1ClinTrial.dta"

* Box Plot *

graph box fev, by(smoke) ytitle(FEV)

* STATA Output: *

32



R Code and Output

#- Read in data set -#

fev <- read.table("http://courses.washington.edu/b511/Data/FEV1ClinTrial.dat", sep="")

attach(fev)

#- Box Plot -#

bplot(y = FEV, x = SMOKE, xlab = "Smoking Group", ylab = "FEV")

#- R Output -#
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8.2 Histograms

Quick view of functions:
STATA R (base)

histogram hist()

The syntax for histograms is very similar between STATA and the base R package. However,
in R, we must label the axes. Thus we use the ylab and xlab arguments to apply a y and x-axis
label to the plot. The breaks command allows us to enter the number of bins we want displayed
on the histogram.

STATA Code and Output

* Read in data set *

use "https://courses.washington.edu/b511/Data/FEV1ClinTrial.dta"

* Create a histogram *

histogram Y1

* STATA Output: *

* Save the graph *

graph export "test directory\example1.png"

R Code and Output

#- Read in data set -#

clin.trial <- read.table("http://courses.washington.edu/b511/Data/FEV1ClinTrial.dat", sep="")

names(clin.trial) <- c("Y1", "Y0", "T")

attach(clin.trial)

#- Create a histogram -#

hist(Y1, ylab="Frequency", xlab="FEV1 at 24 Weeks", main="Histogram of FEV1 at 24 Weeks")

#- R Output -#
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#- Save the graph -#

pdf(file="testdirectory/example1.pdf")

> hist(Y1, ylab="Frequency", xlab="FEV1 at 24 Weeks", main="Histogram of FEV1 at 24 Weeks")

> dev.off()

#- Version with 22 bins -#

hist(Y1, ylab="Frequency", xlab="FEV1 at 24 Weeks", main="Histogram of FEV1 at 24 Weeks", breaks=22)
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#- Save the graph -#

pdf(file="testdirectory/example1.pdf")

hist(Y1, ylab="Frequency", xlab="FEV1 at 24 Weeks", main="Histogram of FEV1 at 24 Weeks", breaks=22)

dev.off()

8.3 Scatterplots

Quick view of functions:
STATA R (base) R uwIntroStats

scatter plot() scatter()

The base R version of the scatterplot takes an x and a y variable (which must be of the same
length) and plots the points as specified by these coordinates. If you wish to have least squares
lines or other additions to the plot, you must use the abline() function. The STATA version of
scatterplot and the R version (in our package) of scatterplot are very similar. The syntax in each
is y-variable followed by x-variable, followed by any arguments. However, in our version there are
some extra arguments that need to be added to the function call in order to get exactly what we
want.

STATA Code and Output
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* Read in data set *

use "https://courses.washington.edu/b511/Data/FEV1ClinTrial.dta"

* Create a scatterplot with lowess curves and least squares fitted regression lines *

scatter Y1 Y0 || lfit Y1 Y0 || lowess Y1 Y0

* STATA Output: *

* Save the graph *

graph export "test directory\example1.png"

R Code and Output

#- Read in data set -#

clin.trial <- read.table("http://courses.washington.edu/b511/Data/FEV1ClinTrial.dat", sep="")

names(clin.trial) <- c("Y1", "Y0", "T")

attach(clin.trial)

#- Create a scatterplot with lowess curves and least squares fitted regression lines -#

scatter(Y1, Y0, ylab="FEV1 At 24 Weeks", xlab="FEV1 at Baseline")

#- R Output -#
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#- Save the graph -#

pdf(file="test directory\example1.pdf")

scatter(Y1, Y0, ylab="FEV1 At 24 Weeks", xlab="FEV1 at Baseline")

dev.off()
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Chapter 9

Correlations

Quick view of functions:
STATA R (base) R uwIntroStats

correlate cor() - correlation correlate()

cov() - covariance

In STATA, the command to compute a correlation matrix is correlate. In our package, the
function called is correlate() and it follows much of the same syntax. The basic function takes
in an arbitrary number of variables and returns the correlation matrix, calculating Pearson’s cor-
relation coefficient. Note that STATA will not display one of the diagonal elements since the two
values are the same, while R does display it.

STATA Code and Output

* Read in data set *

use "https://courses.washington.edu/b511/Data/FEV1ClinTrial.dta"

* Calculate the correlation matrix between Y1 and Y0 *

correlate Y1 Y0

* STATA Output: *

(obs=520)

| Y1 Y0

-------------+------------------

Y1 | 1.0000

Y0 | 0.8932 1.0000

R Code and Output

#- Read in data set -#

clin.trial <- read.table("http://courses.washington.edu/b511/Data/FEV1ClinTrial.dat", sep="")

names(clin.trial) <- c("Y1", "Y0", "T")

attach(clin.trial)

#- Calculate the correlation matrix -#

correlate(Y1, Y0)

#- R Output -#

Tabled correlation statistics by strata

Call:

correlate(Y1, Y0)

Method: Pearson

Data : Pairwise Complete

- NaN denotes strata with no observations

- NA arises from missing data
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##### ALL DATA

## Estimated Correlation Coefficients

Y1: Y0:

Y1: 1.0000 0.8932

Y0: 0.8932 1.0000

9.1 Pairwise Correlations

The command to compute pairwise correlations in STATA is pwcorr. In R, using our package,
you simply add the use="pairwise.complete.obs" argument in the correlate() function. If
you are using the base R functions, the arguments are the same. If "pairwise.complete.obs" is
entered, then the pairwise correlations are computed using all cases that are not missing data. In
the examples presented below, there will be no difference between using pairwise correlation and
standard correlation coefficients.

STATA Code and Output

* Read in data set *

use "https://courses.washington.edu/b511/Data/FEV1ClinTrial.dta"

* Calculate the pairwise correlation matrix between Y1 and Y0 *

pwcorr Y1 Y0

* STATA Output: *

| Y1 Y0

-------------+------------------

Y1 | 1.0000

Y0 | 0.8932 1.0000

R Code and Output

#- Read in data set -#

clin.trial <- read.table("http://courses.washington.edu/b511/Data/FEV1ClinTrial.dat", sep="")

names(clin.trial) <- c("Y1", "Y0", "T")

attach(clin.trial)

#- Calculate the pairwise correlation matrix -#

correlate(Y1, Y0, use="pairwise.complete.obs")

#- R Output -#

Tabled correlation statistics by strata

Call:

correlate(Y1, Y0, use = "pairwise.complete.obs")

Method: Pearson

Data : Pairwise Complete

- NaN denotes strata with no observations

- NA arises from missing data

##### ALL DATA

## Estimated Correlation Coefficients

Y1: Y0:

Y1: 1.0000 0.8932

Y0: 0.8932 1.0000
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Chapter 10

Cumulative Distribution Functions

Say we calculate a test statistic (z-score, t-statistic, chi-squared statistic) and want to find the p-
value. Recall that for a p-value we want to find the probability of values at least as extreme as our
value. Thus in STATA, if we have a z-score of 1, the correct command is display 1-normprob(1).
In R, the function is 1-pnorm(1). Similar functions - p followed by the name of the distribution -
can be found for many of the probability distributions.

STATA Code and Output

* Calculate the p-value for a z-score of 1 *

display normprob(1)

* STATA Output: *

.15865525

R Code and Output

#- Calculate the p-value -#

1-pnorm(1)

#- R Output -#

[1] 0.1586553
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Chapter 11

One-Sample Inference

11.1 The one-sample t-test

Quick view of functions:
STATA R (base) R uwIntroStats

ttest t.test() ttest()

R has a default function called t.test which performs a one-sample t-test. The information printed
by this default function is not presented in a way that is as clear as that provided by STATA. As
part of our package, we provide a t-test function called ttest, which prints a summary comparable
in style to that provided by STATA. We also have added on the capability to do tests on geometric
means, and to stratify the analysis on given variables.

As an example, we consider the WCGS data below and test the hypothesis that that the mean
weight in the sampled population is equal to 169 lbs against the (two-sided) alternative that the
mean weight is not equal to 169 lbs. STATA provides inference for each one-sided hypothesis. In
R, the default is a two-sided test if none is specified by the user, but one may specify the test type
with the argument test.type by providing either “less” or “greater” instead of “two.sided”.

STATA Code and Output

* Read in the data *

use ".../wcgs.dta"

* Edit the data if necessary *

* Perform a one-sample t-test on weight *

ttest weight == 169

* STATA Output: *

One-sample t test

------------------------------------------------------------------------------

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

weight | 3154 169.9537 .3756335 21.09576 169.2172 170.6902

------------------------------------------------------------------------------

mean = mean(weight) t = 2.5389

Ho: mean = 169 degrees of freedom = 3153

Ha: mean < 169 Ha: mean != 169 Ha: mean > 169

Pr(T < t) = 0.9944 Pr(|T| > |t|) = 0.0112 Pr(T > t) = 0.0056
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R Code and Output

#- Read in the data -#

setwd("~/Desktop")

WCGS <- read.csv("WCGS.csv")

#- Attaching the data -#

attach(WCGS)

#- Perform a one-sample t-test on weight -#

ttest(weight, null.hypoth = 169)

#- R Output -#

Call:

ttest.default(var1 = weight, null.hypoth = 169)

One-sample t-test :

Summary:

Variable Obs Missing Mean Std. Err. Std. Dev. 95% CI

weight 3154 0 170 0.376 21.1 [169, 171]

Null hypothesis: mean = 169 ;

Alternative hypothesis: mean != 169

t = 2.539

df = 3153

Pr(|T| > t) = 0.0111667
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Chapter 12

Two-Sample Inference

12.1 The two-sample t-test

Just as the ttest command in STATA is equipped to handle both one- and two-sample inference,
the ttest (and t.test) function in R can be used for the two-sample t-test. By default, this
function performs a t-test which allows for the possibility that the groups have unequal variances
(provided it is not a matched-pairs test, for which that is not an option). This is different from the
default in STATA which is to presume that the two groups have equal variances. We consider an
example from the WCGS data set.

STATA Code and Output

* Read in the data *

use ".../shoulder_wide.dta"

* Perform a two-sample t-test on SBP by dibpat *

ttest sbp, by(dibpat) unequal

* STATA Output: *

Two-sample t test with unequal variances

------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

B3,B4 | 1565 127.4658 .3646562 14.42583 126.7505 128.1811

A1,A2 | 1589 129.7823 .3935908 15.68942 129.0102 130.5543

---------+--------------------------------------------------------------------

combined | 3154 128.6328 .269188 15.11773 128.105 129.1606

---------+--------------------------------------------------------------------

diff | -2.316438 .5365518 -3.368466 -1.26441

------------------------------------------------------------------------------

diff = mean(B3,B4) - mean(A1,A2) t = -4.3173

Ho: diff = 0 Satterthwaite’s degrees of freedom = 3137.24

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

R Code and Output

#- Read in the data -#

setwd("~/Desktop")

WCGS <- read.csv("WCGS.csv")
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#- Attaching the data -#

attach(WCGS)

#- Perform a two- sample t-test on pain (matched) -#

ttest(sbp, by = dibpat)

#- R Output -#

Call:

ttest.default(var1 = sbp, by = dibpat)

Two-sample t-test allowing for unequal variances :

Summary:

Group Obs Missing Mean Std. Err. Std. Dev. 95% CI

dibpat = A1,A2 1589 0 129.78 0.394 15.7 [129.01, 130.55]

dibpat = B3,B4 1565 0 127.47 0.365 14.4 [126.75, 128.18]

Difference 3154 0 2.32 0.537 <NA> [1.26, 3.37]

Null hypothesis: difference in means = 0 ;

Alternative hypothesis: difference in means != 0

t = 4.317

df = 3137

Pr(|T| > t) = 1.62861e-05
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Chapter 13

Linear Regression

Quick view of functions:
STATA R (base) R uwIntroStats

regress lm() regress()

In both STATA and our regression function in R, the syntax is dependent variable (y) followed
by independent variable (x). The correct STATA command is regress, while the function in R
is regress(). However, we must specify some of the arguments to regress() before we use it.
First is the fnctl argument. This allows the user to specify the desired summary measure of the
distribution - acceptable choices are "mean", "geometric mean", "odds", "rate", and "hazard".
Next, the dependent variable is entered. Last, the independent variables are entered (in vector,
matrix, or list of variables).
Also, the regress() function relies on the sandwich package to compute robust standard errors
(requested by default), so install and load it if you do not already have it loaded.

STATA Code and Output

* Read in the data *

import delimited "http://www.emersonstatistics.com/datasets/mri.txt", delimiters("whitespace", collapse)

* Edit the data if necessary *

* Perform the regression *

regress stroke race male

* STATA Output: *

Source | SS df MS Number of obs = 735

-------------+------------------------------ F( 2, 732) = 4.23

Model | 3.22884311 2 1.61442156 Prob > F = 0.0150

Residual | 279.57932 732 .381938962 R-squared = 0.0114

-------------+------------------------------ Adj R-squared = 0.0087

Total | 282.808163 734 .385297225 Root MSE = .61801

------------------------------------------------------------------------------

stroke | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

race | -.0014108 .0342548 -0.04 0.967 -.0686601 .0658385

male | .1325506 .0455919 2.91 0.004 .0430442 .2220571

_cons | .1725898 .0554123 3.11 0.002 .0638039 .2813758

------------------------------------------------------------------------------

R Code and Output

#- Read in the data -#
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mri <- read.table("http://www.emersonstatistics.com/datasets/mri.txt",

header=TRUE, quote="\"")

#- Attaching the data -#

attach(mri)

#- Regressing stroke vs race and male (and calculating based on the mean) -#

regress("mean", stroke, cbind(race, male))

#- R Output -#

regress(fnctl = "mean", y = stroke, model = cbind(race, male))

Call:

regress(fnctl = "mean", y = stroke, model = cbind(race, male))

Residuals:

Min 1Q Median 3Q Max

-0.3037 -0.3037 -0.1712 -0.1712 1.8316

Coefficients:

Estimate Naive SE Robust SE 95%L 95%H F stat df Pr(>F)

Intercept 0.172590 0.055412 0.052482 0.069558 0.275622 10.814780 1 0.00106

model NA NA NA NA NA 4.217292 2 0.01510

model.race -0.001411 0.034255 0.034842 -0.069813 0.066992 0.001640 1 0.96771

model.male 0.132551 0.045592 0.045648 0.042934 0.222167 8.431797 1 0.00380

Residual standard error: 0.618 on 732 degrees of freedom

Multiple R-squared: 0.01142,Adjusted R-squared: 0.008716

F-statistic: 4.227 on 2 and 732 DF, p-value: 0.01496
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Chapter 14

Graphical User Interfaces

Often, it is more convenient to use a graphical user interface (GUI) rather than use R from the
command line. STATA comes pre-loaded with a GUI, and R does too. Typing functions in the GUI
is exactly the same as typing in the command line, but the GUI presents everything in a way that
is easier to understand and follow. GUIs also provide buttons and tabs that do some useful tasks
for the user.

14.1 The Basic R GUI

When you install R, it will usually ask to install a shortcut for R on your desktop. If you use the
R application this way (or from the Start menu for Windows users or from the Applications folder
for Macintosh users) the basic R GUI will open up. It looks something like this:

The tabs at the top all have fairly self explanatory functions, from creating and saving scripts to
loading packages. The scripts and any plots that are generated appear in the grey space in the GUI
window. The main console opens up and is titled “R Console”.

14.2 RStudio

There are many other GUIs for R, but a very intuitive one is called RStudio. It can be downloded
from www.rstudio.com for free. Before you download RStudio, you must have a version of R
downloaded already. You must tell RStudio when you are initially setting it up which version of R
to look to. RStudio has all of the same functionality as the basic R GUI, but adds nice features
such as the “Import Dataset” button which, given the path to a file on your computer or on the
internet, downloads and formats the data for you.
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Chapter 15

Examples from Lectures

15.1 BIOST 511 (Taught by David Yanez, Autumn 2013)

15.1.1 Variance and Standard Deviation - Slide 51

Data: Two samples -
20, 23, 34, 26, 30, 22, 40, 38, 37

30, 29, 30, 31, 32, 30, 28, 30, 30

Goal: Obtain measures of spread (variance and standard deviation) and a stem and leaf plot.

STATA Code and Output

* Type in the data *

generate var1 = 20 in 1

replace var1 = 23 in 2

replace var1 = 34 in 3

replace var1 = 26 in 4

replace var1 = 30 in 5

replace var1 = 22 in 6

replace var1 = 40 in 7

replace var1 = 38 in 8

replace var1 = 37 in 9

generate var2 = 30 in 1

replace var2 = 29 in 2

replace var2 = 30 in 3

replace var2 = 31 in 4

replace var2 = 32 in 5

replace var2 = 30 in 6

replace var2 = 28 in 7

replace var2 = 30 in 8

replace var2 = 30 in 9

rename var1 sample1

rename var2 sample2

* Get the variance and standard deviation *

summarize sample1, detail

summarize sample2, detail

* STATA Output: *

sample1

-------------------------------------------------------------

Percentiles Smallest

1% 20 20

5% 20 22

10% 20 23 Obs 9

25% 23 26 Sum of Wgt. 9
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50% 30 Mean 30

Largest Std. Dev. 7.566373

75% 37 34

90% 40 37 Variance 57.25

95% 40 38 Skewness 0

99% 40 40 Kurtosis 1.437587

sample2

-------------------------------------------------------------

Percentiles Smallest

1% 28 28

5% 28 29

10% 28 30 Obs 9

25% 30 30 Sum of Wgt. 9

50% 30 Mean 30

Largest Std. Dev. 1.118034

75% 30 30

90% 32 30 Variance 1.25

95% 32 31 Skewness 0

99% 32 32 Kurtosis 3.06

R Code and Output

#- Type in the data -#

sample1 <- c(20, 23, 34, 26, 30, 22, 40, 38, 37)

sample2 <- c(30, 29, 30, 31, 32, 30, 28, 30, 30)

#- Get variance and standard deviation -#

descrip(sample1)

#- sd is 4th column of matrix, variance is sd^2 -#

(descrip(sample1)[,4])^2

descrip(sample2)

(descrip(sample2)[,4])^2

#- R Output -#

N Msng Mean Std Dev Min 25% Mdn 75% Max

sample1: 9 0 30.00 7.566 20.00 23.000000 30.00 37.00 40.00

[1] 57.25

N Msng Mean Std Dev Min 25% Mdn 75% Max

sample2: 9 0 30.00 1.118 28.00 30.000000 30.00 30.00 32.00

[1] 1.25

15.1.2 Calculating Quantiles and Percentiles - Slide 53

Data: ages, 20, 23, 34, 26, 30, 22, 40, 38, 37

Goal: Calculate 25th and 75th percentile

STATA Code and Output

* Type in the data *

generate var1 = 20 in 1

replace var1 = 23 in 2

replace var1 = 34 in 3

replace var1 = 26 in 4

replace var1 = 30 in 5

replace var1 = 22 in 6

replace var1 = 40 in 7

replace var1 = 38 in 8

replace var1 = 37 in 9

rename var1 age
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* Get centiles *

centile age, centile(25 50 75)

* STATA Output: *

-- Binom. Interp. --

Variable | Obs Percentile Centile [95% Conf. Interval]

-------------+-------------------------------------------------------------

age | 9 25 22.5 20 32.45832*

| 50 30 22.07778 37.92222

| 75 37.5 27.54168 40*

R Code and Output

#- Read in the data -#

age <- c(20, 23, 34, 26, 30, 22, 40, 38, 37)

#- Get centiles (25, 50, 75) -#

descrip(age)

#- R Output -#

N Msng Mean Std Dev Min 25% Mdn 75% Max

age: 9 0 30.00 7.566 20.00 23.000000 30.00 37.00 40.00

15.1.3 2x2 Table - Slide 110

Data: Pauling (1971) Vitamin C data
Goal: Determine if there is an association between treatment and disease.

STATA Code and Output

* Run case-control chi-squared test *

cci 17 122 31 109

* STATA Output: *

Proportion

| Exposed Unexposed | Total Exposed

-----------------+------------------------+------------------------

Cases | 17 122 | 139 0.1223

Controls | 31 109 | 140 0.2214

-----------------+------------------------+------------------------

Total | 48 231 | 279 0.1720

| |

| Point estimate | [95% Conf. Interval]

|------------------------+------------------------

Odds ratio | .4899524 | .2407003 .9744098 (exact)

Prev. frac. ex. | .5100476 | .0255902 .7592997 (exact)

Prev. frac. pop | .1129391 |

+-------------------------------------------------

chi2(1) = 4.81 Pr>chi2 = 0.0283

R Code and Output

#- Set data -#

vitaminC <- c(rep(1, 17), rep(0, 122))

placebo <- c(rep(1, 31), rep(0, 109))

#- Run case-control chi-squared -#

tabulate(vitaminC, placebo, dispRatios=TRUE)

#- R Output -#
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15.1.4 Next Example

Data:
Goal:

STATA Code and Output

* Type in the data *

* STATA Output: *

R Code and Output

#- Read in the data -#

#- R Output -#

15.2 BIOST 514/517 (Taught by Katie Kerr, Autumn 2013)

Basic Summary Statistics - Lecture 04

STATA Command Syntax Desription

describe describe varlist type of variable; value labels
inspect inspect varlist crude hist; msg; integer; counts sign

summarize summarize varlist, format non msg, mean, sd, min, max
summarize summarize varlist, detail format plus quantiles, skewness, kurtosis

means means varlist artith., geom., harm. means, nonmsg, CI
centile centile varlist, cen(x, y) table of requested quant., CI
tabstat tabstat varlist, stat(n mean sd table of relevant stats for var

min p25 med p75 max)
tabulate tabulate var frequency for variables

R Command Syntax Desription

descrip descrip varlist descriptive statistics of the variables entered
if requested, displays count of msng, mean, geom mean, sd, min, max,
quantiles, CI, frequency

Procedures:

1. Dichotomizing data - STATA

• generate x = 0

• replace x = 1 if y ≥5

2. Dichotomizing data - R

• x <- ifelse(y ≥ 5, 1, 0)
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3. Computing the mode (discrete) - STATA

• table var

• Examine output for highest frequency

4. Computing the mode (discrete) - R

• table(var)

• Examine output for highest frequency

5. Computing the mode (continuous) - STATA

• kdensity var, g(x d)

6. Computing the mode (continuous) - R

• x <- density(var)
plot(x)

• Examine plot for highest frequency
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