

Session 2

Group Sequential Stopping Rules

Need for Monitoring a Trial

Criteria for Early Stopping

Inadequacy of Fixed Sample Methods

Stopping Rules

Families of Designs

Boundary Scales

Unified Family (Sample Mean Scale)

Error Spending Family

Comparison of Parameterizations

Evaluation of Group Sequential Designs

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 1

Need for Monitoring a Trial

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 2

Need for Monitoring a Trial

Fixed sample two-sided tests

Test of a two-sided alternative ($\theta_+ > \theta_0 > \theta_-$)

- Upper Alternative: $H_+: \theta \geq \theta_+$ (superiority)
- Null: $H_0: \theta = \theta_0$ (equivalence)
- Lower Alternative: $H_-: \theta \leq \theta_-$ (inferiority)

Data analyzed once at the end of all data accrual

Decisions:

- Reject H_0, H_- (for H_+) $\iff T \geq c_U$
- Reject H_+, H_0 (for H_-) $\iff c_L \leq T \leq c_U$
- Reject H_+, H_0 (for H_+) $\iff T \leq c_L$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 3

Need for Monitoring a Trial

Ethical concerns

Patients already on trial

- Avoid continued administration of harmful treatments
- Maintain validity of informed consent

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 4

Need for Monitoring a Trial

Ethical concerns (cont.)

Patients not yet on trial

- ♦ Start treatment with best therapy
- ♦ Ensure informed consent valid

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 5

Need for Monitoring a Trial

Ethical concerns (cont.)

Patients never on trial

- ♦ Facilitate rapid introduction of beneficial treatments
- ♦ Warn about risks of existing treatments

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 6

Need for Monitoring a Trial

Efficiency considerations

Fewer patients may be needed on average

- ♦ Decreases costs associated with number of patients

Time savings

- ♦ Decreases costs associated with monitoring patients

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 7

Need for Monitoring a Trial

Futility considerations: Efficiency and Ethics

Efficiency

- ♦ Stop a study when it is known (or reasonably certain) that no effect will be demonstrated
- ♦ Can perform more studies with limited resources

Ethics

- ♦ Is it ever ethical to expose patients to experimental treatments when no meaningful information will be gained?
- ♦ Can devote resources to study of more promising agents

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 8

Criteria for Stopping a Trial

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 9

Criteria for Stopping a Trial

Sufficient evidence available to be confident of rejecting specific hypotheses

Stopping early for

- Efficacy (superiority)
- Harm (inferiority)
- Equivalence

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 10

Criteria for Stopping a Trial

Futility of demonstrating effect that would change behavior

Stopping early for futility

- Not sufficiently superior
- Not dangerously harmful

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 11

Criteria for Stopping a Trial

And there is no advantage in continuing

Even if confident of ultimate decision about primary endpoint, may want to continue trial to gain more information on

- Safety
- Longer term follow-up
- Gather additional data on secondary outcomes

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 12

Criteria for Stopping a Trial

Statistical basis for stopping criteria

Curtailment

- Boundary has been reached early
- E.g., one arm study with binary endpoint
 - Critical value for rejection of null might be observation of K events
 - Kth event may occur well before all subjects accrued

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 13

Criteria for Stopping a Trial

Statistical basis for stopping criteria (cont.)

Stochastic Curtailment

- High probability that a particular decision will be made at final analysis
- Calculate probability of exceeding some critical value conditional on data observed so far
- Probability calculated based on hypothesized treatment effect (which hypothesis?) or current estimate

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 14

Criteria for Stopping a Trial

Statistical basis for stopping criteria (cont.)

Predictive probability of final statistic

- A special form of stochastic curtailment
- Uses a Bayesian prior distribution on the treatment effect

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 15

Criteria for Stopping a Trial

Statistical basis for stopping criteria (cont.)

Group sequential test

- Sufficient evidence to make decision in classical frequentist framework
- Type I and II errors controlled at desired levels

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 16

Criteria for Stopping a Trial

Statistical basis for stopping criteria (cont.)

Bayesian analysis

- ♦ Compute the probability that the treatment effect is in some specified range
- ♦ Calculations based on a user specified prior distribution for the treatment effect (which is treated as a random variable)

Inadequacy of Fixed Sample Methods

Inadequacy of Fixed Sample Methods

Sequential monitoring of a trial

Data are analyzed after accrual of each observation

- ♦ (Group sequential monitoring: analysis after groups of observations accrued)
- ♦ Analyses must take into account the repeated analyses of the same data
 - Sampling distribution of the test statistic is altered
 - Frequentist properties are altered

Inadequacy of Fixed Sample Methods

Setting for demonstration of the problem

Observations:

$$X_1, X_2, X_3, \dots, X_N$$
$$X_i \sim N(\mu, \sigma^2)$$

Hypothesis:

$$H_0 : \mu = \mu_0$$

Inadequacy of Fixed Sample Methods

Test Statistic

Sample mean computed after each observation:

$$\bar{X}_j = \frac{1}{j} \sum_{i=1}^j X_i, \quad j=1, \dots, N$$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 21

Inadequacy of Fixed Sample Methods

Fixed sample decision rule

Hypothesis test when all data accrued:

- Reject H_0 when

$$\bar{X}_N > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{N}}$$

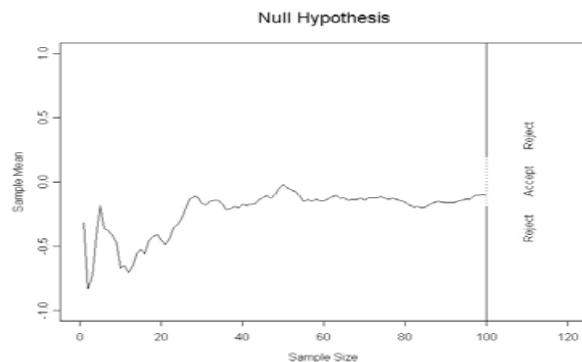
$$\bar{X}_N < \mu_0 - z_{1-\alpha} \frac{\sigma}{\sqrt{N}}$$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 22

Inadequacy of Fixed Sample Methods

Sample path for sample mean

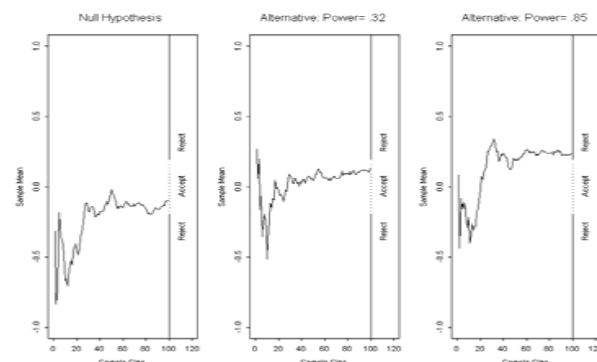


February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 23

Inadequacy of Fixed Sample Methods

Sample path for sample mean



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 24

Inadequacy of Fixed Sample Methods

Repeated significance testing

Continuous monitoring:

- ♦ Reject H_0 the first time

$$\bar{X}_j > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{j}}$$

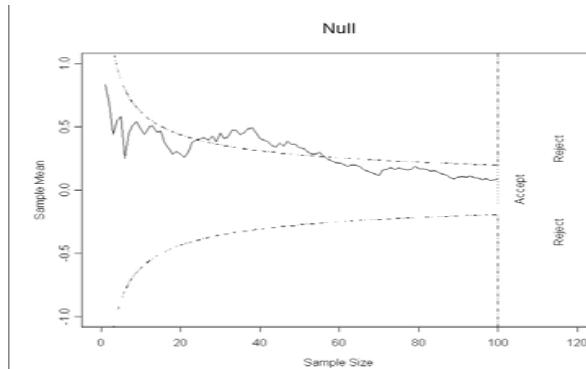
$$\bar{X}_j < \mu_0 - z_{1-\alpha} \frac{\sigma}{\sqrt{j}}$$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 25

Inadequacy of Fixed Sample Methods

Simulated trials when H_0 is true:

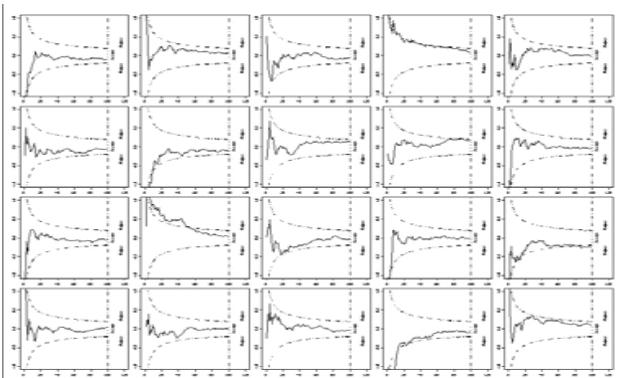


February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 26

Inadequacy of Fixed Sample Methods

Simulated trials when H_0 is true:



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 27

Inadequacy of Fixed Sample Methods

Repeated significance testing

Monitoring after each of J groups of observations:

- ♦ Analyses at N_1, N_2, \dots, N_j
- ♦ Reject H_0 the first time

$$\bar{X}_{N_j} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{N_j}}$$

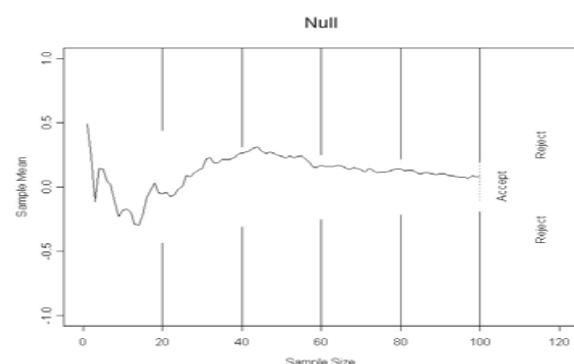
$$\bar{X}_{N_j} < \mu_0 - z_{1-\alpha} \frac{\sigma}{\sqrt{N_j}}$$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 28

Inadequacy of Fixed Sample Methods

Simulated trials when H_0 is true:

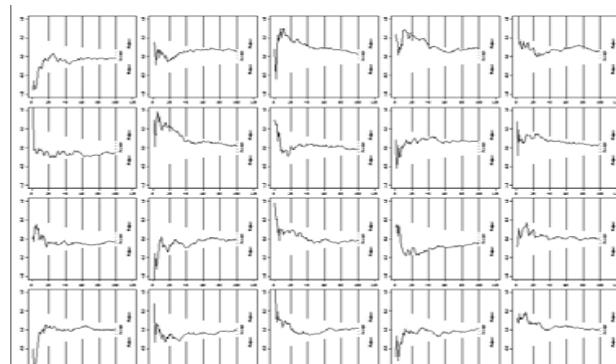


February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 29

Inadequacy of Fixed Sample Methods

Simulated trials when H_0 is true:



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

	Proportion Significant
1st	
	.05038

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 31

Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

	Proportion Significant
1st	
2nd	
	.05038 .05022

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 32

Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

	<u>Proportion Significant</u>	
<u>1st</u>	<u>2nd</u>	<u>3rd</u>
.05038	.05022	.05056

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 33

Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

<u>Pattern of Significance</u>	<u>Proportion Significant</u>
<u>1st</u>	
1st only	.03046
1st, 2nd	.00807
1st, 3rd	.00317
1st, 2nd, 3rd	.00868
Any pattern	.05038

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 34

Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

<u>Pattern of Significance</u>	<u>Proportion Significant</u>	
<u>1st</u>	<u>2nd</u>	
1st only	.03046	
1st, 2nd	.00807	.00807
1st, 3rd	.00317	
1st, 2nd, 3rd	.00868	.00868
2nd only	.01921	
2nd, 3rd	.01426	
Any pattern	.05038	.05022

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 35

Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

<u>Pattern of Significance</u>	<u>Proportion Significant</u>	
<u>1st</u>	<u>2nd</u>	<u>3rd</u>
1st only	.03046	
1st, 2nd	.00807	.00807
1st, 3rd	.00317	
1st, 2nd, 3rd	.00868	.00868
2nd only		.01921
2nd, 3rd		.01426
3rd only		.02445
Any pattern	.05038	.05022

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 36

Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

<u>Pattern of Significance</u>	<u>Proportion Significant</u>			
	<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>Ever</u>
1st only	.03046			.03046
1st, 2nd	.00807	.00807		.00807
1st, 3rd	.00317		.00317	.00317
1st, 2nd, 3rd	.00868	.00868	.00868	
2nd only		.01921		.01921
2nd, 3rd		.01426	.01426	
3rd only			.02445	.02445
Any pattern	.05038	.05022	.05056	.10830

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 37

Inadequacy of Fixed Sample Methods

Group sequential test: Pocock (1977) level .05

Three equally spaced level .022 analyses

<u>Pattern of Significance</u>	<u>Proportion Significant</u>			
	<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>Ever</u>
1st only		.01520		.01520
1st, 2nd		.00321	.00321	
1st, 3rd		.00113		.00113
1st, 2nd, 3rd		.00280	.00280	.00280
2nd only			.01001	
2nd, 3rd			.00614	.00614
3rd only				.01250
Any pattern	.02234	.02216	.02257	.05099

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 38

Inadequacy of Fixed Sample Methods

Critical values depend on spacing of analyses

Level .022 analyses at 10%, 20%, 100% of data

<u>Pattern of Significance</u>	<u>Proportion Significant</u>			
	<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>Ever</u>
1st only	.01509			.01509
1st, 2nd	.00521	.00521		.00521
1st, 3rd	.00068		.00068	.00068
1st, 2nd, 3rd	.00069	.00069	.00069	
2nd only		.01473		.01473
2nd, 3rd		.00165	.00165	
3rd only			.01855	.01855
Any pattern	.02167	.02228	.02157	.05660

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 39

Inadequacy of Fixed Sample Methods

The critical values can be varied across analyses

Level 0.10 O'Brien-Fleming (1979); equally spaced tests at .003, .036, .087

<u>Pattern of Significance</u>	<u>Proportion Significant</u>			
	<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>Ever</u>
1st only		.00082		.00082
1st, 2nd		.00036	.00036	
1st, 3rd		.00037		.00037
1st, 2nd, 3rd		.00127	.00127	.00127
2nd only			.01164	
2nd, 3rd			.02306	.02306
3rd only				.06223
Any pattern	.00282	.03633	.08693	.09975

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 40

Inadequacy of Fixed Sample Methods

Error spending function: Pocock (1977) level .05

Pattern of Significance	Proportion Significant			
	<u>1st</u>	<u>2nd</u>	<u>3rd</u>	<u>Ever</u>
1st only	.01520			.01520
1st, 2nd	.00321	.00321		.00321
1st, 3rd	.00113		.00113	.00113
1st, 2nd, 3rd	.00280	.00280	.00280	.00280
2nd only		.01001		.01001
2nd, 3rd		.00614	.00614	.00614
3rd only			.01250	.01250
Any pattern	.02234	.02216	.02257	.05099
Incremental error	.02234	.01615	.01250	
Cumulative error	.02234	.03849	.05099	

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 41

Stopping Rules

Stopping Rules

Basic Strategy

Find stopping boundaries at each analysis such that desired operating characteristics (e.g., type I and type II statistical errors) are attained

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 43

Stopping Rules

Issues

- ♦ Conditions under which the trial might be stopped early
- ♦ When to perform analyses
- ♦ Test statistic to use
- ♦ Relative position of boundaries at successive analyses
- ♦ Desired operating characteristics

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 44

Stopping Rules

Choice of Test Statistic

Let $T_n(X_1, \dots, X_n)$ be any test statistic such that T_n tends to be large for larger values of θ

(Later we will consider possible choices for T_n)

Stopping Rules

Conditions for Early Stopping: One-sided tests

Test of a greater alternative ($\theta_+ > \theta_0$)

- Null: $H_0: \theta \leq \theta_0$
- Alternative: $H_1: \theta \geq \theta_+$

Possibilities for early stopping:

- Stop only for the null (when T_n small)
- Stop only for the alternative (when T_n large)
- Stop either for the null or for the alternative

Stopping Rules

Conditions for Early Stopping: One-sided tests

Test of a lesser alternative ($\theta_- < \theta_0$)

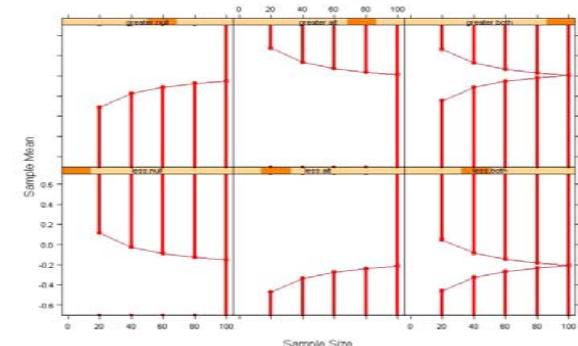
- Null: $H_0: \theta \geq \theta_0$
- Alternative: $H_1: \theta \leq \theta_-$

Possibilities for early stopping:

- Stop only for the null (when T_n large)
- Stop only for the alternative (when T_n small)
- Stop either for the null or for the alternative

Stopping Rules

One-sided Test Boundaries: Sample Mean Statistic



Stopping Rules

Conditions for Early Stopping: Two-sided tests

Test of a two-sided alternative ($\theta_+ > \theta_0 > \theta_-$)

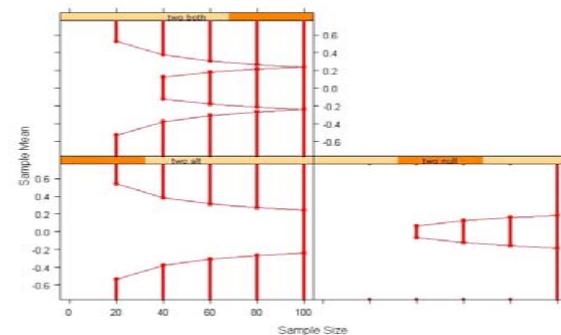
- Upper Alternative: $H_+ : \theta \geq \theta_+$
- Null: $H_0 : \theta = \theta_0$
- Lower Alternative: $H_- : \theta \leq \theta_-$

Possibilities for early stopping:

- Stop only for the null (when T_n intermediate)
- Stop only for the alternative (when T_n small or large)
- Stop either for the null or for the alternative

Stopping Rules

Two-sided Test Boundaries: Sample Mean Statistic



Stopping Rules

General stopping rule

Maximum of four boundaries

- 'd' boundary: upper outer boundary
- 'c' boundary: upper inner boundary
- 'b' boundary: lower inner boundary
- 'a' boundary: lower outer boundary

Early stopping

- T_n greater than 'd' boundary
- T_n between 'b' and 'c' boundaries
- T_n less than 'a' boundary

Stopping Rules

One-sided tests of greater hypotheses

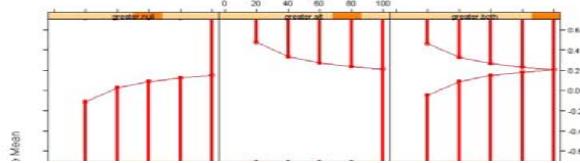
- Always have 'b' and 'c' boundaries are equal
- so no early stopping for intermediate T_n

Early stopping

- If 'a' boundary at $-\infty$: no early stopping for null
- If 'd' boundary at ∞ : no early stopping for alternative

Stopping Rules

One-sided Test Boundaries: Sample Mean Statistic



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 53

Stopping Rules

One-sided tests of lesser hypotheses

Always have 'b' and 'c' boundaries are equal

- ♦ so no early stopping for intermediate T_n

Early stopping

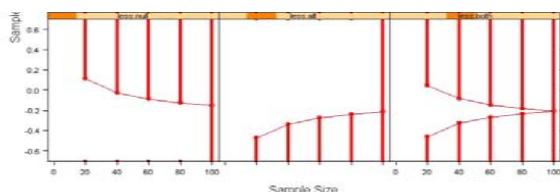
- ♦ If 'a' boundary at $-\infty$: no early stopping for alternative
- ♦ If 'd' boundary at ∞ : no early stopping for null

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 54

Stopping Rules

One-sided Test Boundaries: Sample Mean Statistic



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 55

Stopping Rules

Two-sided tests

Early stopping

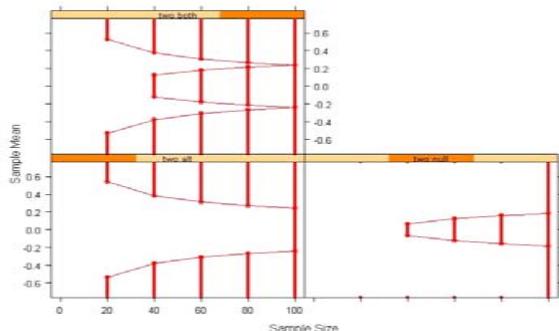
- ♦ If 'a' boundary at $-\infty$: no early stopping for lower alternative
- ♦ If 'b' and 'c' boundaries equal: no early stopping for null
- ♦ If 'd' boundary at ∞ : no early stopping for upper alternative

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 56

Stopping Rules

Two-sided Test Boundaries: Sample Mean Statistic



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 57

Stopping Rules

Generalization of hypothesis tests

Require only $\theta_- \leq \theta_{0+} \leq \theta_{0-} \leq \theta_+$

Correspondence between hypotheses and boundaries

- ♦ 'a' boundary rejects $H_0: \theta \geq \theta_{0-}$
- ♦ 'b' boundary rejects $H_0: \theta \leq \theta_-$
- ♦ 'c' boundary rejects $H_0: \theta \geq \theta_+$
- ♦ 'd' boundary rejects $H_0: \theta \leq \theta_{0+}$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 59

Stopping Rules

Representation of two-sided hypothesis tests

Two-sided tests take on appearance of two superposed hypothesis tests

- ♦ Lower test
 - $H_{0-}: \theta \geq \theta_{0-}$ versus $H_-: \theta \leq \theta_-$
- ♦ Upper test
 - $H_{0+}: \theta \leq \theta_{0+}$ versus $H_+: \theta \geq \theta_+$
- ♦ Classic two-sided test:
 $\theta_{0-} = \theta_{0+} = \theta_0$
 $\theta_- = -\theta_+$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 58

Stopping Rules

Correspondence to classical tests of $H_0: \theta = \theta_0$

- ♦ One-sided tests of greater alternative (upper and lower tests coincident)
 $\theta_- < \theta_{0-} = \theta_0$ (define $\theta_{0+} = \theta_-$ and $\theta_+ = \theta_{0-}$)
- ♦ One-sided tests of lesser alternative (upper and lower tests coincident)
 $\theta_0 = \theta_{0+} < \theta_+$ (define $\theta_- = \theta_{0+}$ and $\theta_{0-} = \theta_+$)
- ♦ Two-sided tests
 $\theta_- < \theta_{0-} = \theta_0 = \theta_{0+} < \theta_+$ (with $\theta_- = -\theta_+$)

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 60

Stopping Rules

Parameterize hypotheses by shift parameters $\varepsilon_L, \varepsilon_U$

- ♦ $0 \leq \varepsilon_L \leq 1$ is shift of θ_{0-} away from θ_+ toward θ_0
 $\theta_{0-} = \theta_+ - \varepsilon_L \cdot (\theta_+ - \theta_0)$
- ♦ $0 \leq \varepsilon_U \leq 1$ is shift of θ_{0+} away from θ_- toward θ_0
 $\theta_{0+} = \theta_- + \varepsilon_U \cdot (\theta_0 - \theta_-)$
- ♦ Constraint: $1 \leq \varepsilon_L + \varepsilon_U \leq 2$
- ♦ Test can be thought of as $(\varepsilon_L + \varepsilon_U)$ -sided

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 61

Stopping Rules

Parameterization special cases

One-sided test of greater alternative:

- ♦ $\varepsilon_L = 0, \varepsilon_U = 1$

One-sided test of lesser alternative:

- ♦ $\varepsilon_L = 1, \varepsilon_U = 0$

Two-sided test:

- ♦ $\varepsilon_L = 1, \varepsilon_U = 1$

One-sided equivalence (noninferiority) test:

- ♦ $\varepsilon_L = 0.5, \varepsilon_U = 0.5$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 62

Stopping Rules

Number and timing of analyses

N counts the sampling units accrued to the study

Up to J analyses of the data to be performed

Analyses performed after accruing sample sizes of
 $N_1 < N_2 < \dots < N_J$

(More generally, N measures statistical information)

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 63

Stopping Rules

Boundaries at the analyses

$a_j \leq b_j \leq c_j \leq d_j$ are the 'a', 'b', 'c', and 'd' boundaries at the j-th analysis (when N_j observations)

At the final (J-th) analysis $a_J = b_J$ and $c_J = d_J$ to guarantee stopping

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 64

Stopping Rules

Boundary shape functions

Π_j measures the proportion of information accrued at the j-th analysis

$$\text{often } \Pi_j = N_j / N$$

Boundary shape function $f(\Pi_j)$ is a monotonic function used to relate the dependence of boundaries at successive analyses on the information accrued to the study at that analysis

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 65

Stopping Rules

Formulation of stopping boundaries

At the j-th analysis

- a_j is determined by $\theta_a = \theta_{0-}$ and $f_a(\Pi_j)$
- b_j is determined by $\theta_b = \theta_-$ and $f_b(\Pi_j)$
- c_j is determined by $\theta_c = \theta_+$ and $f_c(\Pi_j)$
- d_j is determined by $\theta_d = \theta_{0+}$ and $f_d(\Pi_j)$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 66

Stopping Rules

Parameterization of boundary shape functions

$$f_*(\Pi_j) = [A_* + \Pi_j^{-P_*} (1 - \Pi_j)^{R_*}] \times G_*$$

Distinct parameters possible for each boundary

Parameters A_* , P_* , R_* typically chosen by user
Critical value G_* usually calculated from search

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 67

Boundary Scales

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 68

Boundary Scales

Choices for test statistic T_n

- Sum of observations
- Point estimate of treatment effect
- Normalized (Z) statistic
- Fixed sample P value
- Error spending function
- Conditional probability
- Predictive probability
- Bayesian posterior probability

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 69

Boundary Scales

Choices for test statistic T_n

All of those choices for test statistics can be shown to be transformations of each other

Hence, a stopping rule for one test statistic is easily transformed to a stopping rule for a different test statistic

We regard these statistics as representing different scales for expressing the boundaries

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 70

Boundary Scales: Notation

One sample inference about means

Generalizable to most other commonly used models

Probability model : $X_1, \dots, X_N \text{ iid } (\mu, \sigma^2)$

Null hypothesis : $H_0 : \mu = \mu_0$

Analyses after $N_1, \dots, N_j = N$

Data at j th analysis : x_1, \dots, x_{N_j}

Distributional assumptions :

in absence of a stopping rule $\bar{X}_j \sim N\left(\mu, \frac{\sigma^2}{N_j}\right)$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 71

Boundary Scales

Partial Sum Scale:

$$S_j = \sum_{i=1}^{N_j} x_i$$

Uses:

Cumulative number of events
Convenient when computing density

Session 2: 72

Boundary Scales

Sample Mean Scale:

$$\bar{x}_j = \frac{1}{N_j} \sum_{i=1}^{N_j} x_i = \frac{s_j}{N_j}$$

Uses:

Natural estimate of treatment effect

Boundary Scales

Normalized Statistic Scale:

$$z_j = \sqrt{N_j} \frac{\bar{x}_j - \mu_0}{\sigma}$$

Uses:

Commonly computed in analysis routines

Boundary Scales

Fixed Sample P value Scale:

$$\begin{aligned} p_j &= 1 - \Phi(z_j) \\ &= 1 - \int_{-\infty}^{z_j} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du \end{aligned}$$

Uses:

Commonly computed in analysis routine
Robust to use with other distributions for estimates of treatment effect

Boundary Scales

Bayesian Posterior Scale:

$$\text{Prior } \mu \sim N(\zeta, \tau^2)$$

$$\begin{aligned} B_j(\mu_*) &= \Pr(\mu \geq \mu_* | (X_1, \dots, X_{N_j})) \\ &= 1 - \Phi\left(\frac{\mu_* [N_j \tau^2 + \sigma^2] - N_j \tau^2 \bar{x}_j - \sigma^2 \zeta}{\sigma \sqrt{N_j \tau^2 + \sigma^2}}\right) \end{aligned}$$

Uses:

Bayesian inference (unaffected by stopping)
Posterior probability of hypotheses

Boundary Scales

Conditional Probability Scale:

Threshold at final analysis $t_{\bar{X}J}$

Hypothesized value of mean μ_*

$$C_j(t_{\bar{X}J}, \mu_*) = \Pr(\bar{X}_J \geq t_{\bar{X}J} \mid \bar{X}_j; \mu = \mu_*) \\ = 1 - \Phi\left(\frac{N_j[t_{\bar{X}J} - \mu_*] - N_j[\bar{x}_j - \mu_*]}{\sigma\sqrt{N_j - N_j}}\right)$$

Uses:

Conditional power

Futility of continuing under specific hypothesis

Boundary Scales

Conditional Probability (estimate) Scale:

Threshold at final analysis $t_{\bar{X}J}$

$$C_j(t_{\bar{X}J}, \mu_* = \bar{X}_j) = \Pr(\bar{X}_J \geq t_{\bar{X}J} \mid \bar{X}_j; \mu = \bar{x}_j) \\ = 1 - \Phi\left(\frac{N_j[t_{\bar{X}J} - \bar{x}_j]}{\sigma\sqrt{N_j - N_j}}\right)$$

Uses:

Futility of continuing using best estimate

Boundary Scales

Predictive Probability Scale:

Prior distribution $\mu \sim N(\zeta, \tau^2)$

$$H_j(t_{\bar{X}j}) = \int \Pr(\bar{X}_j \geq t_{\bar{X}j} \mid \bar{X}_j, \mu) \lambda(\mu \mid \bar{X}_j) d\mu \\ = 1 - \Phi\left(\frac{N_j[N_j\tau^2 + \sigma^2][t_{\bar{X}j} - \bar{x}_j] + \sigma^2[N_j - N_j][\bar{x}_j - \zeta]}{\sigma\sqrt{[N_j - N_j][N_j\tau^2 + \sigma^2][N_j\tau^2 + \sigma^2]}}\right)$$

Uses:

Futility of continuing study

Boundary Scales

Predictive Probability Scale:

Noninformative Prior $\mu \sim N(\zeta, \tau^2)$, $\tau^2 \rightarrow \infty$

$$H_j(t_{\bar{X}j}) = \int \Pr(\bar{X}_j \geq t_{\bar{X}j} \mid \bar{X}_j, \mu) \lambda(\mu \mid \bar{X}_j) d\mu \\ = 1 - \Phi\left(\frac{N_j[t_{\bar{X}j} - \bar{x}_j]}{\sigma\sqrt{\frac{N_j}{N_j}[N_j - N_j]}}\right)$$

Uses:

Futility of continuing study

Boundary Scales

Error Spending (outer lower boundary) Scale:

$$E_{aj} = \frac{1}{\alpha_\ell} \left[\sum_{i=1}^{j-1} \Pr \left(S_i \leq a_i, \bigcap_{k=1}^{i-1} (S_k \in (a_k, b_k) \cup (c_k, d_k)) ; \mu_a \right) \right. \\ \left. + \Pr(S_j \leq s_j ; \mu_a) \right]$$

Uses:

Implementation of stopping rules with flexible determination of number and timing of analyses

Boundary Scales

Error Spending (inner lower boundary) Scale:

$$E_{bj} = \frac{1}{1-\beta_\ell} \left[\sum_{i=1}^{j-1} \Pr \left(S_i \geq b_i, \bigcap_{k=1}^{i-1} (S_k \in (a_k, b_k) \cup (c_k, d_k)) ; \mu_b \right) \right. \\ \left. + \Pr(S_j \geq s_j ; \mu_{ba}) \right]$$

Uses:

Implementation of stopping rules with flexible determination of number and timing of analyses

Boundary Scales

Error Spending (inner upper boundary) Scale:

$$E_{cj} = \frac{1}{1-\beta_u} \left[\sum_{i=1}^{j-1} \Pr \left(S_i \leq c_i, \bigcap_{k=1}^{i-1} (S_k \in (a_k, b_k) \cup (c_k, d_k)) ; \mu_c \right) \right. \\ \left. + \Pr(S_j \leq s_j ; \mu_c) \right]$$

Uses:

Implementation of stopping rules with flexible determination of number and timing of analyses

Boundary Scales

Error Spending (outer upper boundary) Scale:

$$E_{dj} = \frac{1}{\alpha_u} \left[\sum_{i=1}^{j-1} \Pr \left(S_i \geq d_i, \bigcap_{k=1}^{i-1} (S_k \in (a_k, b_k) \cup (c_k, d_k)) ; \mu_d \right) \right. \\ \left. + \Pr(S_j \geq s_j ; \mu_d) \right]$$

Uses:

Implementation of stopping rules with flexible determination of number and timing of analyses

Boundary Scales

Use in evaluating designs

Several of the boundary scales have interpretations that are useful in evaluating the operating characteristics of a design

- ♦ Sample Mean Scale
- ♦ Conditional Probability Futility Scales
- ♦ Predictive Probability Futility Scale
- ♦ Bayesian Posterior Probability Scale
- ♦ (Error Spending Scale)

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 85

Unified Design Family

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 86

Unified Design Family

Unifying parameterization for the most commonly used group sequential designs (Kittelson & Emerson, 1999)

Rich parameterization facilitates search for stopping rule appropriate for specific applications

Inclusion of broad spectrum of designs means that comparisons within this family will consider full range of possible designs

(Default family in S+SeqTrial)

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 87

Unified Design Family

Stopping Boundaries for Sample Mean Statistic:

$$a_j = \mu_a - f_a(\Pi_j)$$

$$b_j = \mu_b + f_b(\Pi_j)$$

$$c_j = \mu_c - f_c(\Pi_j)$$

$$d_j = \mu_d + f_d(\Pi_j)$$

Session 2: 88

Unified Design Family

Parameterization of boundary shape functions

$$f_*(\Pi_j) = [A_* + \Pi_j^{-P_*} (1 - \Pi_j)^{R_*}] \times G_*$$

Distinct parameters possible for each boundary

Parameters A_* , P_* , R_* typically chosen by user
Critical value G_* usually calculated from search

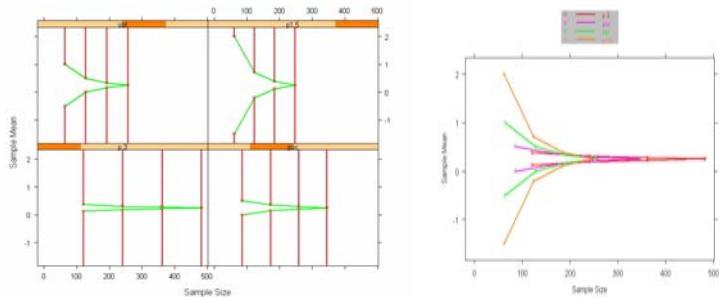
February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 89

Unified Design Family

Effect of varying $P > 0$ (when $A=0$, $R=0$)

Higher P leads to early conservatism
 $P > 0$ has infinite boundaries when $N=0$



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 91

Unified Design Family

Choice of P parameter

$P \geq 0$:

- Larger positive values of P make early stopping more difficult (impossible when P infinite)
- When $A=R=0$, $0.5 < P < 1$ corresponds to power family parameter (Δ) in Wang & Tsiatis (1987): $P = 1 - \Delta$
- Reasonable range of values: $0 < P < 2.5$
- $P=0$ with $A=R=0$ possible for some (not all) boundaries, but not particularly useful

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 90

Unified Design Family

Choice of P parameter

$P < 0$:

- Must have $R = 0$ and (typically) $A < 0$
- More negative values of P make early stopping more difficult

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

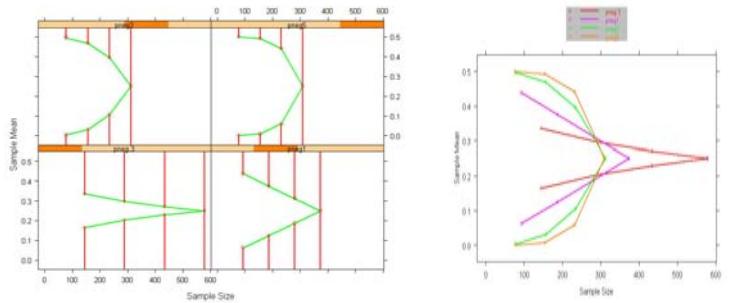
Session 2: 92

Unified Design Family

Effect of varying $P < 0$ (when $A=2, R=0$)

More negative P leads to early conservatism

$P < 0$ has finite boundaries when $N=0$



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 93

Unified Design Family

Choice of R parameter

$R > 0$:

- Larger positive values of R make early stopping easier
- When $R > 0$ and $P=0$, typically need $A > 0$
- Reasonable range of values: $0.1 < R < 20$
- $R < 1$ is convex outward
- $R > 1$ is convex inward
- When $R > 0$ and $P > 0$, can get change in convexity of boundaries

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

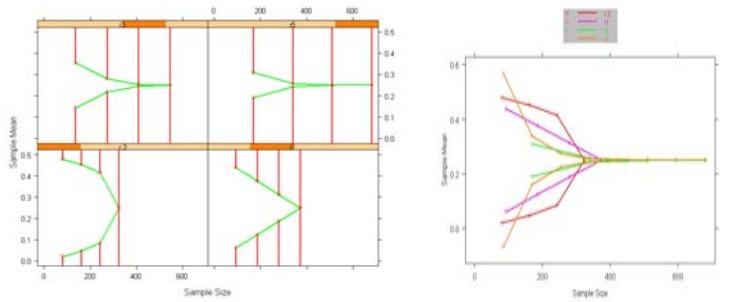
Session 2: 94

Unified Design Family

Effect of varying R (when $A=1, P=0$)

$R < 1$ leads to convex outward

$R > 1$ leads to convex inward



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

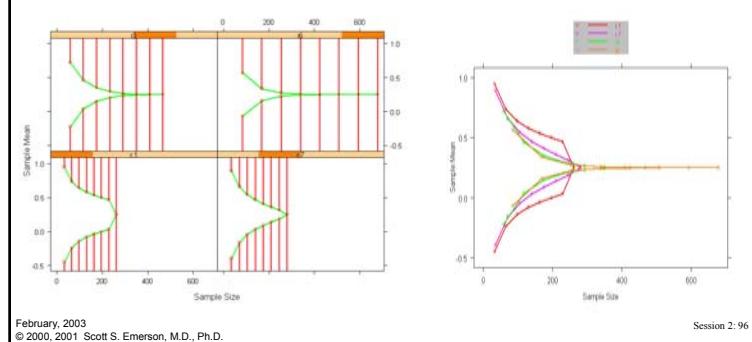
Session 2: 95

Unified Design Family

Effect of varying R (when $A=1, P=0.5$)

With $P > 0$, boundaries infinite when $N=0$

$R < 1$ and $P > 0$ has change in convexity



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 96

Unified Design Family

Choice of A parameter

- Lower absolute values of A makes it harder to stop at early analyses
- Valid choices of A depend upon choices of P and R
- Useful ranges for A
 - $P \geq 0, R \geq 0: 0.2 \leq A \leq 15$
 - $P \leq 0, R = 0: -15 \leq A \leq -1.25$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 97

Unified Design Family

Parameterization of boundary shape function includes many previously described approaches

Wang & Tsiatis Boundary Shape Functions:

- $A_* = 0, R_* = 0, P_* > 0$
- P_* measures early conservatism
 - $P_* = 0.5$ Pocock (1977)
 - $P_* = 1.0$ O'Brien-Fleming (1979)
- $(P_* = \infty$ precludes early stopping)

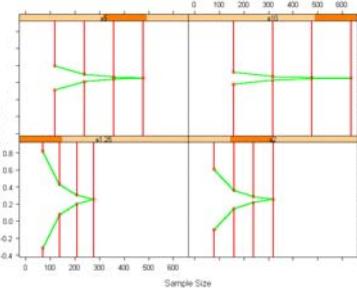
February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 99

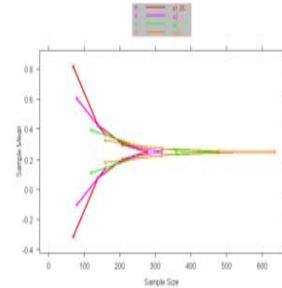
Unified Design Family

Effect of varying A (when P=0, R=1.2)

Values of A closer to 0 make it harder to stop early
Higher absolute value of A makes flatter boundaries



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.



Session 2: 98

Unified Design Family

Parameterization of boundary shape function includes many previously described approaches

Triangular Test Boundary Shape Functions (Whitehead)

- $A_* = 1, R_* = 0, P_* = 1$

Sequential Conditional Probability Ratio Test (Xiong):

- $R_* = 0.5, P_* = 0.5$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 100

Unified Design Family

Parameterization of hypothesis shifts and boundary shape function unifies what were discrete families

Triangular tests vs Wang and Tsiatis based families
♦ Choice of A_*

One-sided vs two-sided tests
♦ Choice of $\varepsilon_L, \varepsilon_U$

Early stopping under one hypothesis vs both hypotheses
♦ Choice of P_*

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 101

Unified Design Family

Operating characteristics

User specifies size α_U, α_L of upper and lower tests

User specifies power β_U, β_L of upper and lower tests

Computer search for G_a, G_b, G_c, G_d that attains those operating characteristics

(Sample size can be computed using some other power besides β_U, β_L)

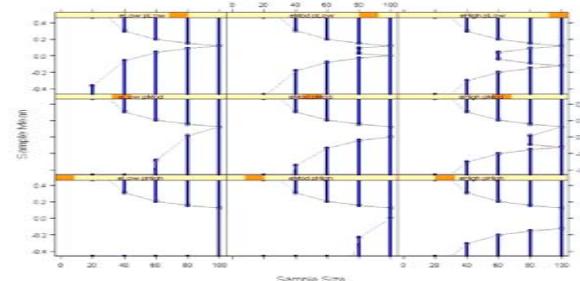
February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 103

Unified Design Family

Spectrum of designs

ε_L increases across rows
 P_a and/or P_c increases down columns



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 102

Error Spending Family

Error Spending Family

Lan and DeMets (1983) approach

At each analysis, some of the type I error is 'used up'

Describe a stopping rule according to the proportion of α_U , α_L used at each analysis

- ♦ General case: alpha used by the j-th analysis determined by some function of the proportion of maximal information available

$$\alpha_j = f(\alpha, \Pi_j)$$

Error Spending Family

Lan and DeMets (1983) approach (cont.)

Lan and DeMets (1983) describe error spending functions comparable to O'Brien-Fleming or Pocock designs

- ♦ O'Brien-Fleming

$$\alpha_j = 2 \left[1 - \Phi \left(z_{1-\alpha/2} / \sqrt{\Pi_j} \right) \right]$$

- ♦ Pocock

$$\alpha_j = \alpha \log [1 + (e-1)\Pi_j]$$

Error Spending Family

Lan and DeMets (1983) approach (cont.)

Lan and DeMets (1983) describe error spending functions comparable to O'Brien-Fleming or Pocock designs for specific type I errors

Error Spending Family

Lan and DeMets (1983) approach (cont.)

More recently authors have focussed on error spending functions of the form

$$\alpha_j = f(\alpha, \Pi_j) = \alpha f(\Pi_j)$$

(Kim and DeMets, 1987; Jennison and Turnbull, 1989; Hwang, Shih, and DeCanis, 1990)

Error Spending Family

Lan and DeMets (1983) approach (cont.)

Kim and DeMets (1987) and Jennison and Turnbull (1989) consider an error spending family corresponding to

$$\alpha_j = \alpha \prod_j^{-P}$$

Useful special cases identified by those authors:

- $P = 1$ is similar to Pocock (1977)
- $P = 3$ is similar to O'Brien and Fleming (1979)

Error Spending Family

Pampallona, Tsiatis, and Kim (1995) extension

Defines type II error spending functions

At each analysis, recompute maximal sample size which will maintain planned level of significance and power

Error Spending Family

Implementation of an Error Spending Family

Define stopping rule on error spending function scale by defining E_{aj} , E_{bj} , E_{cj} , E_{dj}

Use framework of superposed one-sided hypothesis tests described by Kittelson and Emerson (1999) to define relationships among hypotheses rejected by each of the four possible stopping boundaries

Error Spending Family

Correspondence with type I and II error spending

For user specified size α_U , α_L of upper and lower tests and power β_U , β_L of upper and lower tests, error spent at the j -th analysis specified as:

$$\alpha_{Lj} = \alpha_L E_{aj}$$

$$1 - \beta_{Lj} = (1 - \beta_L) E_{bj}$$

$$1 - \beta_{Uj} = (1 - \beta_U) E_{cj}$$

$$\alpha_{Uj} = \alpha_U E_{dj}$$

Error Spending Family

Boundary shape functions

Boundary shape function can be defined separately for each of the four boundaries

$$E_{*j} = f_*(\Pi_j)$$

$$f_*(\Pi_j) = [A_* + \Pi_j^{-P_*} (1 - \Pi_j)^R] G_*$$

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 113

Error Spending Family

Constraints on parameters

$$f(0) = 0 \text{ and } f(1) = 1$$

If $P < 0$

$$\bullet R = 0, A = 1, G = 1$$

If $R > 0$

$$\bullet P = 0, A = -1, G = -1$$

If $P = 0$ and $R = 0$, no early stopping

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 114

Error Spending Family

Computer search for stopping boundaries

Error spending family defines E_{aj} , E_{bj} , E_{cj} , E_{dj}

Appendix of Kittelson and Emerson (1999) describes general algorithm for finding design when hypotheses known

At design stage, must search for standardized hypotheses that result in a valid design, and then compute sample size to map standardized design to specified alternative hypotheses.

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 115

Error Spending Family

Computer search for stopping boundaries (cont.)

In order to more easily obtain more efficient designs, when designing a study using error spending functions, the specified type II error spending functions are only used as upper bounds on the true type II error spending function.

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 116

Comparison of Parameterizations

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 117

Comparison of Parameterizations

General comments (cont.)

The best design family to use will be the one which allows a user to most quickly find a stopping rule having desirable operating characteristics

The ease of use will therefore depend in part on

- ♦ Interpretability of boundary scale
- ♦ Interpretability of parameters

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 119

Comparison of Parameterizations

General comments

Families also defined for other boundary scales

- ♦ Partial sum and Z statistic scale families implemented in S+SeqTrial
- ♦ Bayesian and Futility scale families under construction

If stopping rules are carefully evaluated, it does not matter too much which scale (and therefore family) is used to derive the stopping rule.

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 118

Comparison of Parameterizations

General comments (cont.)

My view:

- ♦ Sample mean scale (unified family) has easier scientific interpretation than the error spending scale which has a purely statistical interpretation that, in my experience, is poorly understood by both users and researchers
- ♦ The parameterization of the unified family produces a more useful grouping of designs on some level than does the parameterization of the error spending family

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 120

Comparison of Parameterizations

ASSERTION: Interpretability of boundary scales

The concept of an error spending scale is less relevant to clinical researchers

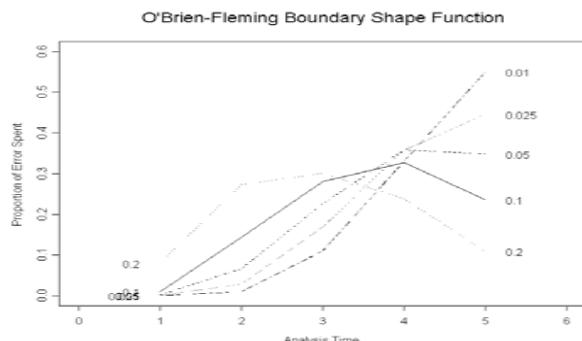
- Type I error reflects only statistical evidence
- May conflict with scientific importance
 - Underpowered studies: Failure to reject the null in the face of large estimates of treatment effect
 - Overpowered studies: Rejection of the null hypothesis when differences are scientifically unimportant

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 121

Comparison of Parameterizations

Error spent at each analysis for O'Brien and Fleming (1979) designs depends on Type I or Type II errors



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 123

Comparison of Parameterizations

ASSERTION: Interpretability of boundary scales

The formulation of error spending scales is not well understood by the researchers developing such methods

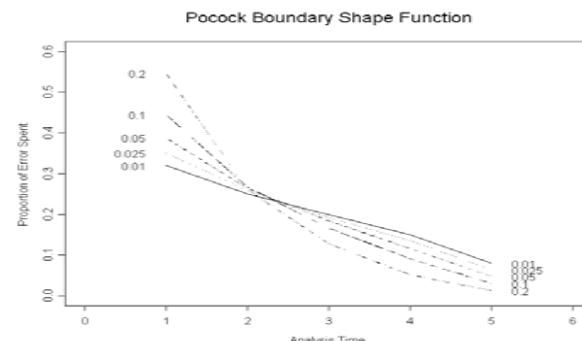
- Lan & DeMets (1983), Kim & DeMets (1987), Jennison & Turnbull (1989 and 2000) all describe error spending functions which mimic O'Brien-Fleming (1979) or Pocock (1977) group sequential designs
- In fact, for different levels of type I (or type II) error, the error spending functions are different within those families of designs

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 122

Comparison of Parameterizations

Error spent at each analysis for Pocock (1977) designs depends on Type I or Type II errors



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 124

Comparison of Parameterizations

Is there a problem?

Parameterization of stopping rule families induces a grouping of designs:

- ♦ Unified family: Pocock (1977) designs, O'Brien-Fleming (1979) designs, Triangular designs (Whitehead & Stratton, 1983)
- ♦ Error spending families: All designs that spend the same proportion of type I or II error at each analysis

Comparison of Parameterizations

Is there a problem? (cont.)

Best parameterization might be defined according to whether such groupings correspond to similar operating characteristics

- ♦ efficiency
- ♦ Bayesian properties
- ♦ futility properties
- ♦ others

Comparison of Parameterizations

Efficiency

Consider ability of choice of boundary shape parameter to predict efficiency of design

- ♦ No uniformly most powerful design
- ♦ Efficiency measured in terms of smallest average sample size for specific hypothesis
 - Measure alternative hypothesis according to the power of the test to detect it

Comparison of Parameterizations

Methods for comparison

Find optimal designs in terms of average sample size (ASN) within family of Wang and Tsiatis (1987) boundary shape functions for one-sided symmetric designs (Emerson and Fleming, 1989)

- ♦ Family found to be approximately optimal

Find optimal designs for various choices of type I error and statistical power

Comparison of Parameterizations

Methods for comparison (cont.)

For each optimal design, examine the boundary shape function on

- Sample mean scale
- Error spending scale
- Futility scales

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

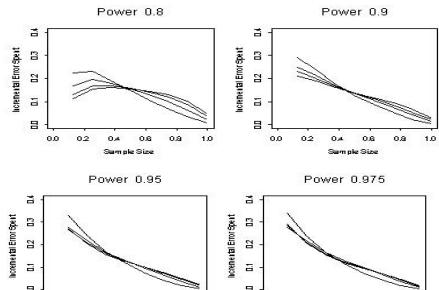
Session 2: 129

Comparison of Parameterizations

Proportion of error spent at each analysis for approximately efficient designs

Power varies across panels

Type I error varies across lines within each panel



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 131

Comparison of Parameterizations

Criteria for “good” parameterizations

If the boundary shape function on a given scale is not independent of choice of type I and II errors, then that would argue that grouping of designs according to parameterization of that scale will not correspond to similar efficiency properties

As it is unlikely that boundary shape parameters for efficient designs will be constant across all choices of type I and type II errors, we can also compare the degree that boundary shape parameters change for each boundary scale

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 130

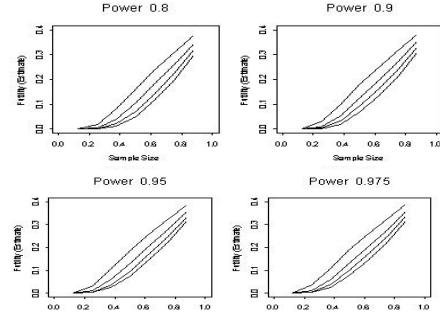
Comparison of Parameterizations

Comparison of Parameterizations

Conditional power (using MLE) at the boundary for each analysis for approximately efficient designs

Power varies across panels

Type I error varies across lines within each panel



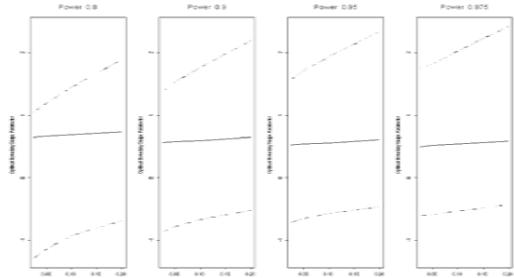
February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 132

Comparison of Parameterizations

Comparison of optimal unified family P parameter as a function of type I errors

Compared to best fitting P or R parameter in error spending family



February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 133

Comparison of Parameterizations

Search for stopping rule is generally iterative

- An initial design is specified
- Operating characteristics are examined
- Modifications are made to the design

Availability of tools for evaluation of operating characteristics lessens impact of family used to define a stopping rule

- Appropriate designs can be found from almost any starting point

Session 2: 134

Comparison of Parameterizations

To the extent that parameterization of sample mean family predicts efficiency behavior, use of that family may allow more intuitive search for suitable stopping rules

However, efficiency is not always of paramount concern

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 135

Comparison of Parameterizations

Interpretation of unified family boundaries as estimate of treatment effect is meaningful to clinical researcher

Error spending functions are less interpretable, and thus seem less useful when designing a clinical trial or evaluating its operating characteristics

However, error spending scale can be useful in implementing a stopping rule

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 136

Comparison of Parameterizations

It is not clear that conditional probabilities are particularly useful in the definition of a stopping rule

- ♦ Design family does not have a particularly intuitive parameterization
- ♦ Unconditional power considerations would seem more straightforward

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 137

Evaluation of Designs

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 138

Evaluation of Designs

Process of choosing a trial design

Define candidate design

Evaluate operating characteristics

Modify design

Iterate

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 139

Evaluation of Designs

Operating characteristics for fixed sample studies

Level of Significance (often pre-specified)

Sample size requirements

Power Curve

Decision Boundary

Frequentist inference on the Boundary

Bayesian posterior probabilities

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 140

Evaluation of Designs

Additional operating characteristics for group sequential studies

- Probability distribution for sample size
- Stopping probabilities
- Boundaries at each analysis
- Frequentist inference at each analysis
- Bayesian inference at each analysis
- Futility measures at each analysis

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 141

Evaluation of Designs

Sample size requirements

Number of subjects needed is a random variable

Quantify summary measures of sample size distribution

- maximum (feasibility of accrual)
- mean (Average Sample N- ASN)
- median, quartiles

(Particularly consider tradeoffs between power and sample size distribution)

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 142

Evaluation of Designs

Stopping probabilities

Consider probability of stopping at each analysis for arbitrary alternatives

Consider probability of each decision (for null or alternative) at each analysis

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 143

Evaluation of Designs

Power curve

Probability of rejecting null for arbitrary alternatives

- Power under null: level of significance
- Power for specified alternative

Alternative rejected by design

- Alternative for which study has high power

S+SeqTrial defines

- Power curves for upper and lower boundaries
- Alternatives having specified power for each boundary

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 144

Evaluation of Designs

Decision boundary at each analysis

- Value of test statistic leading to rejection of null
 - Variety of boundary scales possible
- Often has meaning for applied researchers (especially on scale of estimated treatment effect)
 - Estimated treatment effects may be viewed as unacceptable for ethical reasons based on prior notions
 - Estimated treatment effect may be of little interest due to lack of clinical importance or futility of marketing

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 145

Evaluation of Designs

Frequentist inference on the boundary at each analysis

- Consider P values, confidence intervals when observation corresponds to decision boundary at each analysis

- Ensure desirable precision for negative studies
 - Confidence interval identifies hypotheses not rejected by analysis
 - Have all scientifically meaningful hypotheses been rejected?

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 146

Evaluation of Designs

Bayesian posterior probabilities at each analysis

- Examine the degree to which the frequentist inference leads to sensible decisions under a range of prior distributions for the treatment effect
 - Posterior probability of hypotheses

- Bayesian estimates of treatment effect
 - Median (mode) of posterior distribution
 - Credible interval (quantiles of posterior distribution)

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 147

Evaluation of Designs

Futility measures

- Consider the probability that a different decision would result if trial continued

- Can be based on particular hypotheses, current best estimate, or predictive probabilities

- (Perhaps best measure of futility is whether the stopping rule has changed the power curve substantially)

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 148

S+SeqTrial Implementation

Evaluation of Designs

Forms of output from S+SeqTrial

- ♦ Printed output in report window or command line window
- ♦ Plots
- ♦ Named seqDesign object

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 149

S+SeqTrial Implementation

Evaluation of Designs (cont.)

Sample size requirements

- ♦ Printed with boundaries
- ♦ X axis with plots of boundaries
- ♦ Plots of average sample size, quantiles of sample size distribution

Stopping probabilities

- ♦ Printed with operating characteristics
- ♦ Plots with color coded decisions

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 150

S+SeqTrial Implementation

Evaluation of Designs (cont.)

Power Curve

- ♦ Hypotheses, size, power printed with boundaries
- ♦ Tabled power with summaries
- ♦ Plots of power curve
- ♦ Plots versus reference power curve

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 151

S+SeqTrial Implementation

Evaluation of Fixed Sample Designs (cont.)

Decision Boundary

- ♦ Printed on specified boundary scale
- ♦ Plots

Frequentist inference on the boundary

- ♦ Printed with summaries
- ♦ Plots

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Session 2: 152

S+SeqTrial Implementation

Evaluation of Fixed Sample Designs (cont.)

Bayesian inference

- ♦ Posterior probabilities implemented as a boundary scale
- ♦ Median (mode) of posterior distribution
- ♦ Credible intervals

Futility measures

- ♦ Implemented as boundary scale
- ♦ Conditional and predictive approaches