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Need for Monitoring
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Need for Monitoring a Trial     

Fixed sample two-sided tests

Test of a two-sided alternative (θ+ > θ0 > θ- )

Upper Alternative:    H+: θ ≥ θ+ (superiority)    

Null:                          H0: θ = θ0       (equivalence)

Lower Alternative:    H -: θ ≤ θ- (inferiority) 

Data analyzed once at the end of all data accrual

Decisions:

Reject H0 , H - (for H+)  ⇐ ⇒ T ≥ cU

Reject H+ , H - (for H0)  ⇐ ⇒ cL ≤ T ≤ cU

Reject H+ , H0    (for H -) ⇐ ⇒ T ≤ cL
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Need for Monitoring a Trial

Ethical concerns

Patients already on trial

Avoid continued administration of harmful 
treatments

Maintain validity of informed consent
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Need for Monitoring a Trial

Ethical concerns (cont.)

Patients not yet on trial

Start treatment with best therapy

Ensure informed consent valid
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Need for Monitoring a Trial

Ethical concerns (cont.)

Patients never on trial

Facilitate rapid introduction of beneficial 
treatments

Warn about risks of existing treatments
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Need for Monitoring a Trial

Efficiency considerations

Fewer patients may be needed on average

Decreases costs associated with number of 
patients

Time savings

Decreases costs associated with monitoring 
patients 
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Need for Monitoring a Trial

Futility considerations: Efficiency and Ethics

Efficiency

Stop a study when it is known (or reasonably 
certain) that no effect will be demonstrated

Can perform more studies with limited 
resources

Ethics

Is it ever ethical to expose patients to 
experimental treatments when no meaningful 
information will be gained?

Can devote resources to study of more 
promising agents
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Criteria for Stopping
a Trial
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Criteria for Stopping a Trial

Sufficient evidence available to be confident of 
rejecting specific hypotheses

Stopping early for

Efficacy (superiority)

Harm (inferiority)

Equivalence
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Criteria for Stopping a Trial

Futility of demonstrating effect that would change 
behavior

Stopping early for futility

Not sufficiently superior

Not dangerously harmful
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Criteria for Stopping a Trial

And there is no advantage in continuing

Even if confident of ultimate decision about primary 
endpoint, may want to continue trial to gain more 
information on

Safety

Longer term follow-up

Gather additional data on secondary outcomes
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Criteria for Stopping a Trial

Statistical basis for stopping criteria

Curtailment

Boundary has been reached early

E.g., one arm study with binary endpoint

− Critical value for rejection of null might be 
observation of K events

− Kth event may occur well before all 
subjects accrued
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Criteria for Stopping a Trial

Statistical basis for stopping criteria (cont.)

Stochastic Curtailment

High probability that a particular decision will 
be made at final analysis

Calculate probability of exceeding some critical 
value conditional on data observed so far

Probability calculated based on hypothesized 
treatment effect (which hypothesis?) or current 
estimate
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Criteria for Stopping a Trial

Statistical basis for stopping criteria (cont.)

Predictive probability of final statistic

A special form of stochastic curtailment

Uses a Bayesian prior distribution on the 
treatment effect
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Criteria for Stopping a Trial

Statistical basis for stopping criteria (cont.)

Group sequential test

Sufficient evidence to make decision in 
classical frequentist framework

Type I and II errors controlled at desired levels
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Criteria for Stopping a Trial

Statistical basis for stopping criteria (cont.)

Bayesian analysis

Compute the probability that the treatment 
effect is in some specified range

Calculations based on a user specified prior 
distribution for the treatment effect (which is 
treated as a random variable)
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Inadequacy of Fixed
Sample Methods
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Inadequacy of Fixed Sample Methods

Sequential monitoring of a trial

Data are analyzed after accrual of each observation

(Group sequential monitoring: analysis after 
groups of observations accrued)

Analyses must take into account the repeated 
analyses of the same data

− Sampling distribution of the test statistic is 
altered

− Frequentist properties are altered
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Inadequacy of Fixed Sample Methods

Setting for demonstration of the problem

Observations:

X1, X2, X3, …, XN

Xi ~ N(µ, σ2)

Hypothesis:

H0 : µ = µ0
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Inadequacy of Fixed Sample Methods

Test Statistic

Sample mean computed after each observation:
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Inadequacy of Fixed Sample Methods

Fixed sample decision rule

Hypothesis test when all data accrued:

Reject H0 when
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Inadequacy of Fixed Sample Methods

Sample path for sample mean
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Inadequacy of Fixed Sample Methods

Sample path for sample mean
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Inadequacy of Fixed Sample Methods

Repeated significance testing

Continuous monitoring:

Reject H0 the first time
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Inadequacy of Fixed Sample Methods

Simulated trials when H0 is true:
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Inadequacy of Fixed Sample Methods

Simulated trials when H0 is true:
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Inadequacy of Fixed Sample Methods

Repeated significance testing

Monitoring after each of J groups of observations:

Analyses at N1, N2, …, NJ

Reject H0 the first time
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Inadequacy of Fixed Sample Methods

Simulated trials when H0 is true:
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Inadequacy of Fixed Sample Methods

Simulated trials when H0 is true:
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

Proportion Significant

1st

.05038
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

Proportion Significant

1st 2nd

.05038   .05022
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

Proportion Significant

1st 2nd 3rd

.05038   .05022   .05056
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

Pattern of                 Proportion Significant

Significance 1st

1st only .03046

1st, 2nd .00807

1st, 3rd .00317

1st, 2nd, 3rd .00868

Any pattern .05038
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

Pattern of                 Proportion Significant

Significance 1st 2nd

1st only .03046

1st, 2nd .00807 .00807

1st, 3rd .00317

1st, 2nd, 3rd .00868 .00868

2nd only .01921

2nd, 3rd .01426

Any pattern .05038 .05022
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

Pattern of                 Proportion Significant

Significance 1st 2nd 3rd

1st only .03046

1st, 2nd .00807   .00807

1st, 3rd .00317 .00317

1st, 2nd, 3rd .00868   .00868 .00868

2nd only .01921

2nd, 3rd .01426 .01426

3rd only .02445

Any pattern .05038   .05022 .05056
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis

Three equally spaced level .05 analyses

Pattern of                 Proportion Significant

Significance 1st 2nd 3rd Ever

1st only .03046 .03046

1st, 2nd .00807   .00807 .00807

1st, 3rd .00317            .00317 .00317

1st, 2nd, 3rd .00868   .00868   .00868 .00868

2nd only .01921 .01921

2nd, 3rd .01426   .01426 .01426

3rd only .02445 .02445

Any pattern .05038   .05022   .05056    .10830
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Inadequacy of Fixed Sample Methods

Group sequential test: Pocock (1977) level .05

Three equally spaced level .022 analyses

Pattern of                 Proportion Significant

Significance 1st 2nd 3rd Ever

1st only .01520 .01520

1st, 2nd .00321   .00321 .00321

1st, 3rd .00113            .00113 .00113

1st, 2nd, 3rd .00280   .00280   .00280 .00280

2nd only .01001 .01001

2nd, 3rd .00614   .00614 .00614

3rd only .01250 .01250

Any pattern .02234   .02216   .02257    .05099
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Inadequacy of Fixed Sample Methods

Critical values depend on spacing of analyses

Level .022 analyses at 10%, 20%, 100% of data

Pattern of                 Proportion Significant

Significance 1st 2nd 3rd Ever

1st only .01509 .01509

1st, 2nd .00521   .00521 .00521

1st, 3rd .00068            .00068 .00068

1st, 2nd, 3rd .00069   .00069   .00069 .00069

2nd only .01473 .01473

2nd, 3rd .00165   .00165 .00165

3rd only .01855 .01855

Any pattern .02167   .02228   .02157    .05660
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Inadequacy of Fixed Sample Methods

The critical values can be varied across analyses

Level 0.10 O’Brien-Fleming (1979); equally spaced 
tests at .003, .036, .087

Pattern of                 Proportion Significant

Significance 1st 2nd 3rd Ever

1st only .00082 .00082

1st, 2nd .00036   .00036 .00036

1st, 3rd .00037            .00037 .00037

1st, 2nd, 3rd .00127   .00127   .00127 .00127

2nd only .01164 .01164

2nd, 3rd .02306   .02306 .02306

3rd only .06223 .01855

Any pattern .00282   .03633   .08693    .09975
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Inadequacy of Fixed Sample Methods

Error spending function: Pocock (1977) level .05
Pattern of                 Proportion Significant

Significance 1st 2nd 3rd Ever

1st only .01520 .01520

1st, 2nd .00321   .00321 .00321

1st, 3rd .00113            .00113 .00113

1st, 2nd, 3rd .00280   .00280   .00280 .00280

2nd only .01001 .01001

2nd, 3rd .00614   .00614 .00614

3rd only .01250 .01250

Any pattern .02234   .02216   .02257    .05099

Incremental error .02234   .01615   .01250

Cumulative error .02234   .03849   .05099
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Stopping Rules
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Stopping Rules

Basic Strategy

Find stopping boundaries at each analysis such that 
desired operating characteristics (e.g., type I and 
type II statistical errors) are attained
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Stopping Rules

Issues

Conditions under which the trial might be 
stopped early

When to perform analyses

Test statistic to use

Relative position of boundaries at successive 
analyses

Desired operating characteristics



Design, Monitoring and Analysis of Clinical Trials

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D. Session 2:12

February, 2003
© 2000, 2001  Scott S. Emerson, M.D., Ph.D.

Session 2: 45

Stopping Rules

Choice of Test Statistic

Let Tn(X1, ..., Xn) be any test statistic such that Tn

tends to be large for larger values of θ

(Later we will consider possible choices for Tn)
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Stopping Rules

Conditions for Early Stopping: One-sided tests

Test of a greater alternative (θ+ > θ0)

Null:               H0: θ ≤ θ0

Alternative:    H1: θ ≥ θ+

Possibilities for early stopping:

Stop only for the null (when  Tn small) 

Stop only for the alternative (when  Tn large)

Stop either for the null or for the alternative 
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Stopping Rules

Conditions for Early Stopping: One-sided tests

Test of a lesser alternative (θ- < θ0)

Null:               H0: θ ≥ θ0

Alternative:    H1: θ ≤ θ-

Possibilities for early stopping:

Stop only for the null (when  Tn large) 

Stop only for the alternative (when  Tn small)

Stop either for the null or for the alternative 
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Stopping Rules

One-sided Test Boundaries: Sample Mean Statistic
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Stopping Rules

Conditions for Early Stopping: Two-sided tests

Test of a two-sided alternative (θ+ > θ0 > θ- )

Upper Alternative:    H+: θ ≥ θ+

Null:                          H0: θ = θ0

Lower Alternative:    H -: θ ≤ θ-

Possibilities for early stopping:

Stop only for the null (when  Tn intermediate)

Stop only for the alternative (when  Tn small or 
large)

Stop either for the null or for the alternative
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Stopping Rules

Two-sided Test Boundaries: Sample Mean Statistic
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Stopping Rules

General stopping rule

Maximum of four boundaries

‘d’ boundary: upper outer boundary

‘c’ boundary: upper inner boundary

‘b’ boundary: lower inner boundary

‘a’ boundary: lower outer boundary

Early stopping

Tn greater than ‘d’ boundary 

Tn between ‘b’ and ‘c’ boundaries

Tn less than ‘a’ boundary 
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Stopping Rules

One-sided tests of greater hypotheses

Always have ‘b’ and ‘c’ boundaries are equal 

so no early stopping for intermediate Tn

Early stopping

If ‘a’ boundary at  -∞: no early stopping for null

If ‘d’ boundary at  ∞: no early stopping for 
alternative
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Stopping Rules

One-sided Test Boundaries: Sample Mean Statistic
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Stopping Rules

One-sided tests of lesser hypotheses

Always have ‘b’ and ‘c’ boundaries are equal 

so no early stopping for intermediate Tn

Early stopping

If ‘a’ boundary at  -∞: no early stopping for 
alternative

If ‘d’ boundary at  ∞: no early stopping for null
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Stopping Rules

One-sided Test Boundaries: Sample Mean Statistic
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Stopping Rules

Two-sided tests

Early stopping

If ‘a’ boundary at  -∞: no early stopping for 
lower alternative

If ‘b’ and ‘c’ boundaries equal: no early 
stopping for null

If ‘d’ boundary at  ∞: no early stopping for 
upper alternative
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Stopping Rules

Two-sided Test Boundaries: Sample Mean Statistic
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Stopping Rules

Representation of two-sided hypothesis tests

Two-sided tests take on appearance of two 
superposed hypothesis tests

Lower test

− H0-: θ ≥ θ0- versus H-: θ ≤ θ-

Upper test

− H0+: θ ≤ θ0+ versus H+: θ ≥ θ+

Classic two-sided test: 

θ0- = θ0+ = θ0 

θ- = - θ+ 
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Stopping Rules

Generalization of hypothesis tests

Require only  θ- ≤ θ0+ ≤ θ0- ≤ θ+

Correspondence between hypotheses and 
boundaries

‘a’ boundary rejects H0-: θ ≥ θ0-

‘b’ boundary rejects H-: θ ≤ θ-

‘c’ boundary rejects H+: θ ≥ θ+

‘d’ boundary rejects H0+: θ ≤ θ0+
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Stopping Rules

Correspondence to classical tests of H0: θ = θ0

One-sided tests of greater alternative (upper 
and lower tests coincident)

θ- < θ0- = θ0  (define θ0+ = θ- and θ+ = θ0-)

One-sided tests of lesser alternative (upper 
and lower tests coincident)

θ0 = θ0+ < θ+ (define θ- = θ0+ and θ0- = θ+)

Two-sided tests

θ- < θ0- = θ0  = θ0+ < θ+ (with θ- = - θ+ )
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Stopping Rules

Parameterize hypotheses by shift parameters ε L, ε U

0 ≤ εL ≤ 1 is shift of θ0- away from θ+ toward θ0

θ0- = θ+ - εL (θ+ - θ0)

0 ≤ εU ≤ 1 is shift of θ0+ away from θ- toward θ0

θ0+ = θ- + εU (θ0 - θ-)

Constraint: 1 ≤ εL + εU ≤ 2

Test can be thought of as (εL + εU)-sided 
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Stopping Rules

Parameterization special cases

One-sided test of greater alternative:

εL  =  0   εU  =  1

One-sided test of lesser alternative:

εL  =  1   εU  =  0

Two-sided test:

εL  =  1   εU  =  1

One-sided equivalence (noninferiority) test:

εL  =  0.5   εU  =  0.5
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Stopping Rules

Number and timing of analyses

N counts the sampling units accrued to the study

Up to J analyses of the data to be performed

Analyses performed after accruing sample sizes of 
N1 < N2 < L < NJ

(More generally, N measures statistical information)
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Stopping Rules

Boundaries at the analyses

aj ≤ bj ≤ cj ≤ dj are the ‘a’, ‘b’, ‘c’, and ‘d’ boundaries 
at the j-th analysis (when Nj observations)

At the final (J-th) analysis aJ = bJ and cJ = dJ to 
guarantee stopping
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Stopping Rules

Boundary shape functions

Π j measures the proportion of information accrued 
at the j-th analysis

often Π j = Nj / NJ

Boundary shape function f(Π j) is a monotonic 
function used to relate the dependence of 
boundaries at successive analyses on the 
information accrued to the study at that analysis
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Stopping Rules

Formulation of stopping boundaries

At the j-th analysis

aj is determined by θa = θ0- and fa (Π j)

bj is determined by θb = θ- and fb (Π j)

cj is determined by θc = θ+ and fc (Π j)

dj is determined by θd = θ0+ and fd (Π j)
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Stopping Rules

Parameterization of boundary shape functions 

Distinct parameters possible for each boundary

Parameters A*, P*, R* typically chosen by user

Critical value G* usually calculated from search

*** ])1([)( ** GAf R
j

P
jj ×Π−Π+=Π −
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Boundary Scales
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Boundary Scales

Choices for test statistic Tn

Sum of observations

Point estimate of treatment effect

Normalized (Z) statistic

Fixed sample P value

Error spending function

Conditional probability

Predictive probability

Bayesian posterior probability
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Boundary Scales

Choices for test statistic Tn

All of those choices for test statistics can be shown 
to be transformations of each other

Hence, a stopping rule for one test statistic is easily 
transformed to a stopping rule for a different test 
statistic

We regard these statistics as representing different 
scales for expressing the boundaries
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Boundary Scales: Notation

One sample inference about means

Generalizable to most other commonly used models
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Boundary Scales

Partial Sum Scale:

Uses:

Cumulative number of events

Convenient when computing density

∑
=

=
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Sample Mean Scale:

Uses:

Natural estimate of treatment effect

Boundary Scales
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Normalized Statistic Scale:

Uses:

Commonly computed in analysis routines

Boundary Scales
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Boundary Scales

Fixed Sample P value Scale:

Uses:

Commonly computed in analysis routine

Robust to use with other distributions for estimates 
of treatment effect
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Boundary Scales

Bayesian Posterior Scale:

Prior        

Uses:

Bayesian inference (unaffected by stopping)

Posterior probability of hypotheses
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Boundary Scales

Conditional Probability Scale:

Threshold at final analysis

Hypothesized value of mean

Uses:

Conditional power

Futility of continuing under specific hypothesis
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Conditional Probability (estimate) Scale:

Threshold at final analysis

Uses:

Futility of continuing using best estimate 

Boundary Scales
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Boundary Scales
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Predictive Probability Scale:

Prior  distribution      

Uses:

Futility of continuing study
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Predictive Probability Scale:

Noninformative Prior        

Uses:

Futility of continuing study

Boundary Scales
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Boundary Scales

Error Spending (outer lower boundary) Scale:

Uses:

Implementation of stopping rules with flexible 
determination of number and timing of 
analyses
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Boundary Scales

Error Spending (inner lower boundary) Scale:

Uses:

Implementation of stopping rules with flexible 
determination of number and timing of 
analyses

( ) ( )( )

( )];Pr

;,Pr[
1

1 1

1

1

1

,,

bajj

j

i

i

k
bkdkckbkakiibj

sS

SbSE

µ

µ
β

≥+








 ∈≥
−

= ∑
−

=

−

=
I U

l

February, 2003
© 2000, 2001  Scott S. Emerson, M.D., Ph.D.

Session 2: 83

Boundary Scales

Error Spending (inner upper boundary) Scale:

Uses:

Implementation of stopping rules with flexible 
determination of number and timing of 
analyses
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Boundary Scales

Error Spending (outer upper boundary) Scale:

Uses:

Implementation of stopping rules with flexible 
determination of number and timing of 
analyses
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Boundary Scales

Use in evaluating designs

Several of the boundary scales have interpretations 
that are useful in evaluating the operating 
characteristics of a design

Sample Mean Scale

Conditional Probability Futility Scales

Predictive Probability Futility Scale

Bayesian Posterior Probability Scale

(Error Spending Scale)
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Unified Design Family
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Unified Design Family

Unifying parameterization for the most commonly 
used group sequential designs (Kittelson & 
Emerson, 1999) 

Rich parameterization facilitates search for stopping 
rule appropriate for specific applications

Inclusion of broad spectrum of designs means that 
comparisons within this family will consider full 
range of possible designs

(Default family in S+SeqTrial)
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Unified Design Family

Stopping Boundaries for Sample Mean Statistic:

aj = µa - fa (Πj)

bj = µb +    fb (Πj)

cj = µc - fc (Πj)

dj = µd +    fd (Πj)
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Unified Design Family

Parameterization of boundary shape functions 

Distinct parameters possible for each boundary

Parameters A*, P*, R* typically chosen by user

Critical value G* usually calculated from search
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Unified Design Family

Choice of P parameter

P ≥ 0:

Larger positive values of P make early 
stopping more difficult (impossible when P 
infinite)

When A=R=0, 0.5 < P < 1 corresponds to 
power family parameter (∆) in Wang & Tsiatis
(1987): P= 1 - ∆
Reasonable range of values: 0 < P < 2.5

P=0 with A=R=0 possible for some (not all) 
boundaries, but not particularly useful
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Unified Design Family

Effect of varying P>0 (when A=0, R=0)

Higher P leads to early conservatism

P > 0 has infinite boundaries when N=0
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Unified Design Family

Choice of P parameter

P < 0:

Must have R = 0 and (typically) A < 0

More negative values of P make early stopping 
more difficult
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Unified Design Family

Effect of varying P<0 (when A=2, R=0)

More negative P leads to early conservatism

P < 0 has finite boundaries when N=0
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Unified Design Family

Choice of R parameter

R > 0:

Larger positive values of R make early 
stopping easier

When R>0 and P=0, typically need A>0

Reasonable range of values: 0.1 < R < 20

R < 1 is convex outward

R > 1 is convex inward 

When R>0 and P>0, can get change in 
convexity of boundaries
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Unified Design Family

Effect of varying R (when A=1, P=0)

R < 1 leads to convex outward

R > 1 leads to convex inward
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Unified Design Family

Effect of varying R (when A=1, P=0.5)

With P > 0, boundaries infinite when N=0

R < 1 and P > 0 has change in convexity
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Unified Design Family

Choice of A parameter

Lower absolute values of A makes it harder to 
stop at early analyses

Valid choices of A depend upon choices of P 
and R

Useful ranges for A

− P ≥ 0, R ≥ 0:      0.2  ≤ A  ≤ 15

− P ≤ 0, R = 0:      -15  ≤ A  ≤ -1.25
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Unified Design Family

Effect of varying A (when P=0, R=1.2)

Values of A closer to 0 make it harder to stop early

Higher absolute value of A makes flatter boundaries
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Unified Design Family

Parameterization of boundary shape function 
includes many previously described approaches

Wang & Tsiatis Boundary Shape Functions:

A* = 0,  R* = 0, P* > 0   

P* measures early conservatism 

P* = 0.5   Pocock (1977)

P* = 1.0   O’Brien-Fleming (1979)

(P* = ∞ precludes early stopping)
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Unified Design Family

Parameterization of boundary shape function 
includes many previously described approaches

Triangular Test Boundary Shape Functions 
(Whitehead)

A* = 1,  R* = 0, P* = 1

Sequential Conditional Probability Ratio Test 
(Xiong):

R* = 0.5, P* = 0.5
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Unified Design Family

Parameterization of hypothesis shifts and boundary 
shape function unifies what were discrete families

Triangular tests vs Wang and Tsiatis based families

Choice of A *

One-sided vs two-sided tests

Choice of ε L, ε U

Early stopping under one hypothesis vs both 
hypotheses

Choice of P *
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Unified Design Family

Spectrum of designs

ε L increases across rows

Pa  and/or  Pc  increases down columns
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Unified Design Family

Operating characteristics

User specifies size αU, αL of upper and lower tests

User specifies power βU, βL of upper and lower tests

Computer search for Ga, Gb, Gc, Gd that attains 
those operating characteristics

(Sample size can be computed using some other 
power besides βU, βL)
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Error Spending Family
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Error Spending Family

Lan and DeMets (1983) approach

At each analysis, some of the type I error is `used 
up’

Describe a stopping rule according to the proportion 
of αU, αL used at each analysis

General case: alpha used by the j-th analysis 
determined by some function of the proportion 
of maximal information available

( )jj f Π= ,αα
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Error Spending Family

Lan and DeMets (1983) approach (cont.)

Lan and DeMets (1983) describe error spending 
functions comparable to O’Brien-Fleming or Pocock
designs 

O’Brien-Fleming

Pocock

( )[ ]jj z ΠΦ−= − /12 2/1 αα

( )[ ]jj e Π−+= 11logαα
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Error Spending Family

Lan and DeMets (1983) approach (cont.)

Lan and DeMets (1983) describe error spending 
functions comparable to O’Brien-Fleming or Pocock
designs for specific type I errors

February, 2003
© 2000, 2001  Scott S. Emerson, M.D., Ph.D.

Session 2: 108

Error Spending Family

Lan and DeMets (1983) approach (cont.)

More recently authors have focussed on error 
spending functions of the form

(Kim and DeMets, 1987; Jennison and Turnbull, 
1989; Hwang, Shih, and DeCani, 1990)

( ) ( )jjj ff Π=Π= ααα ,
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Error Spending Family

Lan and DeMets (1983) approach (cont.)

Kim and DeMets (1987) and Jennison and Turnbull 
(1989) consider an error spending family 
corresponding to

Useful special cases identified by those authors:

P = 1 is similar to Pocock (1977)

P = 3 is similar to O’Brien and Fleming (1979)

P
jj
−Π= αα
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Error Spending Family

Pampallona, Tsiatis, and Kim (1995) extension

Defines type II error spending functions

At each analysis, recompute maximal sample size 
which will maintain planned level of significance and 
power
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Error Spending Family

Implementation of an Error Spending Family

Define stopping rule on error spending function 

scale by defining Eaj, Ebj, Ecj, Edj

Use framework of superposed one-sided hypothesis 
tests described by Kittelson and Emerson (1999) to 
define relationships among hypotheses rejected by 
each of the four possible stopping boundaries
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Error Spending Family

Correspondence with type I and II error spending

For user specified size αU, αL of upper and lower 
tests and power βU, βL of upper and lower tests, 
error spent at the j-th analysis specified as:
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Error Spending Family

Boundary shape functions

Boundary shape function can be defined separately 
for each of the four boundaries
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Error Spending Family

Constraints on parameters

f(0) = 0 and f(1) = 1

If P < 0

R = 0,  A = 1, G = 1

If R > 0

P = 0, A = -1, G = -1

If P = 0 and R = 0, no early stopping
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Error Spending Family

Computer search for stopping boundaries

Error spending family defines Eaj, Ebj, Ecj, Edj

Appendix of Kittelson and Emerson (1999) 
describes general algorithm for finding design when 
hypotheses known

At design stage, must search for standardized 
hypotheses that result in a valid design, and then 
compute sample size to map standardized design to 
specified alternative hypotheses.
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Error Spending Family

Computer search for stopping boundaries (cont.)

In order to more easily obtain more efficient designs, 
when designing a study using error spending 
functions, the specified type II error spending 
functions are only used as upper bounds on the true 
type II error spending function.
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Comparison of 
Parameterizations
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Comparison of Parameterizations

General comments

Families also defined for other boundary scales

Partial sum and Z statistic scale families 
implemented in S+SeqTrial

Bayesian and Futility scale families under 
construction

If stopping rules are carefully evaluated, it does not 
matter too much which scale (and therefore family) 
is used to derive the stopping rule.
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Comparison of Parameterizations

General comments (cont.)

The best design family to use will be the one which 
allows a user to most quickly find a stopping rule 
having desirable operating characteristics

The ease of use will therefore depend in part on

Interpretability of boundary scale

Interpretability of parameters
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Comparison of Parameterizations

General comments (cont.)

My view:

Sample mean scale (unified family) has easier 
scientific interpretation than the error spending 
scale which has a purely statistical 
interpretation that, in my experience, is poorly 
understood by both users and researchers

The parameterization of the unified family 
produces a more useful grouping of designs 
on some level than does the parameterization 
of the error spending family
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Comparison of Parameterizations

ASSERTION: Interpretability of boundary scales

The concept of an error spending scale is less 
relevant to clinical researchers

Type I error reflects only statistical evidence

May conflict with scientific importance

− Underpowered studies: Failure to reject 
the null in the face of large estimates of 
treatment effect

− Overpowered studies: Rejection of the 
null hypothesis when differences are 
scientifically unimportant
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Comparison of Parameterizations

ASSERTION: Interpretability of boundary scales

The formulation of error spending scales is not well 
understood by the researchers developing such 
methods

Lan & DeMets (1983), Kim & DeMets (1987), 
Jennison & Turnbull (1989 and 2000) all 
describe error spending functions which mimic 
O’Brien-Fleming (1979) or Pocock (1977) 
group sequential designs

In fact, for different levels of type I (or type II) 
error, the error spending functions are different 
within those families of designs
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Comparison of Parameterizations

Error spent at each analysis for O’Brien and Fleming 
(1979)  designs depends on Type I or Type II errors
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Comparison of Parameterizations

Error spent at each analysis for Pocock (1977) 
designs depends on Type I or Type II errors



Design, Monitoring and Analysis of Clinical Trials

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D. Session 2:32

February, 2003
© 2000, 2001  Scott S. Emerson, M.D., Ph.D.

Session 2: 125

Comparison of Parameterizations

Is there a problem?

Parameterization of stopping rule families induces a 
grouping of designs:

Unified family: Pocock (1977) designs, 
O’Brien-Fleming (1979) designs, Triangular 
designs (Whitehead & Stratton, 1983)

Error spending families: All designs that spend 
the same proportion of type I or II error at each 
analysis
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Comparison of Parameterizations

Is there a problem? (cont.)

Best parameterization might be defined according to 
whether such groupings correspond to similar 
operating characteristics

efficiency

Bayesian properties

futility properties

others
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Comparison of Parameterizations

Efficiency

Consider ability of choice of boundary shape 
parameter to predict efficiency of design

No uniformly most powerful design

Efficiency measured in terms of smallest 
average sample size for specific hypothesis

− Measure alternative hypothesis according 
to the power of the test to detect it
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Comparison of Parameterizations

Methods for comparison

Find optimal designs in terms of average sample 
size (ASN) within family of Wang and Tsiatis (1987) 
boundary shape functions for one-sided symmetric 
designs (Emerson and Fleming, 1989)

Family found to be approximately optimal

Find optimal designs for various choices of type I 
error and statistical power
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Comparison of Parameterizations

Methods for comparison (cont.)

For each optimal design, examine the boundary 
shape function on 

Sample mean scale

Error spending scale

Futility scales
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Comparison of Parameterizations

Criteria for “good” parameterizations

If the boundary shape function on a given scale is 
not independent of choice of type I and II errors, 
then that would argue that grouping of designs 
according to parameterization of that scale will not 
correspond to similar efficiency properties

As it is unlikely that boundary shape parameters for 
efficient designs will be constant across all choices 
of type I and type II errors, we can also compare the 
degree that boundary shape parameters change for 
each boundary scale
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Comparison of Parameterizations

Proportion of error spent at each analysis for 
approximately efficient designs

Power varies across panels

Type I error varies across lines within each panel

February, 2003
© 2000, 2001  Scott S. Emerson, M.D., Ph.D.

Session 2: 132

Comparison of Parameterizations

Conditional power (using MLE) at the boundary for 
each analysis for approximately efficient designs

Power varies across panels

Type I error varies across lines within each panel
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Comparison of Parameterizations

Comparison of optimal unified family P parameter as 
a function of type I errors

Compared to best fitting P or R parameter in error 
spending family
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Comparison of Parameterizations

Search for stopping rule is generally iterative

An initial design is specified

Operating characteristics are examined

Modifications are made to the design

Availability of tools for evaluation of operating 
characteristics lessens impact of family used to 
define a stopping rule

Appropriate designs can be found from almost 
any starting point
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Comparison of Parameterizations

To the extent that parameterization of sample mean 
family predicts efficiency behavior, use of that 
family may allow more intuitive search for suitable 
stopping rules

However, efficiency is not always of paramount 
concern
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Comparison of Parameterizations

Interpretation of unified family boundaries as 
estimate of treatment effect is meaningful to clinical 
researcher 

Error spending functions are less interpretable, and 
thus seem less useful when designing a clinical trial 
or evaluating its operating characteristics

However, error spending scale can be useful in 
implementing a stopping rule
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Comparison of Parameterizations

It is not clear that conditional probabilities are 
particularly useful in the definition of a stopping rule

Design family does not have a particularly 
intuitive parameterization

Unconditional power considerations would 
seem more straightforward
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Evaluation of
Designs
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Evaluation of Designs

Process of choosing a trial design

Define candidate design

Evaluate operating characteristics

Modify design

Iterate
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Evaluation of Designs

Operating characteristics for fixed sample studies 

Level of Significance (often pre-specified)

Sample size requirements

Power Curve

Decision Boundary

Frequentist inference on the Boundary

Bayesian posterior probabilities
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Evaluation of Designs

Additional operating characteristics for group 
sequential studies 

Probability distribution for sample size

Stopping probabilities

Boundaries at each analysis

Frequentist inference at each analysis

Bayesian inference at each analysis

Futility measures at each analysis
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Evaluation of Designs

Sample size requirements 

Number of subjects needed is a random variable

Quantify summary measures of sample size 
distribution

maximum (feasibility of accrual)

mean (Average Sample N- ASN)

median, quartiles

(Particularly consider tradeoffs between power and 
sample size distribution)
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Evaluation of Designs

Stopping probabilities

Consider probability of stopping at each analysis for 
arbitrary alternatives

Consider probability of each decision (for null or 
alternative) at each analysis
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Evaluation of Designs

Power curve

Probability of rejecting null for arbitrary alternatives

Power under null: level of significance

Power for specified alternative

Alternative rejected by design

Alternative for which study has high power

S+SeqTrial defines

Power curves for upper and lower boundaries

Alternatives having specified power for each 
boundary
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Evaluation of Designs

Decision boundary at each analysis

Value of test statistic leading to rejection of null

Variety of boundary scales possible

Often has meaning for applied researchers 
(especially on scale of estimated treatment effect)

Estimated treatment effects may be viewed as 
unacceptable for ethical reasons based on 
prior notions

Estimated treatment effect may be of  little 
interest due to lack of clinical importance or 
futility of marketing
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Evaluation of Designs

Frequentist inference on the boundary at each 
analysis

Consider P values, confidence intervals when 
observation corresponds to decision boundary at 
each analysis

Ensure desirable precision for negative studies

Confidence interval identifies hypotheses not 
rejected by analysis

Have all scientifically meaningful hypotheses 
been rejected?
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Evaluation of Designs

Bayesian posterior probabilities at each analysis

Examine the degree to which the frequentist
inference leads to sensible decisions under a range 
of prior distributions for the treatment effect

Posterior probability of hypotheses

Bayesian estimates of treatment effect

Median (mode) of posterior distribution

Credible interval (quantiles of posterior 
distribution
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Evaluation of Designs

Futility measures

Consider the probability that a different decision 
would result if trial continued

Can be based on particular hypotheses, current best 
estimate, or predictive probabilities

(Perhaps best measure of futility is whether the 
stopping rule has changed the power curve 
substantially)        
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Evaluation of Designs

Forms of output from S+SeqTrial

Printed output in report window or command 
line window

Plots

Named seqDesign object

S+SeqTrial Implementation
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Evaluation of Designs (cont.)

Sample size requirements

Printed with boundaries

X axis with plots of boundaries

Plots of average sample size, quantiles of 
sample size distribution

Stopping probabilities

Printed with operating characteristics

Plots with color coded decisions

S+SeqTrial Implementation
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Evaluation of Designs (cont.)

Power Curve

Hypotheses, size, power printed with 
boundaries

Tabled power with summaries

Plots of power curve

Plots versus reference power curve

S+SeqTrial Implementation
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Evaluation of Fixed Sample Designs (cont.)

Decision Boundary

Printed on specified boundary scale

Plots

Frequentist inference on the boundary

Printed with summaries

Plots

S+SeqTrial Implementation
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Evaluation of Fixed Sample Designs (cont.)

Bayesian inference

Posterior probabilities implemented as a 
boundary scale

Median (mode) of posterior distribution

Credible intervals

Futility measures

Implemented as boundary scale

Conditional and predictive approaches

S+SeqTrial Implementation


