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Need for Monitoring
a Trial
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Need for Monitoring a Trial

Fixed sample two-sided tests
Test of a two-sided alternative (6, > 6, >6.)
+Upper Alternative: H,:8=6, (superiority)
+ Null: Hy: ©=6, (equivalence)
+Lower Alternative: H :06<6. (inferiority)

Data analyzed once at the end of all data accrual

Decisions:
+RejectHy,H. (forH,) 0=  Tz¢y
+RejectH,,H_ (forH;) 0= ¢ <T< ¢y
+RejectH,,H, (forH) 0= T< ¢
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Need for Monitoring a Trial
Ethical concerns
Patients already on trial

+ Avoid continued administration of harmful
treatments

+ Maintain validity of informed consent
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Need for Monitoring a Trial
Ethical concerns (cont.)
Patients not yet on trial
+ Start treatment with best therapy

+ Ensure informed consent valid

February, 2003
© 2000, 2001 Scott S. Emerson, M.D., Ph.D.

Need for Monitoring a Trial
Ethical concerns (cont.)
Patients never on trial

+ Facilitate rapid introduction of beneficial
treatments

+ Warn about risks of existing treatments
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Need for Monitoring a Trial
Efficiency considerations

Fewer patients may be needed on average

+ Decreases costs associated with number of
patients

Time savings
+ Decreases costs associated with monitoring
patients
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Need for Monitoring a Trial

Futility considerations: Efficiency and Ethics
Efficiency

+ Stop a study when it is known (or reasonably
certain) that no effect will be demonstrated

+ Can perform more studies with limited
resources

Ethics

+Is it ever ethical to expose patients to
experimental treatments when no meaningful
information will be gained?

+ Can devote resources to study of more
promising agents
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Criteria for Stopping
a Trial
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Criteria for Stopping a Trial

Sufficient evidence available to be confident of
rejecting specific hypotheses

Stopping early for
+ Efficacy (superiority)
+Harm (inferiority)
+ Equivalence
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Criteria for Stopping a Trial

Futility of demonstrating effect that would change
behavior

Stopping early for futility
+ Not sufficiently superior
+ Not dangerously harmful
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Criteria for Stopping a Trial
And there is no advantage in continuing

Even if confident of ultimate decision about primary
endpoint, may want to continue trial to gain more
information on

+ Safety
+Longer term follow-up
+ Gather additional data on secondary outcomes
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Criteria for Stopping a Trial
Statistical basis for stopping criteria

Curtailment
+Boundary has been reached early

+E.g., one arm study with binary endpoint

- Critical value for rejection of null might be
observation of K events

- Kth event may occur well before all
subjects accrued
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Criteria for Stopping a Trial
Statistical basis for stopping criteria (cont.)

Stochastic Curtailment

+ High probability that a particular decision will
be made at final analysis

+ Calculate probability of exceeding some critical
value conditional on data observed so far

+ Probability calculated based on hypothesized
treatment effect (which hypothesis?) or current
estimate
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Criteria for Stopping a Trial
Statistical basis for stopping criteria (cont.)
Predictive probability of final statistic
+ A special form of stochastic curtailment

+Uses a Bayesian prior distribution on the
treatment effect
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Criteria for Stopping a Trial
Statistical basis for stopping criteria (cont.)
Group sequential test

+ Sufficient evidence to make decision in
classical frequentist framework

+Type | and Il errors controlled at desired levels
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Criteria for Stopping a Trial
Statistical basis for stopping criteria (cont.)
Bayesian analysis

+ Compute the probability that the treatment
effect is in some specified range

+ Calculations based on a user specified prior
distribution for the treatment effect (which is
treated as a random variable)
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Inadequacy of Fixed
Sample Methods
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Inadequacy of Fixed Sample Methods

Sequential monitoring of a trial
Data are analyzed after accrual of each observation

+ (Group sequential monitoring: analysis after
groups of observations accrued)

+ Analyses must take into account the repeated
analyses of the same data

- Sampling distribution of the test statistic is
altered

- Frequentist properties are altered
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Inadequacy of Fixed Sample Methods
Setting for demonstration of the problem

Observations:
X1’ X2, X3’ ey XN
Xi = N(H, 02)

Hypothesis:

Ho =1,
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February, 2t

Inadequacy of Fixed Sample Methods

Test Statistic

Sample mean computed after each observation:

_ 1Y N
Xj:;;)(j, j=L...N

Inadequacy of Fixed Sample Methods
Fixed sample decision rule

Hypothesis test when all data accrued:
+Reject Hy when

)_(N >/’() +Zl—a%
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Inadequacy of Fixed Sample Methods
Sample path for sample mean
Mull Hypothesis
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Inadequacy of Fixed Sample Methods
Sample path for sample mean
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Inadequacy of Fixed Sample Methods

Repeated significance testing
Continuous monitoring:
+Reject H, the first time

X >IL‘{)+ZI a%
)_(j</%_21 %

Inadequacy of Fixed Sample Methods

Simulated trials when Hj is true:

Mull
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Inadequacy of Fixed Sample Methods

Simulated trials when H, is true:
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Inadequacy of Fixed Sample Methods

Repeated significance testing
Monitoring after each of J groups of observations:
+Analyses at N, Ny, ..., N,
+Reject H, the first time

XNj >IL() +Zl -a

</'6 Zla

E\q s
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Inadequacy of Fixed Sample Methods

Simulated trials when Hj is true:
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Inadequacy of Fixed Sample Methods

Simulated trials when Hj is true:
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Inadequacy of Fixed Sample Methods
Simulate 100,000 Trials under the Null Hypothesis
Three equally spaced level .05 analyses
Proportion Significant
1st
.05038
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis
Three equally spaced level .05 analyses

Proportion Significant
1st 2nd

.05038 .05022
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis
Three equally spaced level .05 analyses

Proportion Significant
1st 2nd 3rd

.05038 .05022 .05056
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis
Three equally spaced level .05 analyses

Pattern of Proportion Significant
Significance 1st

1st only .03046

1st, 2nd .00807

1st, 3rd .00317

1st, 2nd, 3rd .00868

Any pattern .05038
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis
Three equally spaced level .05 analyses

Pattern of Proportion Significant
Significance 1st 2nd

1st only

1st, 2nd .00807

1st, 3rd

1st, 2nd, 3rd .00868

2nd only .01921

2nd, 3rd .01426

Any pattern .05022
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis
Three equally spaced level .05 analyses

Pattern of Proportion Significant
Significance 1st 2nd 3rd

1st only

1st, 2nd

1st, 3rd .00317
1st, 2nd, 3rd .00868

2nd only

2nd, 3rd .01426

3rd only .02445
Any pattern .05056
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Inadequacy of Fixed Sample Methods

Simulate 100,000 Trials under the Null Hypothesis
Three equally spaced level .05 analyses

Pattern of Proportion Significant
Significance 1st 2nd 3rd Ever
1st only .03046 .03046
1st, 2nd .00807 .00807 .00807
1st, 3rd .00317 .00317 .00317
1st, 2nd, 3rd .00868 .00868 .00868 .00868
2nd only .01921 .01921
2nd, 3rd .01426 .01426 .01426
3rd only .02445 .02445
Any pattern .05038 .05022 .05056 .10830
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Inadequacy of Fixed Sample Methods

Group sequential test: Pocock (1977) level .05
Three equally spaced level .022 analyses

Pattern of Proportion Significant
Significance 1st 2nd 3rd Ever
1st only .01520 .01520
1st, 2nd .00321 .00321 .00321
1st, 3rd .00113 .00113 .00113
1st, 2nd, 3rd .00280 .00280 .00280 .00280
2nd only .01001 .01001
2nd, 3rd .00614 .00614 .00614
3rd only .01250 .01250
Any pattern .02234 .02216 .02257 .05099
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Inadequacy of Fixed Sample Methods

Critical values depend on spacing of analyses
Level .022 analyses at 10%, 20%, 100% of data

Pattern of Proportion Significant
Significance 1st 2nd 3rd Ever
1st only .01509 .01509
1st, 2nd .00521 .00521 .00521
1st, 3rd .00068 .00068 .00068
1st, 2nd, 3rd .00069 .00069 .00069 .00069
2nd only .01473 .01473
2nd, 3rd .00165 .00165 .00165
3rd only .01855 .01855
Any pattern .02167 .02228 .02157 .05660
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Inadequacy of Fixed Sample Methods

The critical values can be varied across analyses

Level 0.10 O’Brien-Fleming (1979); equally spaced
tests at .003, .036, .087

Pattern of Proportion Significant

Significance 1st 2nd 3rd Ever
1st only .00082 .00082
1st, 2nd .00036 .00036 .00036
1st, 3rd .00037 .00037 .00037
1st, 2nd, 3rd .00127 .00127 .00127 .00127
2nd only .01164 .01164
2nd, 3rd .02306 .02306 .02306
3rd only .06223 .01855
Any pattern .00282 .03633 .08693 .09975
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Inadequacy of Fixed Sample Methods

Error spending function: Pocock (1977) level .05

.01520 .01520
.00321  .00321 .00321 .
.00113 .00113  .00113 Stopplng Rules
.00280  .00280  .00280  .00280

.01001 .01001

.00614  .00614  .00614

.01250 .01250

.02234 .02216 .02257 .05099
.02234 .01615 .01250
.02234 .03849 .05099
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Stopping Rules Stopping Rules
Basic Strategy Issues
+ Conditions under which the trial might be
Find stopping boundaries at each analysis such that stopped early
desired operating characteristics (e.g., type | and +When to perform analyses
type Il statistical errors) are attained + Test statistic to use
+ Relative position of boundaries at successive
analyses
+ Desired operating characteristics
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Stopping Rules

Choice of Test Statistic

Let T (X4, ..., X,,) be any test statistic such that T,
tends to be large for larger values of 6

(Later we will consider possible choices for T,)
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Stopping Rules

Conditions for Early Stopping: One-sided tests
Test of a greater alternative (6, > 6,)
+Null: Hy: 86,
+Alternative: H,:0=6,

Possibilities for early stopping:
+ Stop only for the null (when T, small)
+ Stop only for the alternative (when T, large)
+ Stop either for the null or for the alternative
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Stopping Rules

Conditions for Early Stopping: One-sided tests
Test of a lesser alternative (6. < ;)
+ Null: Hy: 626,
+Alternative: H,: 0<86.

Possibilities for early stopping:
+ Stop only for the null (when T, large)
+ Stop only for the alternative (when T, small)
+ Stop either for the null or for the alternative
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Stopping Rules

One-sided Test Boundaries: Sample Mean Statistic
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Stopping Rules

Conditions for Early Stopping: Two-sided tests
Test of a two-sided alternative (6, > 6, > 0_)
+Upper Alternative: H,:6=>6,
+ Null: Hy: =6,
+Lower Alternative: H_:6<86

Possibilities for early stopping:

large)
+ Stop either for the null or for the alternative
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+ Stop only for the null (when T, intermediate)
+ Stop only for the alternative (when T, small or

Stopping Rules

Two-sided Test Boundaries: Sample Mean Statistic
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Stopping Rules

General stopping rule
Maximum of four boundaries
+‘d’ boundary: upper outer boundary
+‘c’ boundary: upper inner boundary
+‘b’ boundary: lower inner boundary
+‘a’ boundary: lower outer boundary

Early stopping
+ T, greater than ‘d’ boundary
+ T, between ‘b’ and ‘c’ boundaries
+ T, less than ‘a’ boundary

February, 2003
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Stopping Rules
One-sided tests of greater hypotheses

Always have ‘b’ and ‘c’ boundaries are equal
+s0 no early stopping for intermediate T,

Early stopping
+ If ‘a’ boundary at -e0: no early stopping for null
+ If ‘d’ boundary at e: no early stopping for
alternative
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Stopping Rules

One-sided Test Boundaries: Sample Mean Statistic

m @ = m we
o - - —

AT “
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Stopping Rules
One-sided tests of lesser hypotheses

Always have ‘b’ and ‘c’ boundaries are equal
+s0 no early stopping for intermediate T,

Early stopping
+ If ‘a’ boundary at -eo: no early stopping for
alternative

+ If ‘d’ boundary at o: no early stopping for null

Stopping Rules

One-sided Test Boundaries: Sample Mean Statistic

— . |
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Stopping Rules
Two-sided tests
Early stopping
+If ‘@’ boundary at -c0: no early stopping for
lower alternative
+If ‘b’ and ‘c’ boundaries equal: no early
stopping for null
+If ‘d’ boundary at oo: no early stopping for
upper alternative
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Stopping Rules

Two-sided Test Boundaries: Sample Mean Statistic
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Stopping Rules

Representation of two-sided hypothesis tests

Two-sided tests take on appearance of two
superposed hypothesis tests

+Lower test

-Hy:0=86, versusH.:0<86.
+ Upper test

- Hp,: 0<86,, versusH,: 66,

+ Classic two-sided test:

February, 2003
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Stopping Rules

Generalization of hypothesis tests
Require only 6.<6,, <6, <6,

Correspondence between hypotheses and
boundaries

+‘a’ boundary rejects Hy_: 6 = 6.
+‘b’ boundary rejects H: 6 < 6.
+‘Cc’ boundary rejects H,: 6 = 6,
+‘d’ boundary rejects Hy,: 6 <6,

February, 2003
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Stopping Rules

Correspondence to classical tests of H,: 6 =6,

+One-sided tests of greater alternative (upper
and lower tests coincident)

0. < 8, = 6, (define B,, = 6_and 6, = 6;)

+One-sided tests of lesser alternative (upper
and lower tests coincident)

6, = 6, < 6, (define 8. = 6,, and 6,. = 8,)

+ Two-sided tests
6.<0,=6, =6y, <8, (with.=-8,)
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Stopping Rules
Parameterize hypotheses by shift parameters € |, €,
+ 0 <¢g <1 is shift of 8,. away from 8, toward 6,

B).= 6, -& " (8, -6)

+0 < g, < 1is shift of 6,, away from 6. toward 6,
8. =6.+¢, (6,-6)

+Constraint: 1 <g +g,<2

+ Test can be thought of as (g + g)-sided

February, 2003 Session 2: 61
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Stopping Rules

Parameterization special cases
One-sided test of greater alternative:
g =0 g =1

One-sided test of lesser alternative:
*E = 1 & = 0

Two-sided test:
*E = 1 & =

|
-

One-sided equivalence (noninferiority) test:
+g =05 g, =05
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Stopping Rules

Number and timing of analyses
N counts the sampling units accrued to the study
Up to J analyses of the data to be performed

Analyses performed after accruing sample sizes of
Ny <Np<--- <N,

(More generally, N measures statistical information)
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Stopping Rules

Boundaries at the analyses

[P T IN |

a;< bj <¢< dj are the ‘a’, ‘b’, ‘c’, and ‘d’ boundaries
at the j-th analysis (when N; observations)

At the final (J-th) analysis a; =bj and c;=d, to
guarantee stopping
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Stopping Rules
Boundary shape functions

M; measures the proportion of information accrued
at the j-th analysis

soften M, = N; /N,

Boundary shape function f(I;) is a monotonic
function used to relate the dependence of
boundaries at successive analyses on the
information accrued to the study at that analysis
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Stopping Rules

Formulation of stopping boundaries
At the j-th analysis

+g; is determined by 8, = 6,. and f, (1)
+b; is determined by 6, = 6. and f, (1))
+C; is determined by 6, = 6, and f; ()

+d; is determined by 8,= 6, and f, (1))
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Stopping Rules

Parameterization of boundary shape functions
£()=[A4 407 (1-N)" %G

Distinct parameters possible for each boundary

Parameters A., P., R. typically chosen by user
Critical value G. usually calculated from search
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Boundary Scales
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Boundary Scales

Choices for test statistic T,
Sum of observations
Point estimate of treatment effect
Normalized (Z) statistic
Fixed sample P value
Error spending function
Conditional probability
Predictive probability
Bayesian posterior probability
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Boundary Scales
Choices for test statistic T,

All of those choices for test statistics can be shown
to be transformations of each other

Hence, a stopping rule for one test statistic is easily
transformed to a stopping rule for a different test
statistic

We regard these statistics as representing different
scales for expressing the boundaries

February, 2003
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Boundary Scales: Notation

One sample inference about means
Generalizable to most other commonly used models

Probability model : Xi,.n Xy iid (,u 02)
Null hypothesis : Hy: = U,

Analyses after Ni,...,.N; =N

Data at jth analysis: Xy Xy

Distributional assumptions :

2
in absence of a stopping rule X ; ~ N| { U, ;—J
J

February, 2003 Session 2: 71
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Boundary Scales
Partial Sum Scale:
N
S ;= ZEIX ;
Uses:

Cumulative number of events
Convenient when computing density
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Boundary Scales

Sample Mean Scale:

_ | N S
X, = XX, =
;N = N
J
Uses:
Natural estimate of treatment effect
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Boundary Scales

Normalized Statistic Scale:

:, = i, ]

Uses:
Commonly computed in analysis routines
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Boundary Scales

Fixed Sample P value Scale:

p,=1-0(z)
Z.
=1- fj Le_uz/zdu

—oN2MT
Uses:

Commonly computed in analysis routine

Robust to use with other distributions for estimates
of treatment effect
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Boundary Scales

Bayesian Posterior Scale:
Prior u ~ N(Z,rz)

B,(ﬂ*) :PI"LU 2 [ | (le-”XN,))

—1-® /,1*[er2 +02]—Nj72)_cj -0°¢

cfr\/N,.r2 +0?

Uses:
Bayesian inference (unaffected by stopping)
Posterior probability of hypotheses
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Boundary Scales

Conditional Probability Scale:
Threshold at final analysis ¢y,
Hypothesized value of mean .

C'i(t)?‘]"u*) - Pr()?J 21y, |)?j;,u = ,U*)

NJ[t)?J _IU*]_N/‘[)?/_IU*]

sime a\/NJ—Nj

Uses:
Conditional power
Futility of continuing under specific hypothesis

on, M.D., Ph.D.

Boundary Scales

Conditional Probability (estimate) Scale:
Threshold at final analysis ¢,

N [t)?J — X,

oN,-N,

=1-®

Uses:
Futility of continuing using best estimate
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Cltgt=X,)=Pe(X, 21 | X, p =%
]

Ht;) :jPr()_(j >ty
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Boundary Scales

Predictive Probability Scale:
Prior distribution 7 ~ N (Z,r 2)

|)_(j,ﬂ)/1(;l|)_(j)dﬂ

NJ[N/‘T2 +02] [th _)_Cj] +02[NJ _Nj][_j _Z]
oIV, -N ||V, + || N+

Uses:
Futility of continuing study

bruary, 2003

Boundary Scales

Predictive Probability Scale:
Noninformative Prior y4 ~ N (Z ,T° ) Tt o

Hftg)=1Pe(X, 201X ) A X,) du

Nl -5
o [5v, - N

=1-®

Uses:
Futility of continuing study
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Boundary Scales

Error Spending (outer lower boundary) Scale:

¢ 0=l

+Pr(S].SSj;,LIa)]

Uses:

Implementation of stopping rules with flexible
determination of number and timing of
analyses

February, 2003
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Boundary Scales

Error Spending (inner lower boundary) Scale:

/ i=1

+Pr(Sj Zsj;,uba)]

Uses:

Implementation of stopping rules with flexible
determination of number and timing of
analyses

February, 2003
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Boundary Scales

Error Spending (inner upper boundary) Scale:

=g s =e )60

i=1 k=1

+Pr(Sj < Sj;:uc)]

Uses:

Implementation of stopping rules with flexible
determination of number and timing of
analyses

February, 2003
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Boundary Scales

Error Spending (outer upper boundary) Scale:

i1

[ZP{ ‘ O(S D "kbk dek));l’ld

+Pr(Sj 2 Sj;lud)]

Uses:

Implementation of stopping rules with flexible
determination of number and timing of
analyses

February, 2003
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Boundary Scales

Use in evaluating designs

Several of the boundary scales have interpretations
that are useful in evaluating the operating
characteristics of a design

+Sample Mean Scale

+ Conditional Probability Futility Scales
+ Predictive Probability Futility Scale

+ Bayesian Posterior Probability Scale
+ (Error Spending Scale)
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Unified Design Family
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Unified Design Family

Unifying parameterization for the most commonly
used group sequential designs (Kittelson &
Emerson, 1999)

Rich parameterization facilitates search for stopping
rule appropriate for specific applications

Inclusion of broad spectrum of designs means that
comparisons within this family will consider full
range of possible designs

(Default family in S+SeqTrial)

bruary, 2003

Unified Design Family

Stopping Boundaries for Sample Mean Statistic:

q; Ha - fa (nj)

b=, + f, (M)
cj = M - fc (n])
d= py + f4(M)
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Unified Design Family

Parameterization of boundary shape functions
A=A+ (A=) %G,

Distinct parameters possible for each boundary

Parameters A., P., R. typically chosen by user
Critical value G. usually calculated from search

February, 2003 Session 2:
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Unified Design Family

Choice of P parameter
P=>0:

+ Larger positive values of P make early
stopping more difficult (impossible when P
infinite)

+When A=R=0, 0.5 < P < 1 corresponds to
power family parameter (A) in Wang & Tsiatis
(1987): P=1-A

+Reasonable range of values: 0 <P < 2.5

+ P=0 with A=R=0 possible for some (not all)
boundaries, but not particularly useful
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Unified Design Family

Effect of varying P>0 (when A=0, R=0)
Higher P leads to early conservatism
P > 0 has infinite boundaries when N=0

February, 2003 Session 2: 9
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Unified Design Family
Choice of P parameter

P<0:
+ Must have R = 0 and (typically) A <0

+ More negative values of P make early stopping
more difficult

February, 2003 Session 2:92
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Unified Design Family

Effect of varying P<0 (when A=2, R=0)
More negative P leads to early conservatism
P < 0 has finite boundaries when N=0

CR
" m— |
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Unified Design Family

Choice of R parameter
R>0:
+ Larger positive values of R make early
stopping easier
+ When R>0 and P=0, typically need A>0
+Reasonable range of values: 0.1 <R <20
+R <1 is convex outward
+R > 1 is convex inward

+When R>0 and P>0, can get change in
convexity of boundaries
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Unified Design Family

Effect of varying R (when A=1, P=0)
R < 1 leads to convex outward
R > 1 leads to convex inward
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Unified Design Family

Effect of varying R (when A=1, P=0.5)
With P > 0, boundaries infinite when N=0
R < 1 and P > 0 has change in convexity

k [ —
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Unified Design Family

Choice of A parameter

+ Lower absolute values of A makes it harder to
stop at early analyses

+Valid choices of A depend upon choices of P
and R

+ Useful ranges for A
-P=20,R=0: 0.2
-P<0,R=0: -15

<15
A< -125

N IA

February, 2003
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Unified Design Family

Parameterization of boundary shape function
includes many previously described approaches

Wang & Tsiatis Boundary Shape Functions:
+A. = 0, R. = 0,P.> 0
+ P. measures early conservatism
P. = 0.5 Pocock (1977)
P. = 1.0 O’Brien-Fleming (1979)
+ (P. = o precludes early stopping)

© 2000, 2001 Scott S. Emerson, M.D., Ph.D.
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Unified Design Family

Effect of varying A (when P=0, R=1.2)
Values of A closer to 0 make it harder to stop early
Higher absolute value of A makes flatter boundaries

-
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Unified Design Family

Parameterization of boundary shape function
includes many previously described approaches

Triangular Test Boundary Shape Functions
(Whitehead)

+Ar= 1, Ro= 0,P. =1

Sequential Conditional Probability Ratio Test
(Xiong):

+R. = 05,P. =05

February, 2003
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Unified Design Family

Parameterization of hypothesis shifts and boundary
shape function unifies what were discrete families

Triangular tests vs Wang and Tsiatis based families
+Choice of A..

One-sided vs two-sided tests
+Choice of € |, £,

Early stopping under one hypothesis vs both
hypotheses

+Choice of P .
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Unified Design Family

Spectrum of designs
€ | increases across rows
P, and/or P, increases down columns

=S s s wmas
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Unified Design Family

Operating characteristics
User specifies size ay, o, of upper and lower tests
User specifies power (3, B, of upper and lower tests

Computer search for G, G, G, G, that attains
those operating characteristics

(Sample size can be computed using some other
power besides B, )
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Error Spending Family
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Error Spending Family

Lan and DeMets (1983) approach
At each analysis, some of the type | error is “used
up’

Describe a stopping rule according to the proportion
of ay, a, used at each analysis
+General case: alpha used by the j-th analysis
determined by some function of the proportion
of maximal information available

a; =f(a ,I'Ij)

February, 2003 Session
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Error Spending Family

Lan and DeMets (1983) approach (cont.)

Lan and DeMets (1983) describe error spending
functions comparable to O’Brien-Fleming or Pocock
designs

+ O’Brien-Fleming

a,=2-0(,./ M)

+ Pocock

a, :alog[1+(e—1)l'lj_
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Error Spending Family

Lan and DeMets (1983) approach (cont.)
Lan and DeMets (1983) describe error spending
functions comparable to O’Brien-Fleming or Pocock
designs for specific type | errors

February, 2003 Session 2:
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Error Spending Family

Lan and DeMets (1983) approach (cont.)

More recently authors have focussed on error
spending functions of the form

a; :f(a,l'lj):af(l'lj)

(Kim and DeMets, 1987; Jennison and Turnbull,
1989; Hwang, Shih, and DeCani, 1990)
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Error Spending Family

Lan and DeMets (1983) approach (cont.)

Kim and DeMets (1987) and Jennison and Turnbull
(1989) consider an error spending family
corresponding to

—_ -P
a, =a I‘I].

Useful special cases identified by those authors:
+P =1 is similar to Pocock (1977)
+P =3 is similar to O’'Brien and Fleming (1979)
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Error Spending Family
Pampallona, Tsiatis, and Kim (1995) extension
Defines type Il error spending functions

At each analysis, recompute maximal sample size
which will maintain planned level of significance and
power

February, 2003 Session
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Error Spending Family

Implementation of an Error Spending Family
Define stopping rule on error spending function
scale by defining E,;, Eyj, Egjy Ey

Use framework of superposed one-sided hypothesis
tests described by Kittelson and Emerson (1999) to
define relationships among hypotheses rejected by
each of the four possible stopping boundaries

February, 2003 Session
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Error Spending Family
Correspondence with type | and Il error spending
For user specified size ay,, a, of upper and lower

tests and power B, B, of upper and lower tests,
error spent at the j-th analysis specified as:

I_IBLj = (I_IBL)Ebj
1_18[]]' = (I_IBU)Ecj
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Error Spending Family

Boundary shape functions

Boundary shape function can be defined separately
for each of the four boundaries

E.,=fn,)

£.(n)=la+n5m(-n )le
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Error Spending Family

Constraints on parameters
f(0)=0and f(1) =1

IfP<0
+R=0, A=1,G=1

IfR>0
+P=0,A=-1,G=-1

If P =0and R =0, no early stopping

February, 2003 Session
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Error Spending Family

Computer search for stopping boundaries

Error spending family defines Eqjp By Eqjy Egj

Appendix of Kittelson and Emerson (1999)
describes general algorithm for finding design when
hypotheses known

At design stage, must search for standardized
hypotheses that result in a valid design, and then
compute sample size to map standardized design to
specified alternative hypotheses.
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Error Spending Family
Computer search for stopping boundaries (cont.)

In order to more easily obtain more efficient designs,
when designing a study using error spending
functions, the specified type Il error spending
functions are only used as upper bounds on the true
type Il error spending function.

February, 2003 Session
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Comparison of
Parameterizations
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Comparison of Parameterizations

General comments
Families also defined for other boundary scales
+ Partial sum and Z statistic scale families
implemented in S+SeqTrial
+Bayesian and Fultility scale families under
construction

If stopping rules are carefully evaluated, it does not
matter too much which scale (and therefore family)
is used to derive the stopping rule.
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Comparison of Parameterizations

General comments (cont.)

The best design family to use will be the one which
allows a user to most quickly find a stopping rule
having desirable operating characteristics

The ease of use will therefore depend in part on
+ Interpretability of boundary scale
+ Interpretability of parameters

February, 2003
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Comparison of Parameterizations

General comments (cont.)
My view:

+Sample mean scale (unified family) has easier
scientific interpretation than the error spending
scale which has a purely statistical
interpretation that, in my experience, is poorly
understood by both users and researchers

+ The parameterization of the unified family
produces a more useful grouping of designs
on some level than does the parameterization
of the error spending family
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Comparison of Parameterizations

ASSERTION: Interpretability of boundary scales

The concept of an error spending scale is less
relevant to clinical researchers

+ Type | error reflects only statistical evidence
+ May conflict with scientific importance

- Underpowered studies: Failure to reject
the null in the face of large estimates of
treatment effect

- Overpowered studies: Rejection of the
null hypothesis when differences are
scientifically unimportant

February, 2003
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Comparison of Parameterizations

ASSERTION: Interpretability of boundary scales

The formulation of error spending scales is not well
understood by the researchers developing such
methods

+Lan & DeMets (1983), Kim & DeMets (1987),
Jennison & Turnbull (1989 and 2000) all
describe error spending functions which mimic
O’Brien-Fleming (1979) or Pocock (1977)
group sequential designs

+In fact, for different levels of type | (or type II)

error, the error spending functions are different
within those families of designs
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Comparison of Parameterizations

Error spent at each analysis for O’Brien and Fleming
(1979) designs depends on Type | or Type Il errors

O'Brien-Fleming Boundary Shape Function

il i of Exiod Spéit
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Comparison of Parameterizations

Error spent at each analysis for Pocock (1977)
designs depends on Type | or Type Il errors

Pocock Boundary Shape Function

February, 2003
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Comparison of Parameterizations

Is there a problem?

Parameterization of stopping rule families induces a
grouping of designs:

+ Unified family: Pocock (1977) designs,
O’Brien-Fleming (1979) designs, Triangular
designs (Whitehead & Stratton, 1983)

+ Error spending families: All designs that spend
the same proportion of type | or Il error at each
analysis

February, 2003 Session
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Comparison of Parameterizations
Is there a problem? (cont.)

Best parameterization might be defined according to
whether such groupings correspond to similar
operating characteristics

+ efficiency

+ Bayesian properties
« futility properties
+others

February, 2003 Session
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Comparison of Parameterizations

Efficiency

Consider ability of choice of boundary shape
parameter to predict efficiency of design

+ No uniformly most powerful design

+ Efficiency measured in terms of smallest
average sample size for specific hypothesis
- Measure alternative hypothesis according
to the power of the test to detect it

February, 2003 Session 2:
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Comparison of Parameterizations

Methods for comparison

Find optimal designs in terms of average sample
size (ASN) within family of Wang and Tsiatis (1987)
boundary shape functions for one-sided symmetric
designs (Emerson and Fleming, 1989)

+ Family found to be approximately optimal

Find optimal designs for various choices of type |
error and statistical power

February, 2003 Session 2: 12:
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Comparison of Parameterizations

Methods for comparison (cont.)

shape function on
+Sample mean scale
+ Error spending scale
+ Futility scales

February, 2003
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For each optimal design, examine the boundary

Session 2: 129

Comparison of Parameterizations

Criteria for “good” parameterizations

If the boundary shape function on a given scale is
not independent of choice of type | and Il errors,
then that would argue that grouping of designs
according to parameterization of that scale will not
correspond to similar efficiency properties

As it is unlikely that boundary shape parameters for
efficient designs will be constant across all choices
of type | and type Il errors, we can also compare the
degree that boundary shape parameters change for
each boundary scale
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Comparison of Parameterizations
Proportion of error spent at each analysis for
approximately efficient designs

Power varies across panels

Power 0.8 Power 0.9

Type | error varies across lines within each panel

Samaie Sise Sam ke Siee

Pawer 0.95 Pawer 0.975

nemeN Enor it

oM o2 o0on
neementEnorgpeat

oM 20 on

on 0z 0a 0 0 10 on 0z 0a 08 08

S

February, 2003 0 02 o+ 08 0@ 180 on bz o+ 08
©2000, 2001 Scott S. Emerson, M.D., Pt [ Sample Size

Comparison of Parameterizations

Conditional power (using MLE) at the boundary for
each analysis for approximately efficient designs

Power varies across panels
Type | error varies across lines within each panel

Power 0.8 Power 0.9
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Comparison of Parameterizations

Comparison of optimal unified family P parameter as
a function of type | errors

Compared to best fitting P or R parameter in error
spending family

© 2000, 2001 Scott S. Emerson, M.D., Ph.D.
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Comparison of Parameterizations

Search for stopping rule is generally iterative
+ An initial design is specified
+ Operating characteristics are examined
+ Modifications are made to the design

Availability of tools for evaluation of operating
characteristics lessens impact of family used to
define a stopping rule

+ Appropriate designs can be found from almost
any starting point
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Comparison of Parameterizations

To the extent that parameterization of sample mean
family predicts efficiency behavior, use of that
family may allow more intuitive search for suitable
stopping rules

However, efficiency is not always of paramount
concern

February, 2003 Session 2:
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Comparison of Parameterizations

Interpretation of unified family boundaries as
estimate of treatment effect is meaningful to clinical
researcher

Error spending functions are less interpretable, and
thus seem less useful when designing a clinical trial
or evaluating its operating characteristics

However, error spending scale can be useful in
implementing a stopping rule

February, 2003 Sessi
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Comparison of Parameterizations

It is not clear that conditional probabilities are
particularly useful in the definition of a stopping rule
+ Design family does not have a particularly
intuitive parameterization
+ Unconditional power considerations would
seem more straightforward
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Evaluation of
Designs
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Evaluation of Designs
Process of choosing a trial design
Define candidate design
Evaluate operating characteristics
Modify design

lterate
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Evaluation of Designs
Operating characteristics for fixed sample studies

Level of Significance (often pre-specified)
Sample size requirements

Power Curve

Decision Boundary

Frequentist inference on the Boundary
Bayesian posterior probabilities
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Evaluation of Designs

Additional operating characteristics for group
sequential studies

Probability distribution for sample size
Stopping probabilities

Boundaries at each analysis
Frequentist inference at each analysis
Bayesian inference at each analysis
Futility measures at each analysis

Session 2: 141

Evaluation of Designs

Sample size requirements
Number of subjects needed is a random variable

Quantify summary measures of sample size
distribution

+ maximum (feasibility of accrual)
+mean (Average Sample N- ASN)
+median, quartiles

(Particularly consider tradeoffs between power and
sample size distribution)
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Evaluation of Designs
Stopping probabilities

Consider probability of stopping at each analysis for
arbitrary alternatives

Consider probability of each decision (for null or
alternative) at each analysis
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Evaluation of Designs

Power curve
Probability of rejecting null for arbitrary alternatives
+ Power under null: level of significance
+ Power for specified alternative

Alternative rejected by design
+ Alternative for which study has high power

S+SeqTrial defines
+ Power curves for upper and lower boundaries

+ Alternatives having specified power for each
boundary
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Evaluation of Designs

Decision boundary at each analysis
Value of test statistic leading to rejection of null
+Variety of boundary scales possible

Often has meaning for applied researchers
(especially on scale of estimated treatment effect)

+ Estimated treatment effects may be viewed as
unacceptable for ethical reasons based on
prior notions

+ Estimated treatment effect may be of little
interest due to lack of clinical importance or
futility of marketing
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Evaluation of Designs

Frequentist inference on the boundary at each
analysis
Consider P values, confidence intervals when
observation corresponds to decision boundary at
each analysis

Ensure desirable precision for negative studies

+ Confidence interval identifies hypotheses not
rejected by analysis

+ Have all scientifically meaningful hypotheses
been rejected?
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Evaluation of Designs
Bayesian posterior probabilities at each analysis

Examine the degree to which the frequentist
inference leads to sensible decisions under a range
of prior distributions for the treatment effect

+ Posterior probability of hypotheses

Bayesian estimates of treatment effect
+Median (mode) of posterior distribution

+ Credible interval (quantiles of posterior
distribution

February, 2003 Session 2:
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Evaluation of Designs

Futility measures

Consider the probability that a different decision
would result if trial continued

Can be based on particular hypotheses, current best
estimate, or predictive probabilities

(Perhaps best measure of futility is whether the
stopping rule has changed the power curve
substantially)
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S+SeqTrial Implementation
Evaluation of Designs

Forms of output from S+SeqTrial

+ Printed output in report window or command
line window

+Plots
+Named segDesign object
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S+SeqTrial Implementation

Evaluation of Designs (cont.)
Sample size requirements
+ Printed with boundaries
+ X axis with plots of boundaries

+ Plots of average sample size, quantiles of
sample size distribution

Stopping probabilities
+ Printed with operating characteristics
+ Plots with color coded decisions
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S+SeqTrial Implementation

Evaluation of Designs (cont.)
Power Curve

+Hypotheses, size, power printed with
boundaries

+ Tabled power with summaries
+ Plots of power curve
+ Plots versus reference power curve
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S+SeqTrial Implementation

Evaluation of Fixed Sample Designs (cont.)
Decision Boundary
+ Printed on specified boundary scale
+Plots

Frequentist inference on the boundary
+ Printed with summaries
+Plots
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S+SeqTrial Implementation

Evaluation of Fixed Sample Designs (cont.)
Bayesian inference

+ Posterior probabilities implemented as a
boundary scale

+ Median (mode) of posterior distribution
+Credible intervals

Futility measures
+Implemented as boundary scale
+ Conditional and predictive approaches
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