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Reporting Results
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Reporting Results

At the end of the study analyze the data to provide

Estimate of the treatment effect

Single best estimate

Range of reasonable estimates

Decision of efficacy, equivalence, harm, or futility

Binary decision

Quantification of strength of evidence
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Reporting Results

Methods of point estimation

Frequentist methods

Find estimates which minimize bias

Find estimates with minimal variance

Find estimates which minimize mean squared 
error

Bayesian methods

Use mean, median, or mode of posterior 
distribution of  θ based on some prespecified
prior
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Reporting Results

Methods of point estimation (cont.)

Method of moments

Use a function of sample moments to estimate 
a function of moments of the sampling 
distribution

For example

− if θ is the mean of the sampling 
distribution, use sample mean as an 
estimate of θ

− if θ is the variance of the sampling 
distribution, use sample variance as an 
estimate of θ
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Reporting Results

Methods of point estimation (cont.)

Maximum likelihood estimation

Find the value of θ such that the sampling 
density evaluated at the observed data is 
maximized

E.g., in one sample inference about a normal 
mean maximize density when θ equals the 
sample mean
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Reporting Results

Methods of point estimation (cont.)

Median unbiased estimation

Assume that the observed statistic is the 
median of its sampling distribution

E.g., if observed T=t, then find θ such that
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Reporting Results

Methods of point estimation (cont.)

Bias adjusted

Assume that the observed statistic is the mean 
of its sampling distribution

E.g., if observed T=t, then find θ such that

( ) tTE =ϑ|
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Reporting Results

Methods of point estimation (cont.)

Variance improvement for unbiased estimators

Use Rao-Blackwell improvement theorem to 
find expectation of unbiased estimate 
conditioned on sufficient statistic

E.g., for S unbiased and T sufficient

( )tTSE =|
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Reporting Results

Methods of interval estimation

Confidence interval

100(1-α)% confidence interval for θ is (θL , θU) 
where
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Reporting Results

Methods of interval estimation (cont.)

Bayesian methods

Use central 100(1-α)% of posterior distribution 
of  θ based on some prespecified prior
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Reporting Results

Criteria for decisions

Hypothesis tests

Reject hypothesis that θ= θ0 with a level α test 
if T > cα where

( ) αϑα =≥ 0|Pr cT
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Reporting Results

Criteria for decisions (cont.)

Bayesian Methods

Reject hypothesis that θ= θ0 based on 
posterior distribution, e.g.,

( ) βϑϑ ≥≥ X
r

|Pr 0
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Reporting Results

Quantification of Evidence for Decisions

Hypothesis testing

P value

Bayesian Methods

Posterior probability ( )Xr|Pr 0ϑϑ ≥

( )0|Pr ϑtT ≥
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Adjustment for
Stopping Rules
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Adjustment for Stopping Rules

Fixed sample methods for testing and estimation are 
well developed

Many methods of point estimation yield same 
estimate (including Bayesian with noninformative
prior)

Confidence intervals easily computed

Testing well developed
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Adjustment for Stopping Rules

Stopping rule greatly affects sampling distribution 
for estimates of treatment effect

Data which lead to normally distributed sampling 
distributions under fixed sample testing lead to 
skewed, multimodal densities with jump 
discontinuities under sequential testing

Treatment effect is no longer a shift parameter

Exact shape of sampling distribution therefore 
depends upon stopping rule and alternative
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Adjustment for Stopping Rules

Sampling Densities for Estimate of Treatment Effect
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Adjustment for Stopping Rules

Failure to adjust estimates and P values for stopping 
rule is tantamount to repeated significance testing

P values will tend to be wrong

Estimates will tend to be biased toward 
extreme

Confidence intervals will have the wrong 
coverage probabilities

(No effect on Bayesian analysis)
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Coverage probability of unadjusted CI
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Adjustment for Stopping Rules

Frequentist inferential techniques can still be used, 
providing we can compute the sampling density for 
the test statistic under arbitrary choices for θ

In these techniques, the stopping rule is just viewed 
as a sampling distribution

cf: binomial versus geometric sampling
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Adjustment for Stopping Rules

P values adjusted for stopping rule

Probability of observing more extreme results under 
the null hypothesis

Compute sampling distribution of test statistic under 
the null

Requires a definition of “extreme” across analysis 
times

Ordering of the outcome space
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Adjustment for Stopping Rules

Point estimates adjusted for stopping rule

Maximum likelihood estimate is unadjusted estimate

Generally biased

Tends to have large mean squared error

Find estimates that decrease the bias and mean 
squared error
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Adjustment for Stopping Rules

Confidence interval adjusted for stopping rule

Based on duality of testing and CI

Exact coverage probability under normal probability 
model

Requires definition of an ordering of the outcome 
space
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Methods of Point
Estimation
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Methods of Point Estimation

Point estimates adjusted for stopping rule

Maximum likelihood estimate is unadjusted estimate

Generally biased

Large mean squared error
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Methods of Point Estimation

Point estimates adjusted for stopping rule

Bias adjusted mean (Whitehead, 1986)

Assume observed outcome is mean of true 
distribution

Requires knowing number and timing of future 
analyses

Generally still biased

Often least mean squared error
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Methods of Point Estimation

Point estimates adjusted for stopping rule

Median unbiased estimate (Whitehead, 1984)

Assume observed outcome is median of true 
distribution

Requires an ordering of the outcome space

Some orderings require knowledge of number 
and timing of future analyses

Generally still biased for mean



Design, Monitoring, and Analysis of Clinical Trials

February, 2003
© 2000 Scott S. Emerson, M.D., Ph.D. Session 4:8

February, 2003
© 2000 Scott S. Emerson, M.D., Ph.D.

Session 4: 29

Methods of Point Estimation

Point estimates adjusted for stopping rule

UMVUE-like estimate

Uses Rao-Blackwell improvement theorem

Unbiased for normal probability model

Does not require knowledge of number and 
timing of future analyses
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Orderings of the
Outcome Space
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Orderings of the Outcome Space

Ordering of the outcome space

Orderings of outcomes within an analysis time 
intuitive

Based on the value of Tj at that analysis

Need to define ordering between outcomes at 
successive analyses

How does sample mean of 3.5 at second 
analysis compare to sample mean of 3 at first 
analysis (when estimate more variable)?
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Orderings of the Outcome Space

Analysis time ordering (Jennison and Turnbull, 
1983; Tsiatis, Rosner, and Mehta, 1984)

Results leading to earlier stopping are more extreme

Linearizes the outcome space

Does not require knowledge of future analysis 
times

Not defined for two-sided tests with early 
stopping for both null and alternative
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Orderings of the Outcome Space

Analysis time ordering
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Orderings of the Outcome Space

Sample mean ordering (Duffy and Santner, 1987; 
Emerson and Fleming, 1990)

Consider only magnitude of sample mean

Requires knowledge of future analysis times

Tends to result in narrower CI and less biased 
median unbiased estimates
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Orderings of the Outcome Space

Sample mean ordering contours
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Relative Advantages
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Relative Advantages

Properties of methods for inference

Point estimates differ in bias reduction, mean 
squared error

Confidence intervals differ in

average width of CI

inclusion of various point estimates

need for knowledge about future analyses

(ref: Emerson and Fleming, 1990)
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Relative Advantages

Choice of methods for inference

Fixed sample tests

All frequentist methods described here agree 
with each other

Group sequential tests

No method is uniformly better

Usually fairly good agreement between various 
methods

Failure to agree can be informative regarding 
time trends in data

February, 2003
© 2000 Scott S. Emerson, M.D., Ph.D.

Session 4: 39

Relative Advantages

Point estimates: General tendencies for bias from 
least to most

(best)

UMVUE-like (in normal model)

Bias adjusted mean

Median unbiased with sample mean ordering

Median unbiased with analysis time ordering

Maximum likelihood estimate

(worst)
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Relative Advantages

Point estimates: General tendencies for bias

O’Brien-Fleming                               Pocock
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Relative Advantages

Point estimates: General tendencies for mean 
squared error (MSE) from least to most

(best)

Bias adjusted mean

Median unbiased with sample mean ordering

UMVUE-like

Median unbiased with analysis time ordering

Maximum likelihood estimate

(worst)
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Relative Advantages

Point estimates: General tendencies for (MSE)

O’Brien-Fleming                                Pocock
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Relative Advantages

Point estimates: Dependence on timing of future 
analyses

(None)

UMVUE-like

Median unbiased with analysis time ordering

Maximum likelihood estimate 

(Some)

Bias adjusted mean

Median unbiased with sample mean ordering
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Relative Advantages

Point estimates: Spectrum of group sequential 
designs for which defined

(All)

Bias adjusted mean

Median unbiased with sample mean ordering 
UMVUE-like

Maximum likelihood estimate

(Not two-sided tests with stopping under both 
hypotheses)

Median unbiased with analysis time ordering
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Relative Advantages

Interval estimates: General tendencies toward 
narrower confidence intervals

(Narrowest)

Sample mean ordering based

Analysis time ordering based

(Widest)
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Relative Advantages

Interval estimates: Average length of confidence 
intervals

O’Brien-Fleming                           Pocock
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Relative Advantages

Interval estimates: Dependence on timing of future 
analyses

(None)

Analysis time ordering based

(Some)

Sample mean ordering based
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Relative Advantages

Interval estimates: Coverage probability for CI using 
estimated schedule of analyses

O’Brien-Fleming                           Pocock
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Relative Advantages

Interval estimates: Spectrum of group sequential 
designs for which defined

(All)

Sample mean ordering based 

(Not two-sided tests with stopping under both 
hypotheses)

Analysis time ordering based
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Relative Advantages

Interval estimates: Possible exclusion of point 
estimates

(Tends to occur with less than 0.5% probability)

Analysis time ordering might not include

Bias adjusted mean

Sample mean ordering based MUE

Maximum likelihood estimate

Sample mean ordering might not include

UMVUE-like

Analysis time ordering based MUE
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Relative Advantages

P values

Tend to agree for the sample mean and analysis 
time orderings for making typical decisions 
regarding statistical significance
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Relative Advantages

P values: Spectrum of group sequential designs for 
which defined

(All)

Sample mean ordering based 

(Not two-sided tests with stopping under both 
hypotheses)

Analysis time ordering based



Design, Monitoring, and Analysis of Clinical Trials

February, 2003
© 2000 Scott S. Emerson, M.D., Ph.D. Session 4:14

February, 2003
© 2000 Scott S. Emerson, M.D., Ph.D.

Session 4: 53

Sensitivity to Poorly
Specified Stopping Rules
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Poorly Specified Stopping Rule Approach

Based on statistical inference

Consider class of stopping rules parameterized by

level of significance

boundary shape functions

number and timing of analyses

Adjust estimates, P values for stopping rules

Evaluate sensitivity of conclusions to choice of 
stopping rules within that class
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Poorly Specified Stopping Rule Approach

Determining class of stopping rules to consider

Consider interim results of study at potential 
analysis times that did not result in stopping

True stopping rule must have been more 
extreme

Consider interim results of study at analysis times 
that did result in stopping

True stopping rule must have been less 
extreme
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Case Study 1
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Case Study 1: Idarubicin in AML

Idarubicin in Acute Myelogenous Leukemia

Patients randomized to receive Idarubicin (Ida) or 
Daunorubicin (Dnr) in equal numbers

Primary response: Induction of complete remission

Secondary response: Survival
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Case Study 1: Idarubicin in AML

Initial design

Fixed sample study

Two-sided level 0.05 hypothesis test

80% power to detect absolute difference in 
response rates of 0.20

90 patients per treatment arm
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Case Study 1: Idarubicin in AML

Chronology

Several informal analyses of the data

Formal analysis of the data when N=45 per arm

CR rate - Ida: 35/45 (78%); Dnr: 25/45 (56%)

Retrospective adoption of O’Brien-Fleming 
design

Trial continued 

Formal analysis of the data when N=65 per arm

CR rate - Ida: 51/65 (78%); Dnr: 38/65 (58%)

Trial stopped 
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Case Study 1: Idarubicin in AML

FDA Questions

Was the O’Brien-Fleming design truly the one used?

Number and timing of analyses

Level of test

Boundary shape function

(Can we trust retrospective imposition of the 
stopping rule?) (Case Study 2)

(Interpretation of secondary endpoint of survival?)
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Case Study 1: Idarubicin in AML

Selection of Class of Stopping Rules for Sensitivity 
Analysis

Study did not stop with treatment difference of 0.22 
when N= 45 / arm

Study did stop with treatment difference of 0.20 
when N= 65 / arm

Consider stopping boundaries that are between 
those two points
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Case Study 1: Idarubicin in AML

Observed results
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Case Study 1: Idarubicin in AML

Stopping rules

Impossible Possible Impossible

February, 2003
© 2000 Scott S. Emerson, M.D., Ph.D.

Session 4: 64

Case Study 1: Idarubicin in AML

Parameterization

Number and timing of analyses

Boundary shape function

Level of significance

Worst case: just barely continued at N= 45

Best case: just barely stopped at N= 65
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Case Study 1: Idarubicin in AML

Sensitivity analysis

(45, 65, 90) Best Case Worst Case

Level .958 .868

P value .008 .015

Estimate .184 .181

95% CI (.034,.325) (.018,.348)
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Case Study 1: Idarubicin in AML

Sensitivity analysis

(25, 45, 65, 90) Best Case Worst Case

Level .958 .868

P value .008 .016

Estimate .184 .175

95% CI (.034,.325) (.017,.348)
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Case Study 1: Idarubicin in AML

Sensitivity analysis

(12, 25, 35, 45, 65, 90) Best Case Worst Case

Level .958 .866

P value .008 .017

Estimate .182 .171

95% CI (.034,.325) (.015,.347)

February, 2003
© 2000 Scott S. Emerson, M.D., Ph.D.

Session 4: 68

Case Study 2
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Case Study 2: Unexpected Toxicities

Background

Clinical trial of G-CSF to reduce a certain type of 
toxicity in cancer chemotherapy

Early in trial, high rates of another toxicity noted

Ed Korn at NCI consulted re early stopping

Much later, Ed Korn invites panel to address this 
problem as an unknown at the JSM
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Clinical Setting

Clinical trial of Granulocyte Colony Stimulating 
Factor (G-CSF)

Oral mucositis toxicity with 5-FU/LV chemotherapy

Observation of decreased incidence when G-CSF 
was given for other indications

Hence clinical trial planned to address role in 
reducing oral mucositis
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Clinical Setting

Clinical trial design

Fixed sample design

35 patients to receive G-CSF in first chemo cycle; 
nothing in second

Primary endpoint: difference in oral mucositis
between cycles
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Clinical Setting

Chronology

3 of 4 first patients experience life threatening 
leukopenia

A fifth patient currently under treatment

Question: When should we be concerned enough to 
stop the trial?
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Clinical Setting

Biological issues

G-CSF stimulates division of leukocytes; 
chemotherapy kills rapidly dividing cells

Leukopenia was a secondary endpoint

Current trial included patients with prior 
chemotherapy unlike previous trials

2 of 3 toxicities were with prior chemotx

2 of 2 patients with prior chemotx had toxicities
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Clinical Setting

Acceptable levels of toxicity

Only 12 / 176 (6.8%) of patients on 5-FU / LV in 
previous study experienced leukopenia

Clinical researcher: Maybe 50% toxicity rate would 
be acceptable
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Approach to Problem

Outline

Selection of a group sequential stopping rule

Analysis of results

Sensitivity of analysis to data driven selection of 
stopping rule

Bayesian analysis
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Selection of Stopping Rule

Selection of hypotheses

Power to detect toxicity rate greater than 50%

Null hypothesis: toxicity rate less than 20%

arbitrary choice

allows for prior chemotherapy
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Selection of Stopping Rule

Schedule of analyses

First analysis at N = 5

Additional analyses every 5 patients to maximum of 
35
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Selection of Stopping Rule

Structure of stopping rule

Early stopping only for excess toxicity

Boundaries defined for number of toxicities

Consider boundary shape functions of

O’Brien-Fleming

Pocock
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Binary Endpoint

Issues in small studies with binary endpoint

Size, power not attained exactly

Large sample approximations not appropriate

Implementation of boundary relationships 
approximate

rounding vs truncation of boundaries
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Sampling Density

Group Sequential Test Statistic

Observations Xi ~ B(1,π)

Analysis times             N1, N2, N3, ..., NJ

Continuation sets        (aj, bj)

Statistics            
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Sampling Density

After Armitage, McPherson, and Rowe (1969)
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Candidate Designs

Threshold for rejecting the null hypothesis

OBF Poc

Boundaries N1 =    5 6 4

N2 =  10 7 6

N3 =  15 8 8

N4 =  20 9 10

N5 =  25 10 11

N6 =  30 11 13

N7 =  35 12 14
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Candidate Designs

Operating characteristics

OBF Poc

Hypotheses Null .183 .209

Alternative .488 .542

ASN π= 0.2 34.7 34.6

π= 0.5 18.6 17.5
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Candidate Designs

Inference at the boundaries

Earliest possible stopping time

OBF Poc

SM / NM 7 / 10 4 / 5

P val (π= 0.2) (SM) .0009 .0067

Estimate (BAM) .675 .753

95% CI (SM) .347, .859 .283, .915
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Candidate Designs

Inference at the boundaries

Smallest rejection of Null

OBF Poc

SM / NM 12 / 35 14 / 35

P val (π= 0.2) (SM) .0447 .0196

Estimate (BAM) .321 .354

95% CI (SM) .183, .488 .209, .542
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Candidate Designs

Inference at the boundaries

Largest nonrejection of Null

OBF Poc

SM / NM 11 / 35 13 / 35

P val (π= 0.2) (SM) .0774 .0259

Estimate (BAM) .297 .333

95% CI (SM) .167, .462 .199, .518
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Stopping Rule

Pocock bounds

Conservatism of O’Brien-Fleming less desirable for 
new therapy

Fifth patient (no prior chemotherapy) had toxicity

Trial stopped (modified)
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Clinical Trial Results

Toxicities 4 / 5

P values

Sample Mean .00674

Analysis Time .00672

Point Estimates

Bias adjusted mean .753

UMVUE .800

MUE (Sample Mean) .784

MUE (Analysis Time) .767

MLE .800

Confidence Intervals

Sample mean .283, .915

Analysis time .284, .947
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Data Driven Selection of Stopping Rule

Model hybrid test 

Y is number of toxicities in first four patients

If Y < c, stay with fixed sample design

If Y > c, switch to group sequential test

First term computed under FST or (shifted) GST 
according to value of c 

[ ] [ ] [ ]πππ ;Pr;|Pr;Pr
4

0
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Sensitivity Analysis Results

Size, Power of Hybrid Tests

Threshold for Size Power

switch to GST (π= 0.2) (π= 0.5)

0 / 4 (GST) .0196 .9292

1 / 4 .0205 .9343

2 / 4 .0218 .9466

3 / 4 .0208 .9551

4 / 4 .0155 .9557

5 / 4 (FST) .0142 .9552
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Selected Bayesian Analysis Results

Uniform prior

Obs Tox E(π|S) Pr(π<0.2|S) Pr(π>0.5|S)

0 / 1 .333 .360 .250

1 / 1 .667 .040 .750

2 / 2 .500 .104 .500

2 / 2 .750 .008 .875

2 / 3 .600 .027 .688

3 / 3 .800 .002 .938

3 / 4 .667 .007 .812

3 / 5 .571 .017 .656

4 / 5 .714 .002 .891
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Selected Bayesian Analysis Results

Ad hoc prior (uniform mass on null: 0.5)

Obs Tox E(π|S) Pr(π<0.2|S) Pr(π>0.5|S)

0 / 1 .209 .628 .091

1 / 1 .471 .176 .460

2 / 2 .365 .289 .271

2 / 2 .590 .050 .671

2 / 3 .483 .104 .476

3 / 3 .664 .013 .808

3 / 4 .565 .032 .646

3 / 5 .490 .061 .485

4 / 5 .623 .009 .770



Design, Monitoring, and Analysis of Clinical Trials

February, 2003
© 2000 Scott S. Emerson, M.D., Ph.D. Session 4:24

February, 2003
© 2000 Scott S. Emerson, M.D., Ph.D.

Session 4: 93

Selected Bayesian Analysis Results

Ad hoc prior (uniform mass on null: 0.8)

Obs Tox E(π|S) Pr(π<0.2|S) Pr(π>0.5|S)

0 / 1 .135 .871 .031

1 / 1 .354 .462 .300

2 / 2 .256 .619 .145

2 / 2 .532 .174 .584

2 / 3 .404 .316 .363

3 / 3 .645 .049 .778

3 / 4 .530 .116 .590

3 / 5 .438 .208 .410

4 / 5 .611 .035 .750
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Final comments

Hybrid rule could have been more complicated to 
account for later decisions to switch

Sensitivity analysis suggests appropriate inference 
in this case (could use as a criterion for GST)

Adjusted inference possible, but more complex

Bayesian analysis of some interest, but it is 
questionable that a proper prior could ever be 
selected to detect unexpected toxicities
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Documentation of Design,
Monitoring, and
Analysis Plans
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Documentation of Design

Specification of stopping rule

Null, design alternative hypotheses

Type I error (alpha, beta parameters)

Power to detect design alternative

One-sided,  two-sided hypotheses (epsilon 
parameters)

Boundary scale for design family

Boundary shape function parameters (P, R, A) 
for each boundary

Constraints (minimum, maximum, exact)
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Documentation of Design

Documentation of stopping rule

Specification of stopping rule

Estimation of sample size requirements

Example of stopping boundaries under 
estimated schedule of analyses

− sample mean scale

− other scales?

Inference at the boundaries

Futility, Bayesian properties?
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Documentation of Implementation

Specification of implementation methods

Method for determining analysis times

Operating characteristics to be maintained

− power (up to some maximum N?) 

− maximal sample size

Method for measuring study time

Boundary scale for making decisions

Boundary scale for constraining boundaries at 
previously conducted analyses

(Conditions stopping rule might be modified)
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Documentation of Analysis

Specification of analysis methods

Method for determining P values

Method for point estimation

Method for confidence intervals

(Handling additional data that accrues after 
decision to stop)


