

Diagnostic Testing in Medicine

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Diagnostic Testing: 1

Predictive Values of Positive and Negative

We are actually interested in the diagnostic utility of the test: Predictive value of positive and negative

Predictive value of a positive test: Probability of disease when test is positive

$$\bullet \Pr(D | +)$$

Predictive value of a negative test: Probability of health when test is negative

$$\bullet \Pr(H | -)$$

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Diagnostic Testing: 3

Sensitivity and Specificity

We most often characterize the sensitivity and specificity of a diagnostic test

Sensitivity of test: Probability of positive in diseased

- Sample a cohort of subjects with the disease
- Estimate the proportion who have a positive test result: $\Pr(+ | D)$

Specificity of test: Probability of negative in healthy

- Sample a cohort of healthy subjects
- Estimate the proportion who have a negative test result: $\Pr(- | H)$

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Diagnostic Testing: 2

Bayes Rule for Binary Random Variables

We usually compute the predictive value of positive and negative tests using Bayes rule

$$\Pr(D | +) = \frac{\Pr(+ | D)\Pr(D)}{\Pr(+ | D)\Pr(D) + \Pr(+ | H)\Pr(H)}$$

$$\Pr(H | -) = \frac{\Pr(- | H)\Pr(H)}{\Pr(- | H)\Pr(H) + \Pr(- | D)\Pr(D)}$$

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Diagnostic Testing: 4

Role of Prevalence

Key property: Computation of predictive value of positive uses sensitivity, specificity, AND prevalence of disease

$$\Pr(D|+) = \frac{\Pr(+|D)\Pr(D)}{\Pr(+|D)\Pr(D) + \Pr(+|H)\Pr(H)}$$

$$PVP = \frac{Sens \times Prev}{Sens \times Prev + (1 - Spec) \times (1 - Prev)}$$

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Diagnostic Testing: 5

Role of Prevalence

Key property: Computation of predictive value of negative uses sensitivity, specificity, AND prevalence of disease

$$\Pr(H|-) = \frac{\Pr(-|H)\Pr(H)}{\Pr(-|H)\Pr(H) + \Pr(-|D)\Pr(D)}$$

$$PVN = \frac{Spec \times (1 - Prev)}{Spec \times (1 - Prev) + (1 - Sens) \times Prev}$$

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Diagnostic Testing: 6

Diagnostic Testing: Example

VDRL in diagnosing syphilis: High sensitivity and high specificity

Sensitivity of test: Probability of positive in diseased

- 90% of subjects with syphilis test positive
- (Actually depends on duration of infection)

Specificity of test: Probability of negative in healthy

- 98% of subjects without syphilis test negative
- (Actually depends on age and prevalence of certain other diseases)

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Diagnostic Testing: 7

Diagnostic Testing: Example

Predictive values when prevalence is high

Ex: STD clinic

- Prevalence of syphilis 30%
- PV+: 95% with positive VDRL have syphilis

VDRL

	Pos	Neg		Tot
Syphilis Yes	270	30		300
No	14	686		700
Total	284	716		1000

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Diagnostic Testing: 8

Diagnostic Testing: Example

Predictive values when prevalence is low

Ex: Screening for marriage exam

- Prevalence of syphilis 2%
- PV+: 48% with positive VDRL have syphilis

		VDRL		
		Pos	Neg	Tot
Syphilis	Yes	18	2	20
	No	20	960	980
Total		38	962	1000

Role of Prevalence

Bottom line:

Predictive value of a diagnostic test depends heavily on the prevalence of the disease

More generally:

- When using Bayes rule, to calculate probabilities, the computed values are specific to the assumed “prior” information