

Use of Screening Studies

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Screening Studies: 1

Medical Studies as Diagnostic Tests

Clinical testing of a new treatment or preventive agent is analogous to using laboratory or clinical tests to diagnose a disease

Goal is to find a procedure that identifies truly beneficial interventions

Not surprisingly, the issues that arise when screening for disease apply to clinical trials

- ♦ Predictive value of a positive test is best when prevalence is high
- ♦ Use screening trials to increase prevalence of beneficial treatments

Screening Studies: 2

Medical Studies as Diagnostic Tests

Statistical hypothesis testing as a diagnostic test

P value: Probability of observing positive (statistically significant) test in absence of true treatment effect

- ♦ Level of significance is 1 - specificity
- ♦ Common choice of $\alpha=.05$ means specificity is 95%

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Screening Studies: 3

Medical Studies as Diagnostic Tests

Statistical hypothesis testing as a diagnostic test (cont.)

Statistical power: Probability of observing positive test in presence of true treatment effect

- ♦ Power is sensitivity
- ♦ Common choice of 80% sensitivity (not usually recommended by me)

Screening Studies: 4

Medical Studies as Diagnostic Tests

Statistical hypothesis testing as a diagnostic test (cont.)

Prevalence is the percentage of effective treatments among all tested treatments

Positive predictive value is the probability that a statistically significant trial indicates a truly useful treatment

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Screening Studies: 5

Preliminary Studies in Screening

In cancer less than 5% of treatments studied in clinical trials are adopted

NCI drug development program 1970 - 1985

- 350,000 unique chemical structures studied
- 83 pass preclinical and phase I testing
- 24 pass phase II tests for biological activity

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Screening Studies: 6

Preliminary Studies in Screening

Two possible approaches to studying new treatments

Study every treatment in a large definitive experiment

Perform small screening trials, with confirmatory trials of promising treatments passing early tests

We can explore our ability to identify beneficial treatments with limited resources

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Screening Studies: 7

Preliminary Studies in Screening

Scenario 1: Only large trials

10% of drugs being investigated truly work

Level of significance .05

1000 subjects provide 97.5% power to detect clinically important treatment effect

1,000,000 subjects available for clinical trials

- Study 1,000 new treatments
- 100 effective treatments, 900 ineffective treatments

February, 2003
© 2000, 2001, 2003 Scott S. Emerson, M.D., Ph.D.

Screening Studies: 8

Preliminary Studies in Screening

Scenario 1: Only large trials (cont.)

Statistically significant results: 143 significant trials

- ♦ 97.5% of effective treatments: 98 studies significant
- ♦ 5% of ineffective treatments: 45 studies significant

Predictive value of a positive: 68%

- ♦ Only 68% of the 143 treatments identified truly work

Preliminary Studies in Screening

Scenario 2: Use of pilot studies

10% of drugs being investigated truly work

Level of significance .05

500 subjects provide 80% power to detect clinically important treatment effect

50 subjects provide 15% power to detect clinically important treatment effect

Preliminary Studies in Screening

Scenario 2: Use of pilot studies (cont.)

1,000,000 subjects available for clinical trials

- ♦ 625,000 subjects in pilot studies of 12,500 new treatments
- ♦ 374,500 subjects in confirmatory trials of 749 new treatments

Preliminary Studies in Screening

Scenario 2: Use of pilot studies (cont.)

Pilot Studies

- ♦ Investigate 12,500 new treatments in pilot studies (625,000 subjects)
- ♦ 1,250 effective treatments, 11,250 ineffective treatments

Preliminary Studies in Screening

Scenario 2: Use of pilot studies (cont.)

Statistically significant results: 749 significant pilot studies

- ♦ 15% of effective treatments: 187 studies significant
- ♦ 5% of ineffective treatments: 562 studies significant
- ♦ Predictive value of a positive: 25%
- ♦ 25% of treatments in significant pilot studies truly work

Preliminary Studies in Screening

Scenario 2: Use of pilot studies (cont.)}

Confirmatory Trials

- ♦ Investigate 749 new treatments (374,500 subjects)
- ♦ 187 effective treatments, 562 ineffective treatments

Preliminary Studies in Screening

Scenario 2: Use of pilot studies (cont.)}

Statistically significant results: 178 significant pilot studies

- ♦ 80% of effective treatments: 150 studies significant
- ♦ 5% of ineffective treatments: 28 studies significant
- ♦ Predictive value of a positive: 84%
- ♦ 84% of the 178 identified treatments truly work

Preliminary Studies in Screening

Comparison of scenarios

Scenario 1: Only large trials

- ♦ Use 1,000,000 subjects
- ♦ Screen 1,000 new treatments
- ♦ Adopt 98 effective treatments
- ♦ Adopt 45 ineffective treatments

Scenario 2: Use of pilot studies

- ♦ Use 999,500 subjects
- ♦ Screen 12,500 new treatments
- ♦ Adopt 150 effective treatments
- ♦ Adopt 28 ineffective treatments

Preliminary Studies in Screening

Bottom line

Pilot studies increase the predictive value of a positive study while using the same number of subjects. A greater number of effective treatments are identified due in part to the greater number of treatments screened.

- ♦ Phases of clinical trials

(Different choices for statistical power in screening and confirmatory trials can be used to optimize strategy for a particular setting)