

References

Books on Clinical Trials Methodology

Friedman, L.M., Furburg C.D., and DeMets D.L. (1998). *Fundamentals of Clinical Trials*. Springer, New York.

Pocock, S.J. (1983). *Clinical Trials. A Practical Approach*. Wiley, New York.

General Treatment of Group Sequential Methods

Emerson, S.S. (2000). S+SeqTrial Technical Overview. Technical Report, Insightful Corporation, Seattle, Washington.

Jennison, C. and Turnbull, B. (1999). *Group Sequential Methods with Applications to Clinical Trials*, Boca Raton: Chapman and Hall/CRC.

Whitehead, J. (1997). *The Design and Analysis of Sequential Clinical Trials (Revised 2nd ed.)*, Chichester: Wiley.

Software Packages for Group Sequential Methods

EaSt (2000). The Cytel Software Corp. Cambridge, Mass.

PEST (Planning and Evaluation of Sequential Trials) (2000). The MPS Research Unit, The University of Reading, Reading, U.K.

S+SeqTrial (2000). Insightful Corporation, Seattle, Washington.

Frequentist Design of Group Sequential Trials

Armitage, P. McPherson, C.K., and Rowe, B.C. (1969). Repeated significance tests on accumulating data. *Journal of the Royal Statistical Society, Series A* **132**, 235-244.

Emerson, S.S. and Fleming, T.R. (1989). Symmetric group sequential test designs. *Biometrics* **45**, 905-923.

Emerson SS, Kittelson JM, Gillen DL. (2005) Frequentist evaluation of group sequential clinical trial designs. *University of Washington Department of Biostatistics Technical Report*.

Gillen DL, Emerson SS. (2005) Non-transitivity in a class of weighted logrank statistics under non-proportional hazards. *University of Washington Department of Biostatistics Technical Report*.

Kim, K. and DeMets, D.L. (1987). Design and analysis of group sequential tests based on the type I error spending rate function. *Biometrika* **74**, 149-154.

Kittelson, J.M. and Emerson, S.S. (1999). A unifying family of group sequential test designs. *Biometrics* **55**, 874-882.

O'Brien, P.C. and Fleming, T.R. (1979). A multiple testing procedure for clinical trials. *Biometrics* **35**, 549-556.

Pampallona, S.A. and Tsiatis, A.A. (1994). Group sequential designs for one-sided and two-sided hypothesis testing with provision for early stopping in favor of the null hypothesis. *Journal of Statistical Planning and Inference* **42**, 19-35.

Pocock, S.J. (1977). Group sequential methods in the design and analysis of clinical trials.

Biometrika **64**, 191-199.

Wang, S.K. and Tsiatis, A.A. (1987). Approximately optimal one-parameter boundaries for group sequential trials. *Biometrics* **43**, 193-199.

Whitehead, J. and Stratton, I. (1983). Group sequential clinical trials with triangular continuation regions. *Biometrics* **39**, 227-236.

Xiong, X. (1995). A class of sequential probability ratio tests. *Journal of the American Statistical Association* **90**, 1463-1473.

Frequentist Monitoring of Group Sequential Trials

Betensky, R.A. (1997). Conditional power calculations for early acceptance of H_0 embedded in sequential tests. *Statistics in Medicine* **16**, 465-477.

Burlington BE, Emerson SS. (2003) Flexible implementations of group sequential stopping rules using constrained boundaries. *Biometrics* **59**, 770-777.

Choi, S.C., and Pepple, P.A. (1989). Monitoring clinical trials based on predictive probability of significance. *Biometrics* **45**, 317-323.

DeMets, D.L. and Lan, K.K.G. (1984). An overview of sequential methods and their application in clinical trials. *Comm. in Stat., Part A – Theory and Methods* **13**, 2315-2338.

Emerson SS. (2005) Issues in the use of adaptive clinical trial designs. *University of Washington Department of Biostatistics Technical Report*.

Emerson SS, Kittelson JM, Gillen DL. (2005) On the use of stochastic curtailment in group sequential clinical trials. *University of Washington Department of Biostatistics Technical Report*.

Gillen DL, Emerson SS. (2005) Information growth in a family of weighted logrank statistics under repeated analyses. *Sequential Analysis* **24**, 1-22.

Hwang, I.K., Shih, W.J., and DeCani, J.S. (1990). Group sequential designs using a family of type I error probability spending functions. *Statistics in Medicine* **9**, 1439-1445.

Jennison, C. and Turnbull, B.W. (1990). Statistical approaches to interim monitoring of medical trials: A review and commentary. *Statistical Science* **5**, 299-317.

Kittelson JM, Sharples KJ, Emerson SS. (2005) Group sequential clinical trials for longitudinal data with analyses using summary statistics. *Statistics in Medicine* **24**.

Lan, K.K.G. and DeMets, D.L. (1983). Discrete sequential boundaries for clinical trials. *Biometrika* **70**, 659-663.

Pampallona, S.A. Tsiatis, A.A. and Kim, K.M. (1995). Spending functions for the type I and type II error probabilities of group sequential tests. Technical Report, Department of Biostatistics, Harvard School of Public Health.

Frequentist Inference following Group Sequential Trials

Chang, M.N., and O'Brien, P.C. (1986). Confidence intervals following group sequential tests. *Controlled Clinical Trials*, **7**, 18-26.

Duffy, D.E. and Santner, T.J. (1987). Confidence intervals for a binomial parameter based on multistage tests. *Biometrics* **43**, 81-93.

Emerson, S.S. (1993). Computation of the uniform minimum variance unbiased estimator of a normal mean following a group sequential trial. *Computers and Biomedical Research*,

26, 68-73.

Emerson, S.S. (1995). Stopping a clinical trial very early based on unplanned interim analyses: A group sequential approach. *Biometrics*, **51**, 1152-1162.

Emerson, S.S., and Banks, P.L.C. (1994). Interpretation of a leukemia trial stopped early. in *Case Studies in Biometry*, Lange, N., et al., editors, New York: Wiley.

Emerson, S.S. and Fleming, T.R. (1990). Parameter estimation following group sequential hypothesis testing. *Biometrika* **77**, 875-892.

Emerson, S.S. and Kittelson, J.M. (1997). A computationally simpler algorithm for the UMVUE of a normal mean following a group sequential test. *Biometrics* **53**, 365-369.

Jennison C., and Turnbull, B.W. (1983). Confidence intervals for a binomial parameter following a multistage test with application to MIL-STD 105D and medical trials. *Technometrics*, **25**, 49-58, 1983.

Jennison, C., and Turnbull, B.W. (1989). Interim analyses: The repeated confidence interval approach. *Journal of the Royal Statistical Society, Series B*, **51**, 305-361.

Gillen DL, Emerson SS. (2005) A note on P-values under group sequential testing and non-proportional hazards. *Biometrics* **61**, 546-551.

Tsiatis, A.A., Rosner, G.L., and Mehta, C.R. (1984). Exact confidence intervals following a group sequential test. *Biometrics*, **40**, 797-803.

Whitehead, J. (1986). On the bias of maximum likelihood estimation following a sequential clinical trial. *Biometrika* **73**, 573-581.

Bayesian Methods for Clinical Trials

Berry, D.A. (1987). Interim analysis in clinical trials: The role of the likelihood principle. *The American Statistician*, **41**, 117-122.

Berry, D.A. (1993). A case for bayesianism in clinical trials. *Statistics in Medicine* **12**, 1377-1393.

Carlin, B.P., Kadane, J.B., and Gelfand, A.E. (1998). Approaches for optimal sequential decision analysis in clinical trials. *Biometrics* **54**, 964-975.

Carlin, B.P., and Louis, T.A. (1996). *Bayes and Empirical Bayes Methods for Data Analysis*. Chapman and Hall, New York.

Chaloner, K., and Verdinelli, I. (1995). Bayesian experimental design: A review. *Statistical Science* **10**, 271-304.

Choi, S.C., and Pepple, P.A. (1989). Monitoring clinical trials based on predictive probability of significance. *Biometrics* **45**, 317-323.

Emerson SS, Kittelson JM, Gillen DL. (2005) Bayesian evaluation of group sequential clinical trial designs. *University of Washington Department of Biostatistics Technical Report*.

Fayers, P.M., Ashby, D., and Parmar, M.K.B. (1997). Tutorial in biostatistics bayesian data monitoring in clinical trials. *Statistics in Medicine* **16**, 1413-1430.

Heitjan, D.F. (1997). Bayesian interim analysis of Phase II cancer clinical trials. *Statistics in Medicine* **16**, 1791-1802.

Joseph, L., Du Berger, R., and Belisle P. (1997). Bayesian and mixed Bayesian/likelihood criteria for sample size determination. *Statistics in Medicine* **16**, 769-781.

Lewis, R.J., and Berry, D.A. (1994). Group sequential clinical trials: A classical evaluation

of Bayesian decision-theoretic designs. *JASA* **89**, 1528-1534.

Rosner, G.L., and Berry, D.A. (1995). A Bayesian group sequential design for a multiple arm randomized clinical trial. *Statistics in Medicine* **14**, 381-394.

Thall, P.F., Simon, R.M., and Estey, E.H. (1995). Bayesian sequential monitoring designs for single-arm clinical trials with multiple outcomes. *Statistics in Medicine* **14**, 357-379.

Thall, P.F., and Simon, R. (1994). Practical bayesian guidelines for Phase IIB clinical trials. *Biometrics* **50**, 337-349.

Spiegelhalter, D.J., Freedman, L.S., and Parmar, M.K.B. (1994). Bayesian approaches to randomized trials. *J. R. Statist. Soc. A* **157**, 357-416.

Spiegelhalter, D.J., and Freedman, L.S. (1986). A predictive approach to selecting the size of a clinical trial, based on subjective clinical opinion. *Statistics in Medicine* **5**, 1-13.

Stallard, N. (1998). Sample size determination for Phase II clinical trials based on bayesian decision theory. *Biometrics* **54**, 279-294.