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Course StructureCourse Structure

Topics: Topics: 
•• OverviewOverview
•• FrequentistFrequentist approachapproach

–– Inferential methodsInferential methods
–– Fixed Sample Clinical Trial DesignFixed Sample Clinical Trial Design
–– Group Sequential Sampling PlansGroup Sequential Sampling Plans
–– Evaluation of clinical trial designsEvaluation of clinical trial designs

•• Bayesian approachBayesian approach
–– Inferential methodsInferential methods
–– Probability modelsProbability models
–– Nonparametric Nonparametric BayesBayes
–– Evaluation of clinical trial designsEvaluation of clinical trial designs
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Fair Warning
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As You See It
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As You See It As I See It

(www.vischeck.com) 6

OverviewOverview

Clinical Trial SettingClinical Trial Setting
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Fundamental PhilosophyFundamental Philosophy

Statistics is about science.Statistics is about science.

Science is about proving things to people.Science is about proving things to people.
•• Other scientistsOther scientists
•• Community at largeCommunity at large
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Scientific StudiesScientific Studies

A well designed studyA well designed study
•• Discriminates between the most important, Discriminates between the most important, 

viable hypothesesviable hypotheses
•• Is equally informative for all possible Is equally informative for all possible 

outcomesoutcomes
–– Binary search using prior probability of being trueBinary search using prior probability of being true
–– Also consider simplicity of experiments, time, costAlso consider simplicity of experiments, time, cost

(The Scientist Game)
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Clinical TrialsClinical Trials

Experimentation in human volunteersExperimentation in human volunteers
•• Investigate a new treatment / preventive Investigate a new treatment / preventive 

agentagent
–– SafetySafety

•• Phase I; Phase IIPhase I; Phase II

–– EfficacyEfficacy
•• Phase II (preliminary); Phase IIIPhase II (preliminary); Phase III

–– EffectivenessEffectiveness
•• Phase III (therapy); Phase IV (prevention)Phase III (therapy); Phase IV (prevention)
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Collaboration of Multiple DisciplinesCollaboration of Multiple Disciplines
IssuesIssuesCollaboratorsCollaboratorsDisciplineDiscipline

Collection of data / Study burdenCollection of data / Study burden
Data integrityData integrity

Study coordinatorsStudy coordinators
Data managementData managementOperationalOperational

Estimates of treatment effectEstimates of treatment effect
Precision of estimatesPrecision of estimates

SafetySafety
EfficacyEfficacy

Cost effectivenessCost effectiveness
Cost of trial / ProfitabilityCost of trial / Profitability
Marketing appealMarketing appeal

Individual ethicsIndividual ethics
Group ethicsGroup ethics

Efficacy of treatmentEfficacy of treatment
Adverse experiencesAdverse experiences

Hypothesis generationHypothesis generation
MechanismsMechanisms
Clinical benefitClinical benefit

BiostatisticiansBiostatisticiansStatisticalStatistical

RegulatorsRegulatorsGovernmentalGovernmental

Health servicesHealth services
Sponsor managementSponsor management
Sponsor marketersSponsor marketers

EconomicEconomic

EthicistsEthicistsEthicalEthical

Experts in disease / treatmentExperts in disease / treatment
Experts in complicationsExperts in complicationsClinicalClinical

EpidemiologistsEpidemiologists
Basic ScientistsBasic Scientists
Clinical ScientistsClinical Scientists

ScientificScientific
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Scientific HypothesesScientific Hypotheses

Collaboration among investigators toCollaboration among investigators to
•• Define interventionDefine intervention
•• Define patient populationDefine patient population
•• Define general goalDefine general goal

–– Clinical measurement for outcomeClinical measurement for outcome
–– Relevant benefit to establish: Two or more ofRelevant benefit to establish: Two or more of

•• Superiority, Superiority, noninferioritynoninferiority, approximate equivalence, , approximate equivalence, 
nonsuperioritynonsuperiority, inferiority, inferiority
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Typical Scientific HypothesesTypical Scientific Hypotheses

The intervention when administered to the The intervention when administered to the 
target population will tend to result in target population will tend to result in 
outcome measurements that areoutcome measurements that are
higher than,higher than,

lower than, orlower than, or

about the same asabout the same as

an absolute standard, or

measurements in a 
comparison group
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Experimental DesignExperimental Design

Plan collection of a sample which allowsPlan collection of a sample which allows
•• Administration of intervention (ethically)Administration of intervention (ethically)
•• Measurement of outcomesMeasurement of outcomes
•• Statistical analysis of resultsStatistical analysis of results

–– Variability of subjects means that results need to Variability of subjects means that results need to 
be reported in probabilistic termsbe reported in probabilistic terms

•• Point estimate of summary measure of responsePoint estimate of summary measure of response
•• Interval estimate to quantify precisionInterval estimate to quantify precision
•• Quantification of error rates for decisionsQuantification of error rates for decisions
•• (Binary decision?)(Binary decision?)
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Refining Scientific HypothesesRefining Scientific Hypotheses

In order to be able to perform analysisIn order to be able to perform analysis
•• Modify intervention, endpoints to increase Modify intervention, endpoints to increase 

precision (without changing relevance)precision (without changing relevance)
•• Probability model for responseProbability model for response

–– Choose summary measure of response distributionChoose summary measure of response distribution

•• Precise statement of hypotheses to be Precise statement of hypotheses to be 
discriminateddiscriminated

–– Stated in terms of summary measureStated in terms of summary measure
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Comparison of Summary MeasuresComparison of Summary Measures

Typical approaches to compare response Typical approaches to compare response 
across two treatment armsacross two treatment arms

•• Difference / ratio of means (arithmetic, geometric, … )Difference / ratio of means (arithmetic, geometric, … )
•• Difference / ratio of medians (or other Difference / ratio of medians (or other quantilesquantiles))
•• Median difference of paired observationsMedian difference of paired observations
•• Difference / ratio of proportion exceeding some thresholdDifference / ratio of proportion exceeding some threshold
•• Ratio of odds of exceeding some thresholdRatio of odds of exceeding some threshold
•• Ratio of instantaneous risk of some eventRatio of instantaneous risk of some event

»» (averaged across time?)(averaged across time?)
•• Probability that a randomly chosen measurement from Probability that a randomly chosen measurement from 

one population might exceed that from the otherone population might exceed that from the other
•• ……
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Statistical ModelsStatistical Models

Issues when choosing statistical modelsIssues when choosing statistical models
•• Criteria for quantifying credibility of resultsCriteria for quantifying credibility of results

–– FrequentistFrequentist
–– BayesianBayesian

•• Computational methods and formulasComputational methods and formulas
•• Covariate adjustmentCovariate adjustment
•• ……
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Impact of Statistical ModelImpact of Statistical Model

Choice of statistical model impacts the Choice of statistical model impacts the 
scientific question actually addressed as scientific question actually addressed as 
well as the statistical precisionwell as the statistical precision
•• Robustness of inference depends on methods Robustness of inference depends on methods 

of computing the summary measures to be of computing the summary measures to be 
comparedcompared

•• Interpretation of positive and negative studies Interpretation of positive and negative studies 
depends on computation of sampling variancedepends on computation of sampling variance

18

OverviewOverview

Where I Am Going:Where I Am Going:
“A revolution no one will notice”“A revolution no one will notice”

19

Ultimate GoalUltimate Goal

Design and analysis of clinical trials to allow Design and analysis of clinical trials to allow 
quantification of the strength of evidence quantification of the strength of evidence 
for or against scientific hypothesesfor or against scientific hypotheses

–– AND to allow concise presentation of resultsAND to allow concise presentation of results

Need to convince the audience, who mayNeed to convince the audience, who may
–– Disagree on what are most important hypothesesDisagree on what are most important hypotheses

•• What precision is necessary for what endpoints?What precision is necessary for what endpoints?

–– Disagree on definition of statistical evidenceDisagree on definition of statistical evidence
•• FrequentistFrequentist vsvs Bayesian (with varying priors)Bayesian (with varying priors)

20

My Optimality CriterionMy Optimality Criterion

I believe statistical methods should always I believe statistical methods should always 
take the scientific setting into accounttake the scientific setting into account
•• Science ideally progresses through a series of Science ideally progresses through a series of 

experiments successively addressing more experiments successively addressing more 
refined questionsrefined questions

•• I am against unnecessarily assuming the I am against unnecessarily assuming the 
answer to more detailed questions than I am answer to more detailed questions than I am 
trying to address in the scientific studytrying to address in the scientific study
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There are two types of people in the world:There are two types of people in the world:

•• Those who dichotomize everything, andThose who dichotomize everything, and

•• Those who don’t.Those who don’t.

22

Classification of Statistical ModelsClassification of Statistical Models

BreimanBreiman (2000): The two approaches to (2000): The two approaches to 
data analysisdata analysis
•• Model based Model based vsvs algorithmic algorithmic 

–– (e.g., regression (e.g., regression vsvs trees, neural nets)trees, neural nets)

This talk:This talk:
•• FrequentistFrequentist vsvs BayesianBayesian
•• ((Semi)ParametricSemi)Parametric vsvs nonparametricnonparametric

23

OutlineOutline

FrequentistFrequentist MethodsMethods
•• FrequentistFrequentist inference in fixed sample designsinference in fixed sample designs
•• Probability modelsProbability models

–– ((Semi)parametricSemi)parametric vsvs nonparametricnonparametric

•• Sequential samplingSequential sampling

Bayesian MethodsBayesian Methods
•• Bayesian paradigmBayesian paradigm
•• “Coarsened” nonparametric “Coarsened” nonparametric BayesBayes
•• Concise presentation of results Concise presentation of results 

24

FrequentistFrequentist MethodsMethods

FrequentistFrequentist InferenceInference
inin

Fixed Sample DesignsFixed Sample Designs
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Illustrative ExampleIllustrative Example

Hypothetical clinical trialHypothetical clinical trial
•• Two groups: Treatment and PlaceboTwo groups: Treatment and Placebo
•• Primary outcome variable: continuousPrimary outcome variable: continuous
•• NotationNotation
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Measure of Treatment EffectMeasure of Treatment Effect

We choose some summary measure of the We choose some summary measure of the 
difference between the distributions of difference between the distributions of 
response across the treatment armsresponse across the treatment arms
•• Criteria (in order of importance)Criteria (in order of importance)

–– Scientifically (clinically) relevantScientifically (clinically) relevant
•• Also reflects current state of knowledgeAlso reflects current state of knowledge

–– Intervention is likely to affectIntervention is likely to affect
•• Could be based on ability to detect variety of changesCould be based on ability to detect variety of changes

–– Statistical precisionStatistical precision

27

Measure of Treatment EffectMeasure of Treatment Effect

A common choice: Difference in meansA common choice: Difference in means

Why?Why?
•• Occasionally most relevant (health care costs)Occasionally most relevant (health care costs)
•• Sensitive to a wide variety of changes in Sensitive to a wide variety of changes in 

distribution of responsedistribution of response
•• Statistically most efficient in the presence of Statistically most efficient in the presence of 

normally distributed datanormally distributed data

??? ??          :effectTreatment 
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Statistical Design of ExperimentStatistical Design of Experiment

Design experiment by looking to the future: Design experiment by looking to the future: 
Consider how the results of the study will Consider how the results of the study will 
be reportedbe reported

–– The single “best” estimate of treatment effectThe single “best” estimate of treatment effect
–– An interval estimate to quantify precisionAn interval estimate to quantify precision
–– A quantification of the strength of evidence for or A quantification of the strength of evidence for or 

against particular hypothesesagainst particular hypotheses
–– Our conclusion from the studyOur conclusion from the study

•• A binary decisionA binary decision
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OneOne--sided Statistical Hypothesessided Statistical Hypotheses

Define hypotheses to be discriminatedDefine hypotheses to be discriminated

Decisions for superiority or not sufficiently Decisions for superiority or not sufficiently 
superiorsuperior

(One(One--sided test can also be defined for onesided test can also be defined for one--
sided lesser alternative)sided lesser alternative)

?? ?? ???? :H:H                
:hypotheses sided-One

00 vs

30

TwoTwo--sided Statistical Hypothesessided Statistical Hypotheses

Define hypotheses to be discriminatedDefine hypotheses to be discriminated

Resembles two superposed oneResembles two superposed one--sided testssided tests
•• Decisions for superiority, inferiority, Decisions for superiority, inferiority, 

approximate equivalenceapproximate equivalence

???

???

??
??
????
????

:H:H                
:H:H                

:hypotheses sided-Two

00

00
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Classical Hypothesis TestingClassical Hypothesis Testing

Reject hypothesis if observed data is rare Reject hypothesis if observed data is rare 
when that hypothesis is truewhen that hypothesis is true

Consider probability of falsely rejecting each Consider probability of falsely rejecting each 
hypothesishypothesis
•• Usually fix type I error at some prescribed Usually fix type I error at some prescribed 

levellevel
•• Try for high power (low type II error) for some Try for high power (low type II error) for some 

“design alternative”“design alternative”
32

ImplementationImplementation

Define “rare data” for each hypothesisDefine “rare data” for each hypothesis
•• Choose test statisticChoose test statistic

–– Often based on an estimate of treatment effectOften based on an estimate of treatment effect

–– Reject low treatment effect when estimate is so Reject low treatment effect when estimate is so 
high as to only occur, say, with 5% probabilityhigh as to only occur, say, with 5% probability
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Hallmark of Hallmark of FrequentistFrequentist InferenceInference

FrequentistFrequentist inference makes probability inference makes probability 
statements about the distribution of the statements about the distribution of the 
data conditional on a presumed treatment data conditional on a presumed treatment 
effect, e.g.,effect, e.g.,
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? ???
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Sampling DistributionSampling Distribution

FrequentistFrequentist inference thus requires inference thus requires 
knowledge of the sampling distribution for knowledge of the sampling distribution for 
the estimate of treatment effectthe estimate of treatment effect
•• Sampling distribution under the nullSampling distribution under the null

–– Necessary and sufficient to have the correct size Necessary and sufficient to have the correct size 
testtest

•• Sampling distribution under alternativesSampling distribution under alternatives
–– Necessary to computeNecessary to compute

•• power of testspower of tests
•• confidence intervalsconfidence intervals
•• optimality of estimatorsoptimality of estimators

35

Derivation of Sampling DistributionDerivation of Sampling Distribution

To compute sampling distributionTo compute sampling distribution

need to know the probability model to obtainneed to know the probability model to obtain
•• Formula for Formula for 
•• Definition of hypothesesDefinition of hypotheses
•• Distribution of            under every hypothesisDistribution of            under every hypothesis

? ??? |ˆPr t?

?ˆ

? ?YX ,
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Typical Sampling DistributionTypical Sampling Distribution

In the probability models most often used for In the probability models most often used for 
frequentistfrequentist inference, the sampling inference, the sampling 
distribution is approximately normaldistribution is approximately normal
•• Fixed sample setting (no early stopping)Fixed sample setting (no early stopping)
•• Large samplesLarge samples

?
?
??

?
?

n
V

N ,~|ˆ ???
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Approximate Approximate FrequentistFrequentist InferenceInference

Standard Standard frequentistfrequentist inference is theninference is then
•• Consistent point estimateConsistent point estimate
•• 100(1100(1--aa)% confidence interval)% confidence interval

•• P value to testP value to test
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FrequentistFrequentist MethodsMethods

Sample Size DeterminationSample Size Determination

39

Decision Theoretic ApproachDecision Theoretic Approach

Design study with sufficient precision to be Design study with sufficient precision to be 
able to reject at least one hypothesis with able to reject at least one hypothesis with 
high confidencehigh confidence
•• Equivalent criteria for rejectionEquivalent criteria for rejection

–– type I error = type II errortype I error = type II error
–– interval estimate does not contain both the null and interval estimate does not contain both the null and 

alternative hypothesesalternative hypotheses

•• Asymmetric definitions of rejectionAsymmetric definitions of rejection
–– Arbitrary powerArbitrary power

40

Sample Size ComputationSample Size Computation

Number of “sampling units” to obtain desired Number of “sampling units” to obtain desired 
precisionprecision

? ?
? ?2

01

2
2/1

1

0

unit      sampling 1 within y Variabilit
 when Power 

    when  cesignifican of Level

??

???
???

??

?
?

?

?
?

? Vzz
n

V



A p p l i e d  R e g r e s s i o n  A n a l y s i s ,  J u n e ,  2 0 0 3 J u n e  2 3 ,  2 0 0 3

( c )  2 0 0 2 ,  2 0 0 3 ,  S c o t t  S .  E m e r s o n ,  M . D . ,  
P h . D . P a r t  1 : 1 1

41

When Sample Size ConstrainedWhen Sample Size Constrained

Often (usually?) logistical constraints impose Often (usually?) logistical constraints impose 
a maximal sample sizea maximal sample size
•• Compute power to detect specified alternativeCompute power to detect specified alternative

•• Compute alternative detected with high powerCompute alternative detected with high power
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Threshold for Statistical SignificanceThreshold for Statistical Significance

Having chosen a sample size, we can Having chosen a sample size, we can 
computecompute
•• Threshold for declaring statistical significanceThreshold for declaring statistical significance

n
V

zH 2/1000
ˆif  :Reject ????? ????
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Inference at ThresholdInference at Threshold

We can also anticipate the inference we will We can also anticipate the inference we will 
make if we observe an estimate exactly at make if we observe an estimate exactly at 
the thresholdthe threshold
•• P value equal to type I errorP value equal to type I error
•• Confidence intervalConfidence interval

n
Vz 2/1

ˆ
?? ??
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FrequentistFrequentist MethodsMethods

Evaluation ofEvaluation of
Fixed Sample ClinicalFixed Sample Clinical

Trial DesignsTrial Designs
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Evaluation of DesignsEvaluation of Designs

Process of choosing a trial designProcess of choosing a trial design
•• Define candidate designDefine candidate design

–– Usually constrain two operating characteristicsUsually constrain two operating characteristics
•• Type I error, power at design alternativeType I error, power at design alternative
•• Type I error, maximal sample sizeType I error, maximal sample size

•• Evaluate other operating characteristicsEvaluate other operating characteristics
–– Different criteria of interest to different investigatorsDifferent criteria of interest to different investigators

•• Modify designModify design
•• IterateIterate

46

Operating CharacteristicsOperating Characteristics

•• FrequentistFrequentist power curvepower curve
–– Type I error (null) and power (design alternative)Type I error (null) and power (design alternative)

•• Sample size requirementsSample size requirements
•• Threshold for statistical significanceThreshold for statistical significance
•• FrequentistFrequentist inference at thresholdinference at threshold

–– Point estimatePoint estimate
–– Confidence intervalConfidence interval
–– P valueP value

47

Collaboration of Multiple DisciplinesCollaboration of Multiple Disciplines
IssuesIssuesCollaboratorsCollaboratorsDisciplineDiscipline

Collection of data / Study burdenCollection of data / Study burden
Data integrityData integrity

Study coordinatorsStudy coordinators
Data managementData managementOperationalOperational

Estimates of treatment effectEstimates of treatment effect
Precision of estimatesPrecision of estimates

SafetySafety
EfficacyEfficacy

Cost effectivenessCost effectiveness
Cost of trial / ProfitabilityCost of trial / Profitability
Marketing appealMarketing appeal

Individual ethicsIndividual ethics
Group ethicsGroup ethics

Efficacy of treatmentEfficacy of treatment
Adverse experiencesAdverse experiences

Hypothesis generationHypothesis generation
MechanismsMechanisms
Clinical benefitClinical benefit

BiostatisticiansBiostatisticiansStatisticalStatistical

RegulatorsRegulatorsGovernmentalGovernmental

Health servicesHealth services
Sponsor managementSponsor management
Sponsor marketersSponsor marketers

EconomicEconomic

EthicistsEthicistsEthicalEthical

Experts in disease / treatmentExperts in disease / treatment
Experts in complicationsExperts in complicationsClinicalClinical

EpidemiologistsEpidemiologists
Basic ScientistsBasic Scientists
Clinical ScientistsClinical Scientists

ScientificScientific

48

Evaluating Sample SizeEvaluating Sample Size

ConsiderConsider
•• Feasibility of accrualFeasibility of accrual
•• Credibility of resultsCredibility of results

–– “3 over n rule”: We may have missed “3 over n rule”: We may have missed 
an important subgroup with different an important subgroup with different 
response patternsresponse patterns

–– When combined with results from When combined with results from 
earlier trialsearlier trials

(Sponsor)

(Scientists,
Regulatory)

(Sponsor,
Regulatory)
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Evaluating Power CurveEvaluating Power Curve

Probability of rejecting null for Probability of rejecting null for 
arbitrary alternativesarbitrary alternatives
•• Type I error (power under null)Type I error (power under null)
•• Power for specified alternativePower for specified alternative

•• Alternative rejected by design                          Alternative rejected by design                          
–– Alternative for which study has high Alternative for which study has high 

powerpower
•• Interpretation of negative studiesInterpretation of negative studies

(Scientists)

(Regulatory)

(Scientists)

50

Evaluating BoundariesEvaluating Boundaries

Threshold for declaring statistical Threshold for declaring statistical 
significancesignificance
•• On the scale of estimated treatment On the scale of estimated treatment 

effecteffect
–– Assess clinical importanceAssess clinical importance
–– Assess economic importanceAssess economic importance

(Clinicians,
Ethics)

(Marketing)

51

Evaluating InferenceEvaluating Inference

Inference on the boundary for Inference on the boundary for 
statistical significancestatistical significance
•• FrequentistFrequentist

–– Point estimatesPoint estimates
–– Confidence intervalsConfidence intervals
–– P valuesP values

(Scientists,
Statisticians, 
Regulatory)

52

FrequentistFrequentist MethodsMethods

Sequential Sampling:Sequential Sampling:
Stopping RulesStopping Rules
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Statistical Design: Sampling PlanStatistical Design: Sampling Plan

Ethical and efficiency concerns are Ethical and efficiency concerns are 
addressed through sampling which might addressed through sampling which might 
allow early stoppingallow early stopping
•• During the conduct of the study, data are During the conduct of the study, data are 

analyzed and reviewed at periodic intervalsanalyzed and reviewed at periodic intervals
•• Using interim estimates of treatment effectUsing interim estimates of treatment effect

–– Decide whether to continue the trialDecide whether to continue the trial
–– If continuing, decide on any modifications to If continuing, decide on any modifications to 

sampling schemesampling scheme

54

Criteria for Early StoppingCriteria for Early Stopping

•• Results convincing for specific hypothesesResults convincing for specific hypotheses
–– Superiority, approximate equivalence, inferioritySuperiority, approximate equivalence, inferiority

•• Results suggestive of inability to ultimately Results suggestive of inability to ultimately 
establish a hypothesis of interestestablish a hypothesis of interest

–– FutilityFutility

•• No advantage in continuingNo advantage in continuing
–– No need to collect additional data on safety, longer No need to collect additional data on safety, longer 

term followterm follow--up, other secondary endpointsup, other secondary endpoints

55

Basis for Early StoppingBasis for Early Stopping

•• Extreme estimates of treatment effectExtreme estimates of treatment effect
•• Curtailment: Curtailment: 

–– Boundary reached earlyBoundary reached early
–– Stochastic Curtailment: High probability that a Stochastic Curtailment: High probability that a 

particular decision will be made at final analysisparticular decision will be made at final analysis

•• Group sequential test: Group sequential test: 
–– Formal decision rule in classical Formal decision rule in classical frequentistfrequentist

framework controlling framework controlling experimentwiseexperimentwise errorerror

•• Bayesian analysis:Bayesian analysis:
–– Posterior probability of hypothesis is highPosterior probability of hypothesis is high

56

General Stopping Rule General Stopping Rule 

•• Analyses when sample sizes Analyses when sample sizes NN11,,…… , N, NJJ
–– Can be randomly determinedCan be randomly determined

•• At At jjthth analysis choose stopping boundariesanalysis choose stopping boundaries
–– aajj < < bbjj < < ccjj < < ddjj

•• Compute test statistic Compute test statistic T(XT(X1 1 ,,…… , , XXNNjj))
–– Stop if Stop if T  < T  < aajj (extremely low)(extremely low)
–– Stop if Stop if bb jj < T < < T < ccjj (approximate equivalence)(approximate equivalence)
–– Stop if Stop if T > T > ddjj (extremely high)(extremely high)
–– Otherwise continue (with possible adaptive Otherwise continue (with possible adaptive 

modification of analysis schedule, sample size, modification of analysis schedule, sample size, 
etc.)etc.)
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Categories of Sequential SamplingCategories of Sequential Sampling

PrespecifiedPrespecified stopping guidelinesstopping guidelines

Adaptive proceduresAdaptive procedures

58

PrespecifiedPrespecified Stopping PlansStopping Plans

Prior to first analysis of data, specifyPrior to first analysis of data, specify
•• Rule for determining maximal statistical Rule for determining maximal statistical 

informationinformation
•• E.g., fix power, maximal sample size, or calendar timeE.g., fix power, maximal sample size, or calendar time

•• Rule for determining schedule of analysesRule for determining schedule of analyses
•• E.g., according to sample size, statistical information, or E.g., according to sample size, statistical information, or 

calendar timecalendar time

•• Rule for determining conditions for early Rule for determining conditions for early 
stoppingstopping

•• E.g., boundary shape function for stopping boundaries on E.g., boundary shape function for stopping boundaries on 
the scale of some test statisticthe scale of some test statistic

59

Boundary ScalesBoundary Scales

A stopping rule for one test statistic is easily A stopping rule for one test statistic is easily 
transformed to a stopping rule for another transformed to a stopping rule for another 

–– “Group sequential stopping rules”“Group sequential stopping rules”
•• Sum of observationsSum of observations
•• Point estimate of treatment effectPoint estimate of treatment effect
•• Normalized (Z) statisticNormalized (Z) statistic
•• Fixed sample P valueFixed sample P value
•• Error spending functionError spending function

–– Conditional probabilityConditional probability
–– Predictive probabilityPredictive probability
–– Bayesian posterior probabilityBayesian posterior probability

60

Families of Stopping RulesFamilies of Stopping Rules

Parameterization of boundary shape Parameterization of boundary shape 
functions facilitates search for stopping functions facilitates search for stopping 
rulesrules
•• Can be defined for any boundary scaleCan be defined for any boundary scale
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Example: Unified FamilyExample: Unified Family

•• Down columns: Early Down columns: Early vsvs no early stoppingno early stopping
•• Across rows: OneAcross rows: One--sided sided vsvs twotwo--sided sided 

decisionsdecisions

62

Example: Unified FamilyExample: Unified Family

A wide variety of boundary shapes possibleA wide variety of boundary shapes possible
••All of the rules depicted have the same type I All of the rules depicted have the same type I 
error and power to detect the design alternativeerror and power to detect the design alternative

63

Adaptive Sampling PlansAdaptive Sampling Plans

At each analysis of the data, the sampling At each analysis of the data, the sampling 
plan can be modified to account for plan can be modified to account for 
changed perceptions of possible resultschanged perceptions of possible results
•• E.g., E.g., ProschanProschan & & HunsbergerHunsberger (1995)(1995)

–– Use conditional power considerations to modify Use conditional power considerations to modify 
ultimate sample sizeultimate sample size

•• E.g., SelfE.g., Self--designing Trial (Fisher, 1998)designing Trial (Fisher, 1998)
–– PrespecifyPrespecify weighting of groups “just in time”weighting of groups “just in time”

•• Weighting for each group only need be specified at Weighting for each group only need be specified at 
immediately preceding analysisimmediately preceding analysis

64

Adaptive Sampling: The PriceAdaptive Sampling: The Price

Adaptive sampling plans are less efficientAdaptive sampling plans are less efficient
••TsiatisTsiatis & Mehta (2002)& Mehta (2002)

––A classic A classic prespecifiedprespecified group sequential stopping group sequential stopping 
rule can be found that is more efficient than a rule can be found that is more efficient than a 
given adaptive designgiven adaptive design

••Shi & Emerson (2003)Shi & Emerson (2003)
––Fisher’s test statistic in the selfFisher’s test statistic in the self--designing trial designing trial 

provides markedly less precise inference than provides markedly less precise inference than 
that based on the MLEthat based on the MLE

•• To compute the sampling distribution of the latter, the To compute the sampling distribution of the latter, the 
sampling plan must be knownsampling plan must be known
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PrespecifiedPrespecified Sampling: The PriceSampling: The Price

Full knowledge of the sampling plan is Full knowledge of the sampling plan is 
needed to assess the full complement of needed to assess the full complement of 
frequentistfrequentist operating characteristicsoperating characteristics
•• In order to obtain inference with maximal In order to obtain inference with maximal 

precision and minimal bias, the sampling plan precision and minimal bias, the sampling plan 
must be well quantifiedmust be well quantified

•• (Note that adaptive designs using ancillary (Note that adaptive designs using ancillary 
statistics pose no special problems if we statistics pose no special problems if we 
condition on those ancillary statistics.)condition on those ancillary statistics.)

66

Major Issue: Major Issue: FrequentistFrequentist InferenceInference

FrequentistFrequentist operating characteristics are operating characteristics are 
based on the sampling distributionbased on the sampling distribution
•• Stopping rules do affect the sampling Stopping rules do affect the sampling 

distribution of the usual statistics distribution of the usual statistics 
–– MLEsMLEs are not normally distributedare not normally distributed
–– Z scores are not standard normal under the nullZ scores are not standard normal under the null

•• (1.96 is irrelevant)(1.96 is irrelevant)

–– The null distribution of fixed sample P values is not The null distribution of fixed sample P values is not 
uniformuniform

•• (They are not true P values)(They are not true P values)

67

Sampling Distribution of EstimatesSampling Distribution of Estimates

68

Sampling Distribution of EstimatesSampling Distribution of Estimates



A p p l i e d  R e g r e s s i o n  A n a l y s i s ,  J u n e ,  2 0 0 3 J u n e  2 3 ,  2 0 0 3

( c )  2 0 0 2 ,  2 0 0 3 ,  S c o t t  S .  E m e r s o n ,  M . D . ,  
P h . D . P a r t  1 : 1 8

69

Sampling Distributions of StatisticsSampling Distributions of Statistics

70

Operating CharacteristicsOperating Characteristics

For any stopping rule we can compute the For any stopping rule we can compute the 
correct sampling distribution and obtaincorrect sampling distribution and obtain

–– Power curvesPower curves
–– Sample size distributionSample size distribution
–– Bias adjusted estimatesBias adjusted estimates
–– Correct (adjusted) confidence intervalsCorrect (adjusted) confidence intervals
–– Correct (adjusted) P valuesCorrect (adjusted) P values

•• Candidate designs can then be compared Candidate designs can then be compared 
with respect to their operating characteristicswith respect to their operating characteristics

71

Sequential Sampling Issues Sequential Sampling Issues 

•• Design stageDesign stage
–– Satisfy desired operating characteristicsSatisfy desired operating characteristics

•• E.g., type I error, power, sample size requirementsE.g., type I error, power, sample size requirements

•• Monitoring stageMonitoring stage
–– Flexible implementation of the stopping rule to Flexible implementation of the stopping rule to 

account for assumptions made at design stageaccount for assumptions made at design stage
•• E.g., sample size adjustment to account for observed E.g., sample size adjustment to account for observed 

variancevariance

•• Analysis stageAnalysis stage
–– Providing inference based on true sampling Providing inference based on true sampling 

distribution of test statisticsdistribution of test statistics
72

Bottom LineBottom Line

“You better think (think)“You better think (think)
think about what you’rethink about what you’re
trying to do… ”trying to do… ”

-- Aretha FranklinAretha Franklin
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FrequentistFrequentist MethodsMethods

Evaluation ofEvaluation of
Group SequentialGroup Sequential

Clinical Trial DesignsClinical Trial Designs

74

Case Study: Case Study: 
Clinical Trial In GmClinical Trial In Gm-- SepsisSepsis
Randomized, placebo controlled Phase III Randomized, placebo controlled Phase III 

study of antibody to study of antibody to endotoxinendotoxin
–– Intervention: Single administrationIntervention: Single administration
–– Endpoint: Difference in 28 day mortality ratesEndpoint: Difference in 28 day mortality rates

•• Placebo arm: estimate 30% mortalityPlacebo arm: estimate 30% mortality
•• Treatment arm: hope for 23% mortalityTreatment arm: hope for 23% mortality

–– Analysis: Large sample test of binomial proportionsAnalysis: Large sample test of binomial proportions
•• FrequentistFrequentist based inferencebased inference
•• Type I error: oneType I error: one--sided 0.025sided 0.025
•• Power: 90% to detect Power: 90% to detect ?? < < --0.070.07
•• Point estimate with low bias, MSE; 95% CIPoint estimate with low bias, MSE; 95% CI

75

Evaluation of DesignsEvaluation of Designs

Process of choosing a trial designProcess of choosing a trial design
•• Define candidate designDefine candidate design

–– Usually constrain two operating characteristicsUsually constrain two operating characteristics
•• Type I error, power at design alternativeType I error, power at design alternative
•• Type I error, maximal sample sizeType I error, maximal sample size

•• Evaluate other operating characteristicsEvaluate other operating characteristics
–– Different criteria of interest to different investigatorsDifferent criteria of interest to different investigators

•• Modify designModify design
•• IterateIterate
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Operating CharacteristicsOperating Characteristics

Same general operating characteristics of Same general operating characteristics of 
interest no matter the type of stopping ruleinterest no matter the type of stopping rule

–– FrequentistFrequentist power curvepower curve
•• Type I error (null) and power (design alternative)Type I error (null) and power (design alternative)

–– Sample size requirementsSample size requirements
•• Maximum, average, median, other Maximum, average, median, other quantilesquantiles
•• Stopping probabilitiesStopping probabilities

–– Inference at each boundaryInference at each boundary
•• FrequentistFrequentist point estimate, confidence interval, P valuepoint estimate, confidence interval, P value

–– Futility measuresFutility measures
•• Conditional power, predictive powerConditional power, predictive power
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Evaluating Sample SizeEvaluating Sample Size

Sample size a random variableSample size a random variable
–– Summary measures of distribution as a Summary measures of distribution as a 

function of treatment effectfunction of treatment effect
•• maximum (feasibility of accrual) maximum (feasibility of accrual) 
•• mean (Average Sample Nmean (Average Sample N-- ASN) ASN) 
•• median, quartilesmedian, quartiles

–– Stopping probabilitiesStopping probabilities
•• Probability of stopping at each analysis as Probability of stopping at each analysis as 

a function of treatment effecta function of treatment effect
•• Probability of each decision at each Probability of each decision at each 

analysisanalysis

(Sponsor)

(Sponsor, DMC)

(Sponsor)
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Evaluating Power CurveEvaluating Power Curve

Probability of rejecting null for Probability of rejecting null for 
arbitrary alternativesarbitrary alternatives
•• Level of significance (power under Level of significance (power under 

null)null)
•• Power for specified alternativePower for specified alternative

•• Alternative rejected by design                          Alternative rejected by design                          
–– Alternative for which study has high Alternative for which study has high 

powerpower
•• Interpretation of negative studiesInterpretation of negative studies

(Scientists)

(Regulatory)

(Scientists)
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Case Study: Case Study: 
Boundaries and Power CurvesBoundaries and Power Curves

O’BrienO’Brien--Fleming, Fleming, PocockPocock boundary shape functions boundary shape functions 
when J= 4 analyses and maintain powerwhen J= 4 analyses and maintain power

80

Case Study: Case Study: 
Impact of Interim AnalysesImpact of Interim Analyses
Required increased maximal sample size in Required increased maximal sample size in 

order to maintain powerorder to maintain power
•• Maximal sample size with 4 analysesMaximal sample size with 4 analyses

–– O’BrienO’Brien--Fleming:       N= 1773 ( 4.3% increase)Fleming:       N= 1773 ( 4.3% increase)
–– PocockPocock :      N= 2340 (37.6% increase):      N= 2340 (37.6% increase)

•• Need to considerNeed to consider
–– Average sample sizeAverage sample size
–– Probability of continuing past 1700 subjectsProbability of continuing past 1700 subjects
–– Conditions under which continue past 1700 Conditions under which continue past 1700 

subjectssubjects
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Case Study: Case Study: 
ASN, 75ASN, 75thth %tile of Sample Size%tile of Sample Size

O’BrienO’Brien--Fleming, Fleming, PocockPocock boundary shape boundary shape 
functions;Jfunctions;J=4 analyses and maintain power=4 analyses and maintain power
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Case Study: Case Study: 
Cumulative Stopping Probabilities Cumulative Stopping Probabilities 

O’BrienO’Brien--Fleming, Fleming, PocockPocock boundary shape functions boundary shape functions 
when J=4 analyses and maintain powerwhen J=4 analyses and maintain power
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Case Study: Case Study: 
Impact of Interim AnalysesImpact of Interim Analyses
Increased maximal sample size actually Increased maximal sample size actually 

afforded better efficiency on averageafforded better efficiency on average
–– PocockPocock boundary shape function: lower ASN over boundary shape function: lower ASN over 

range of alternatives examinedrange of alternatives examined
•• This improved behavior despite the 36.7% increase in This improved behavior despite the 36.7% increase in 

maximal sample sizemaximal sample size

–– Worst case behaviorWorst case behavior
•• O’BrienO’Brien--Fleming: never more than N= 1773Fleming: never more than N= 1773
•• PocockPocock continues past 1755 only if MLE for treatment continues past 1755 only if MLE for treatment 

effect is between effect is between --0.0357 and 0.0357 and --0.04880.0488
»» Always less than 16.01% chance, which occurs Always less than 16.01% chance, which occurs 

when the difference in mortality is when the difference in mortality is --0.04220.0422
84

Case Study: Case Study: 
Sponsor’s PreferencesSponsor’s Preferences
Sponsor preferred not to increase maximal Sponsor preferred not to increase maximal 

sample size beyond N= 1700sample size beyond N= 1700
•• When investigating the boundaries, the When investigating the boundaries, the 

sponsor was surprised to find that a difference sponsor was surprised to find that a difference 
of of --0.042 would be statistically significant0.042 would be statistically significant

–– No one had informed the clinical and management No one had informed the clinical and management 
teams of the boundary for the fixed sample testteams of the boundary for the fixed sample test

–– Such an effect was only of borderline clinical Such an effect was only of borderline clinical 
importanceimportance
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Case Study: Case Study: 
Power Curves: Maintain NPower Curves: Maintain N

OBF, OBF, PocPoc boundary shape functions when J= 2, 3, boundary shape functions when J= 2, 3, 
or 4 analyses and maintain N = 1700or 4 analyses and maintain N = 1700
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Evaluating BoundariesEvaluating Boundaries

Stopping boundary at each analysisStopping boundary at each analysis
–– On the scale of estimated treatment On the scale of estimated treatment 

effecteffect
•• Inform DMC of precisionInform DMC of precision
•• Assess ethicsAssess ethics

»» May have prior belief of unacceptable May have prior belief of unacceptable 
levelslevels

•• Assess clinical, economic importanceAssess clinical, economic importance

–– On the Z, fixed sample P value, or error On the Z, fixed sample P value, or error 
spending scalesspending scales

(DMC)

(Clinicians,
Marketing)

(DMC, 
Statisticians)

(Often asked 
for, but of 

questionable 
relevance)
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Case Study: Case Study: 
Tabled boundaries on MLE ScaleTabled boundaries on MLE Scale

0.04180.0418--0.04180.041817001700Time 1Time 1
Fixed SampleFixed Sample

--0.04960.0496--0.04960.049617001700Time 4Time 4
--0.04190.0419--0.05720.057212751275Time 3Time 3
--0.02900.0290--0.07010.0701850850Time 2Time 2
0.00000.0000--0.09910.0991425425Time 1Time 1

PocockPocock

--0.04270.0427--0.04270.042717001700Time 4Time 4
--0.02850.0285--0.05700.057012751275Time 3Time 3
0.00000.0000--0.08550.0855850850Time 2Time 2
0.08550.0855--0.17100.1710425425Time 1Time 1

O’BrienO’Brien--FlemingFleming

FutilityFutility
BoundaryBoundary

EfficacyEfficacy
BoundaryBoundary

Sample Sample 
SizeSize
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Evaluating InferenceEvaluating Inference

Inference on the boundary at each Inference on the boundary at each 
analysisanalysis
•• FrequentistFrequentist

–– Adjusted point estimatesAdjusted point estimates
–– Adjusted confidence intervalsAdjusted confidence intervals
–– Adjusted P valuesAdjusted P values

(Scientists,
Statisticians, 
Regulatory)
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Case Study: Case Study: 
Inference on the BoundariesInference on the Boundaries

0.0250.025((--0.099,0.099, 0.000)0.000)--0.0500.050--0.0500.0500.0250.025((--0.086,0.086, 0.000)0.000)--0.0430.043--0.0430.04317001700

0.0290.029((--0.098,0.098, 0.002)0.002)--0.0440.044--0.0420.0420.0670.067((--0.079,0.079, 0.010)0.010)--0.0310.031--0.0290.02912751275

0.0780.078((--0.095,0.095, 0.014)0.014)--0.0350.035--0.0290.0290.4010.401((--0.061,0.061, 0.044)0.044)--0.0060.0060.0000.000850850

0.3710.371((--0.084,0.084, 0.053)0.053)--0.0100.0100.0000.0000.9770.977(0.001,(0.001, 0.139)0.139)0.0770.0770.0860.086425425

FutilityFutility

0.0250.025((--0.099,0.099, 0.000)0.000)--0.0500.050--0.0500.0500.0250.025((--0.086,0.086, 0.000)0.000)--0.0430.043--0.0430.04317001700

0.0230.023((--0.101,0.101, --0.001)0.001)--0.0550.055--0.0570.0570.0120.012((--0.096,0.096, --0.007)0.007)--0.0540.054--0.0570.05712751275

0.0180.018((--0.114,0.114, --0.004)0.004)--0.0650.065--0.0700.0700.0020.002((--0.130,0.130, --0.025)0.025)--0.0800.080--0.0860.086850850

0.0100.010((--0.152,0.152, --0.015)0.015)--0.0890.089--0.0990.0990.0000.000((--0.224,0.224, --0.087)0.087)--0.1630.163--0.1710.171425425

EfficacyEfficacy

P P valval95% CI95% CI

Bias Bias AdjAdj
EstimatEstimat

eeMLEMLEP P valval95% CI95% CI
Bias Bias AdjAdj
EstimateEstimateMLEMLENN

PocockPocockO'BrienO'Brien--FlemingFleming
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Evaluating FutilityEvaluating Futility

Probability that a different decision Probability that a different decision 
would result if trial continuedwould result if trial continued

–– Compare unconditional power to fixed Compare unconditional power to fixed 
sample test with same sample sizesample test with same sample size

–– Conditional powerConditional power
•• Assume specific hypothesesAssume specific hypotheses
•• Assume current best estimateAssume current best estimate

–– Predictive powerPredictive power
•• Assume Bayesian prior distributionAssume Bayesian prior distribution

(Scientists,
Sponsor)

(Often asked 
for, but of 

questionable 
relevance)
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Case Study: Case Study: 
Futility BoundaryFutility Boundary
Sponsor desired greater efficiency when Sponsor desired greater efficiency when 

treatment effect is lowtreatment effect is low
•• Explored asymmetric designs with a range of Explored asymmetric designs with a range of 

boundary shape functions from unified familyboundary shape functions from unified family
–– P= 0.5 (P= 0.5 (PocockPocock), 0.8, 0.9, 1.0 (O’Brien), 0.8, 0.9, 1.0 (O’Brien--Fleming)Fleming)

•• Compare unconditional power and ASN Compare unconditional power and ASN 
curvescurves

–– Rationale: Are we losing power by stopping early?Rationale: Are we losing power by stopping early?
•• If not, then we are not making bad futility decisions on If not, then we are not making bad futility decisions on 

averageaverage
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Case Study: Case Study: 
Boundaries, Power, ASN Curves Boundaries, Power, ASN Curves 

O’BrienO’Brien--Fleming efficacy, spectrum of futility Fleming efficacy, spectrum of futility 
boundaries; J= 4 analyses and N=1700boundaries; J= 4 analyses and N=1700

PPower                                        ower                                        
Boundaries                        (Relative to Symmetric Boundaries                        (Relative to Symmetric OBF)                      ASNOBF)                      ASN
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Case Study: Case Study: 
Sponsor’s Futility BoundarySponsor’s Futility Boundary
Sponsor opted for futility boundary based on Sponsor opted for futility boundary based on 

P= 0.8P= 0.8
•• Power Power –– ASN tradeoffASN tradeoff

–– Worst case loss of power .0071 Worst case loss of power .0071 
•• (from 0.738 to 0.731 when difference in mortality is (from 0.738 to 0.731 when difference in mortality is --

0.0566)0.0566)

–– 10.2% gain in average efficiency under null10.2% gain in average efficiency under null
•• (ASN from 1099 to 987 when difference in mortality is (ASN from 1099 to 987 when difference in mortality is 

0.00)0.00)
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Case Study: Case Study: 
Stochastic CurtailmentStochastic Curtailment
We are sometimes asked about stochastic We are sometimes asked about stochastic 

curtailmentcurtailment
•• Boundaries can be expressed on conditional Boundaries can be expressed on conditional 

power and predictive power scalespower and predictive power scales
–– Conditional power: Conditional power: 

•• Probability of later reversing the potential decision at Probability of later reversing the potential decision at 
interim analysis by conditioning on interim results and interim analysis by conditioning on interim results and 
presumed treatment effectpresumed treatment effect

–– Predictive power:Predictive power:
•• Like conditional power, but use a Bayesian prior for the Like conditional power, but use a Bayesian prior for the 

presumed treatment effectpresumed treatment effect
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Case Study: Stochastic CurtailmentCase Study: Stochastic Curtailment

Key issue: Computations are based on Key issue: Computations are based on 
assumptions about true treatment effectassumptions about true treatment effect

–– Conditional powerConditional power
•• “Design”: assume hypothesis being rejected “Design”: assume hypothesis being rejected 

»» (assumes observed data is relatively misleading)(assumes observed data is relatively misleading)
•• “Estimate”: assume that current data is representative “Estimate”: assume that current data is representative 

»» (assumes observed data is exactly accurate)(assumes observed data is exactly accurate)

–– Predictive powerPredictive power
•• “Prior assumptions”: Use Bayesian prior distribution“Prior assumptions”: Use Bayesian prior distribution

»» “Sponsor”: Centered at “Sponsor”: Centered at --0.07; plus/minus SD of 0.020.07; plus/minus SD of 0.02
»» ““NoninformativeNoninformative””
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Case Study: Case Study: 
Boundaries on Futility ScalesBoundaries on Futility Scales

OO’’BrienBrien--Fleming Efficacy, P=0.8 FutilityFleming Efficacy, P=0.8 FutilitySymmetric OSymmetric O’’BrienBrien--FlemingFleming

0.1770.1770.3120.3120.1420.1420.5920.592--0.0310.0310.1240.1240.2410.2410.0910.0910.5000.500--0.0280.02812751275

0.0630.0630.2470.2470.0150.0150.6480.648--0.0100.0100.0230.0230.1430.1430.0020.0020.5000.5000.0000.000850850

0.0080.0080.2220.2220.0000.0000.7190.7190.0470.0470.0000.0000.0770.0770.0000.0000.5000.5000.0850.085425425

Futility (rejects Futility (rejects --0.0866)0.0866)Futility (rejects Futility (rejects --0.0855)0.0855)

0.1260.1260.0770.0770.0930.0930.5000.500--0.0570.0570.1240.1240.0770.0770.0910.0910.5000.500--0.0570.05712751275

0.0230.0230.0150.0150.0020.0020.5000.500--0.0850.0850.0230.0230.0150.0150.0020.0020.5000.500--0.0850.085850850

0.0000.0000.0020.0020.0000.0000.5000.500--0.1700.1700.0000.0000.0020.0020.0000.0000.5000.500--0.1710.171425425

Efficacy (rejects 0.00)Efficacy (rejects 0.00)Efficacy (rejects 0.00)Efficacy (rejects 0.00)

NoninfNoninfSponsorSponsorEstimatEstimatDesignDesignMLEMLENoninfNoninfSponsorSponsorEstimatEstimatDesignDesignMLEMLENN

Predictive PowerPredictive PowerConditional PowerConditional PowerPredictive PowerPredictive PowerConditional PowerConditional Power
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Case Study: Case Study: 
Education of DMC, SponsorEducation of DMC, Sponsor
Very different probabilities based on Very different probabilities based on 

assumptions about true treatment effectassumptions about true treatment effect
–– Extremely conservative O’BrienExtremely conservative O’Brien--Fleming Fleming 

boundaries correspond to conditional power of boundaries correspond to conditional power of 
50% (!) under alternative rejected by the boundary50% (!) under alternative rejected by the boundary

–– Resolution of apparent paradox: if the alternative Resolution of apparent paradox: if the alternative 
were true, there is less than .0001 probability of were true, there is less than .0001 probability of 
stopping for futility at the first analysisstopping for futility at the first analysis
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Stochastic Curtailment CommentsStochastic Curtailment Comments

Neither conditional power nor predictive Neither conditional power nor predictive 
power have good foundational motivationpower have good foundational motivation
•• FrequentistsFrequentists should use should use NeymanNeyman--Pearson Pearson 

paradigm and consider optimal unconditional paradigm and consider optimal unconditional 
power across alternativespower across alternatives

•• Bayesians should use posterior distributions Bayesians should use posterior distributions 
for decisionsfor decisions

99

Stochastic Curtailment Comments Stochastic Curtailment Comments 

My experienceMy experience
•• I have consulted with many researchers on I have consulted with many researchers on 

successive clinical trialssuccessive clinical trials
–– Often I am asked about stochastic curtailment the Often I am asked about stochastic curtailment the 

first timefirst time
–– Never have I been asked about it on the second Never have I been asked about it on the second 

trialtrial

100

Evaluating Marketable ResultsEvaluating Marketable Results

Probability of obtaining estimates of Probability of obtaining estimates of 
treatment effect with clinical (and treatment effect with clinical (and 
therefore marketing) appealtherefore marketing) appeal
•• Modified power curveModified power curve

–– UnconditionalUnconditional
–– Conditional at each analysisConditional at each analysis

•• Predictive probabilities at each Predictive probabilities at each 
analysisanalysis

(Marketing)
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Case Study: Case Study: 
MarketabilityMarketability
Potential to have statistically significant Potential to have statistically significant 

treatment effect estimate of treatment effect estimate of --0.06 or better0.06 or better
•• O’BrienO’Brien--Fleming efficacy boundary at third Fleming efficacy boundary at third 

analysis: analysis: 
–– Terminate if bias adjusted estimate Terminate if bias adjusted estimate --0.055 or better0.055 or better
–– What is the chance of obtaining What is the chance of obtaining --0.06 or better at 0.06 or better at 

the fourth analysis if study continues?the fourth analysis if study continues?
•• If true effect is If true effect is --0.07, probability of 4.1% of BAM < 0.07, probability of 4.1% of BAM < --0.060.06
•• If true effect is If true effect is --0.06, probability of 3.6% of BAM < 0.06, probability of 3.6% of BAM < --0.060.06
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Case Study: Case Study: 
Modification for MarketabilityModification for Marketability
Modify third analysis efficacy boundary to Modify third analysis efficacy boundary to 

correspond to BAM of correspond to BAM of --0.06 or better0.06 or better
•• Probability of BAM < Probability of BAM < --0.06 increases0.06 increases

–– If true effect is If true effect is --0.07: from 66.6% to 68.6%0.07: from 66.6% to 68.6%
–– If true effect is If true effect is --0.06: from 50.4% to 54.0%0.06: from 50.4% to 54.0%
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Final CommentsFinal Comments

Adaptive designs versus Adaptive designs versus prespecifiedprespecified
stopping rulesstopping rules
•• Adaptive designs come at a price of efficiencyAdaptive designs come at a price of efficiency
•• With careful evaluation of designs, there is With careful evaluation of designs, there is 

little need for adaptive designslittle need for adaptive designs
–– Everything I showed today was known prior to Everything I showed today was known prior to 

collecting any data in the clinical trialcollecting any data in the clinical trial
–– PrespecifiedPrespecified stopping rules can be chosen which stopping rules can be chosen which 

find best tradeoffs among the various find best tradeoffs among the various 
collaborators’ optimality criteriacollaborators’ optimality criteria
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Limitations of ForegoingLimitations of Foregoing

We have not yet verified that the clinical trial We have not yet verified that the clinical trial 
design will be judged credible by a design will be judged credible by a 
sufficiently large segment of the scientific sufficiently large segment of the scientific 
communitycommunity
•• Bayesians do not regard Bayesians do not regard frequentistfrequentist inference inference 

as relevantas relevant
•• We thus need to consider how to evaluate the We thus need to consider how to evaluate the 

Bayesian operating characteristicsBayesian operating characteristics
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Bayesian MethodsBayesian Methods

Bayesian ParadigmBayesian Paradigm

106

Hallmark of Hallmark of FrequentistFrequentist InferenceInference

FrequentistFrequentist inference considers the inference considers the 
distribution of the data conditional on a distribution of the data conditional on a 
presumed (fixed) treatment effectpresumed (fixed) treatment effect
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Bayesian ParadigmBayesian Paradigm

In the Bayesian paradigm, the parameter In the Bayesian paradigm, the parameter 
measuring treatment effect is regarded as measuring treatment effect is regarded as 
a random variablea random variable
•• A prior distribution for     reflectsA prior distribution for     reflects

–– Knowledge gleaned from previous trials, orKnowledge gleaned from previous trials, or
–– FrequentistFrequentist probability of investigators’ behavior, orprobability of investigators’ behavior, or
–– Subjective probability of treatment effectSubjective probability of treatment effect

?
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Posterior DistributionPosterior Distribution

BayesBayes’ rule is used to update beliefs about ’ rule is used to update beliefs about 
parameter distribution conditional on the parameter distribution conditional on the 
observed dataobserved data

? ? ? ? ? ?
? ? ? ?

? ? ???

????
????

for on distributiprior  a is   
where

|,

|,
,|

?
?

dYXp

YXp
YXp



A p p l i e d  R e g r e s s i o n  A n a l y s i s ,  J u n e ,  2 0 0 3 J u n e  2 3 ,  2 0 0 3

( c )  2 0 0 2 ,  2 0 0 3 ,  S c o t t  S .  E m e r s o n ,  M . D . ,  
P h . D . P a r t  1 : 2 8

109

Bayesian InferenceBayesian Inference

Bayesian inference is then based on the Bayesian inference is then based on the 
posterior distribution posterior distribution 

–– Point estimates:Point estimates:
•• A summary measure of the posterior probability A summary measure of the posterior probability 

distribution (mean, median, mode)distribution (mean, median, mode)

–– Interval estimates: Interval estimates: 
•• Set of hypotheses having the highest posterior densitySet of hypotheses having the highest posterior density

–– Decisions (tests):Decisions (tests):
•• Reject a hypothesis if its posterior probability is lowReject a hypothesis if its posterior probability is low
•• Quantify the posterior probability of the hypothesisQuantify the posterior probability of the hypothesis
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Information Required for InferenceInformation Required for Inference

Information required for inferenceInformation required for inference
•• FrequentistFrequentist

–– Tests: need the sampling distribution under the nullTests: need the sampling distribution under the null
–– Estimates: need the sampling distribution under all Estimates: need the sampling distribution under all 

hypotheseshypotheses

•• BayesianBayesian
–– Tests and estimates: need the sampling Tests and estimates: need the sampling 

distribution under all hypotheses distribution under all hypotheses andand a prior a prior 
distributiondistribution
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FrequentistFrequentist vsvs BayesianBayesian

•• FrequentistFrequentist
–– A precise (objective) answer to not quite the right A precise (objective) answer to not quite the right 

questionquestion
–– Well developed nonparametric and moment based Well developed nonparametric and moment based 

analyses (e.g., GEE)analyses (e.g., GEE)
–– Conciseness of presentationConciseness of presentation

•• BayesianBayesian
–– A vague (subjective) answer to the right questionA vague (subjective) answer to the right question
–– Adherence to likelihood principle in parametric Adherence to likelihood principle in parametric 

settings (and coarsened approach)settings (and coarsened approach)
112

Example: 4 Full Houses in PokerExample: 4 Full Houses in Poker

Bayesian:Bayesian:
––Knows the probability that I might be a cheater Knows the probability that I might be a cheater 

based on information derived prior to observing based on information derived prior to observing 
me playme play

––Knows the probability that I would get 4 full Knows the probability that I would get 4 full 
houses for every level of cheating that I might houses for every level of cheating that I might 
engage inengage in

––Computes the posterior probability that I was not Computes the posterior probability that I was not 
cheating (probability after observing me play)cheating (probability after observing me play)

––If that probability is low, calls me a cheaterIf that probability is low, calls me a cheater
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Example: 4 Full Houses in PokerExample: 4 Full Houses in Poker

FrequentistFrequentist::
––Hypothetically assumes I am not a cheaterHypothetically assumes I am not a cheater
––Knows the probability that I would get 4 full Knows the probability that I would get 4 full 

houses if I were not a cheaterhouses if I were not a cheater
––If that probability is sufficiently low, calls me a If that probability is sufficiently low, calls me a 

cheatercheater
•• Even if the Even if the frequentistfrequentist dealt the cards!dealt the cards!
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FrequentistFrequentist AND BayesianAND Bayesian

I take the view that both approaches need to I take the view that both approaches need to 
be be accomodatedaccomodated in every analysisin every analysis

••Goal of the experiment is to convince the Goal of the experiment is to convince the 
scientific community, which likely includes scientific community, which likely includes 
believers in both standards for evidencebelievers in both standards for evidence

••Bayesian priors should be chosen to reflect Bayesian priors should be chosen to reflect 
the population of priors in the scientific the population of priors in the scientific 
communitycommunity
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Unified ApproachUnified Approach

Joint distribution for data and parameterJoint distribution for data and parameter

FrequentistFrequentist considersconsiders

Bayesian considersBayesian considers

? ?? ??,, YXp

? ?? ??|, YXp

? ?? ?YXp ,|?
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Issues to be AddressedIssues to be Addressed

Choice of probability model for dataChoice of probability model for data
•• For unified approach to make sense, the For unified approach to make sense, the 

frequentistfrequentist and Bayesian should use the and Bayesian should use the 
same conditional distribution of the datasame conditional distribution of the data

–– “Law of the Unconscious “Law of the Unconscious FrequentistFrequentist”:”:
•• Gravitate toward models with good nonparametric Gravitate toward models with good nonparametric 

behaviorbehavior

Choice of prior distributionsChoice of prior distributions
•• Everyone brings their ownEveryone brings their own
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Bayesian MethodsBayesian Methods

Probability ModelsProbability Models

118

Probability ModelsProbability Models

Parametric, Parametric, semiparametricsemiparametric, and , and 
nonparametric models for two samplesnonparametric models for two samples
•• My definition of My definition of semiparametricsemiparametric models is a models is a 

little stronger than some statisticianslittle stronger than some statisticians
–– The distinction is to isolate models with The distinction is to isolate models with 

assumptions that I think too strongassumptions that I think too strong

•• Notation for two sample probability modelNotation for two sample probability model
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Parametric ModelsParametric Models

F, G are known up to some finite F, G are known up to some finite 
dimensional parameter vectors dimensional parameter vectors 
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Parametric Models: ExamplesParametric Models: Examples
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SemiparametricSemiparametric ModelsModels

Forms of F, G are unknown, but related to Forms of F, G are unknown, but related to 
each other by some finite dimensional each other by some finite dimensional 
parameter vector parameter vector 
•• G can be determined from F and a finite G can be determined from F and a finite 

dimensional parameterdimensional parameter
•• (Most often: Under the null hypothesis, F = G)(Most often: Under the null hypothesis, F = G)
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SemiparametricSemiparametric Models: NotationModels: Notation
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SemiparametricSemiparametric Models: ExamplesModels: Examples
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Nonparametric ModelsNonparametric Models

Forms of F, G are completely arbitrary and Forms of F, G are completely arbitrary and 
unknownunknown
•• An infinite dimensional parameter is needed An infinite dimensional parameter is needed 

to derive the form of G from Fto derive the form of G from F
•• (Sometimes we consider “nonparametric (Sometimes we consider “nonparametric 

families with restrictions”, e.g., stochastic families with restrictions”, e.g., stochastic 
ordering)ordering)
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“Because the light is so 
much better 

here under the streetlamp”
- a drunk looking for the keys 

he lost half a block away

A Logical DisconnectA Logical Disconnect

126

HistoryHistory

In the development and (especially) In the development and (especially) 
teaching of statistical models, parametric teaching of statistical models, parametric 
models have received undue emphasismodels have received undue emphasis
•• Examples:Examples:

–– t test is typically presented in the context of the t test is typically presented in the context of the 
normal probability modelnormal probability model

–– theory of linear models stresses small sample theory of linear models stresses small sample 
propertiesproperties

–– random effects specified parametricallyrandom effects specified parametrically
–– Bayesian (and especially hierarchical Bayesian (and especially hierarchical BayesBayes) ) 

models are replete with parametric distributionsmodels are replete with parametric distributions
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The ProblemThe Problem

Incorrect parametric assumptions can lead Incorrect parametric assumptions can lead 
to incorrect statistical inferenceto incorrect statistical inference
•• Precision of estimators can be overPrecision of estimators can be over-- or or 

understatedunderstated
–– Hypothesis tests do not attain the nominal sizeHypothesis tests do not attain the nominal size

•• Hypothesis tests can be inconsistentHypothesis tests can be inconsistent
–– Even an infinite sample size may not detect the Even an infinite sample size may not detect the 

alternativealternative

•• Interpretation of estimators can be wrongInterpretation of estimators can be wrong
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Inflammatory AssertionInflammatory Assertion

((Semi)parametricSemi)parametric models are not typically in models are not typically in 
keeping with the state of knowledge as an keeping with the state of knowledge as an 
experiment is being conductedexperiment is being conducted
•• The assumptions are more detailed than the The assumptions are more detailed than the 

hypothesis being tested, e.g.,hypothesis being tested, e.g.,
–– Question: How does the intervention affect the first Question: How does the intervention affect the first 

moment of the probability distribution?moment of the probability distribution?
–– Assumption: We know how the intervention affects Assumption: We know how the intervention affects 

the 2nd, 3rd, … , 8  central moments of the the 2nd, 3rd, … , 8  central moments of the 
probability distribution.probability distribution.
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Foundational Issues: NullFoundational Issues: Null

Which null hypothesis should we test?Which null hypothesis should we test?
•• The intervention has no effect whatsoeverThe intervention has no effect whatsoever

•• The intervention has no effect on some The intervention has no effect on some 
summary measure of the distributionsummary measure of the distribution

ttGtF ?? ),()(:H 0
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Foundational Issues: AlternativeFoundational Issues: Alternative

What should the distribution of the data What should the distribution of the data 
under the alternative represent?under the alternative represent?
•• CounterfactualCounterfactual

–– An imagined form for An imagined form for F(tF(t), ), G(tG(t)) if something else if something else 
were truewere true

•• EmpiricalEmpirical
–– The most likely distribution of the data if the The most likely distribution of the data if the 

alternative hypothesis about      were true alternative hypothesis about      were true ?
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My ViewsMy Views

The null hypothesis of greatest interest is The null hypothesis of greatest interest is 
rarely that a treatment has no effectrarely that a treatment has no effect
•• Bone marrow transplantationBone marrow transplantation
•• Women’s Health InitiativeWomen’s Health Initiative
•• National Lung Screening TrialNational Lung Screening Trial

The empirical alternative is most in keeping The empirical alternative is most in keeping 
with inference about a summary measurewith inference about a summary measure
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An AsideAn Aside

The above views have important The above views have important 
ramifications regarding the computation of ramifications regarding the computation of 
standard errors for statistics under the nullstandard errors for statistics under the null
•• Permutation tests (or any test which Permutation tests (or any test which 

presumes presumes F=GF=G under the null) will generally under the null) will generally 
be inconsistent be inconsistent 
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Problem with (Problem with (Semi)parametricsSemi)parametrics

Many mechanisms would seem to make it Many mechanisms would seem to make it 
likely that the problems in which a fully likely that the problems in which a fully 
parametric model or even a parametric model or even a semiparametricsemiparametric
model is correct constitute a set of measure model is correct constitute a set of measure 
zerozero

••Exception: independent binary data must be Exception: independent binary data must be 
binomially distributed in the population from binomially distributed in the population from 
which they were sampled randomly which they were sampled randomly 
((exchangeablyexchangeably?)?)
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Supporting ArgumentsSupporting Arguments

Example 1: Cell proliferation in cancer Example 1: Cell proliferation in cancer 
preventionprevention

–– Within subject distribution of outcome is skewed Within subject distribution of outcome is skewed 
(cancer is a focal disease)(cancer is a focal disease)

–– Such skewed measurements are only observed in Such skewed measurements are only observed in 
a subset of the subjectsa subset of the subjects

–– The intervention affects only The intervention affects only hyperproliferationhyperproliferation (our (our 
ideal)ideal)
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Supporting ArgumentsSupporting Arguments

Example 2: Treatment of hypertensionExample 2: Treatment of hypertension
–– Hypertension has multiple causesHypertension has multiple causes
–– Any given intervention might treat only subgroups Any given intervention might treat only subgroups 

of subjects (and subgroup membership is a latent of subjects (and subgroup membership is a latent 
variable)variable)

–– The treated population has a mixture distributionThe treated population has a mixture distribution
•• (and note that we might expect greater variance in the (and note that we might expect greater variance in the 

group with the lower mean)group with the lower mean)
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Supporting ArgumentsSupporting Arguments

Example 3: Effects on ratesExample 3: Effects on rates
–– The intervention affects ratesThe intervention affects rates
–– The outcome measures a cumulative stateThe outcome measures a cumulative state
–– Arbitrarily complex meanArbitrarily complex mean--variance relationships variance relationships 

can resultcan result
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A NonA Non--Solution: Model CheckingSolution: Model Checking

Model checking is apparently used by many Model checking is apparently used by many 
to allow them to believe that their models to allow them to believe that their models 
are correct.are correct.
•• From a recent referee’s report:From a recent referee’s report:

–– “I know of no sensible statistician (“I know of no sensible statistician (frequentistfrequentist or or 
Bayesian) who does not do model checking.”Bayesian) who does not do model checking.”

•• Apparently the referee believes the following Apparently the referee believes the following 
unproven proposition:unproven proposition:

–– If we cannot tell the model is wrong, then statistical If we cannot tell the model is wrong, then statistical 
inference under the model will be correctinference under the model will be correct
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A NonA Non--Solution: Model CheckingSolution: Model Checking

Counter example: Exponential Counter example: Exponential vsvs Lognormal Lognormal 
mediansmedians
•• Pretest with Pretest with KolmogorovKolmogorov--Smirnov test (n=40)Smirnov test (n=40)

–– Power to detect wrong modelPower to detect wrong model
•• 20% (exp);  12% (20% (exp);  12% (lnormlnorm))

–– Coverage of 95% CI under wrong modelCoverage of 95% CI under wrong model
•• 85% (exp);  88% (85% (exp);  88% (lnormlnorm))
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A NonA Non--Solution: Model CheckingSolution: Model Checking

Model checking particularly makes little Model checking particularly makes little 
sense in a regulatory settingsense in a regulatory setting
•• Commonly used null hypotheses presume the Commonly used null hypotheses presume the 

model fits in the absence of a treatment effectmodel fits in the absence of a treatment effect
–– FrequentistsFrequentists would be testing for a treatment effect would be testing for a treatment effect 

as they do model checkingas they do model checking

•• Bayesians should model any uncertainty in Bayesians should model any uncertainty in 
the distributionthe distribution

–– Interestingly, if one does this, the estimate Interestingly, if one does this, the estimate 
indicating parametric family will in general vary indicating parametric family will in general vary 
with the estimate of treatment effectwith the estimate of treatment effect
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Impact on Statistical OptimalityImpact on Statistical Optimality

Impact on what we teach about optimality of Impact on what we teach about optimality of 
statistical modelsstatistical models
•• Clearly, parametric theory may be irrelevant in Clearly, parametric theory may be irrelevant in 

an exact sense (though as guidelines it is still an exact sense (though as guidelines it is still 
useful)useful)

•• Much of what we teach about the optimality of Much of what we teach about the optimality of 
nonparametric tests is based on nonparametric tests is based on 
semiparametricsemiparametric models models 

–– e.g., e.g., LehmannLehmann, 1975: location, 1975: location--shift modelsshift models
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Example: Example: WilcoxonWilcoxon Rank Sum TestRank Sum Test

Common teaching:Common teaching:
–– A nonparametric alternative to the t testA nonparametric alternative to the t test
–– Not too bad against normal dataNot too bad against normal data
–– Better than t test when data have heavy tailsBetter than t test when data have heavy tails
–– (Some texts refer to it as a test of medians)(Some texts refer to it as a test of medians)
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Example: Example: WilcoxonWilcoxon Rank Sum TestRank Sum Test

More accurate guidelines:More accurate guidelines:
–– In the general case, the t test and the In the general case, the t test and the WilcoxonWilcoxon are are 

not testing the same summary measurenot testing the same summary measure
•• Wrong size as a test of Wrong size as a test of Pr(XPr(X > Y)> Y) unless you assume a unless you assume a 

semisemi--parametric model on some scaleparametric model on some scale
•• Inconsistent test of Inconsistent test of F(tF(t) = ) = G(tG(t))
•• (And the (And the WilcoxonWilcoxon is not transitive)is not transitive)

–– Efficiency results when a shift model holds for Efficiency results when a shift model holds for 
some monotonic transformation of the datasome monotonic transformation of the data

•• If propensity to outliers is different between groups, the t If propensity to outliers is different between groups, the t 
test may be better even with heavy tailstest may be better even with heavy tails

–– (The variance can be modified to achieve (The variance can be modified to achieve 
consistency)consistency)
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Nonparametric ApproachNonparametric Approach

The summary measure (functional) The summary measure (functional) 
measuring treatment effect is just some measuring treatment effect is just some 
difference between distributionsdifference between distributions

••(Almost always, the problem is ultimately (Almost always, the problem is ultimately 
reduced to a 1reduced to a 1--dimensional statistic)dimensional statistic)

? ?GFd ,??
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Comparison of Summary MeasuresComparison of Summary Measures

Typical approaches to compare response Typical approaches to compare response 
across two treatment armsacross two treatment arms

•• Difference / ratio of means (arithmetic, geometric, … )Difference / ratio of means (arithmetic, geometric, … )
•• Difference / ratio of medians (or other Difference / ratio of medians (or other quantilesquantiles))
•• Median difference of paired observationsMedian difference of paired observations
•• Difference / ratio of proportion exceeding some thresholdDifference / ratio of proportion exceeding some threshold
•• Ratio of odds of exceeding some thresholdRatio of odds of exceeding some threshold
•• Ratio of instantaneous risk of some eventRatio of instantaneous risk of some event

»» (averaged across time?)(averaged across time?)
•• Probability that a randomly chosen measurement from Probability that a randomly chosen measurement from 

one population might exceed that from the otherone population might exceed that from the other
•• ……
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GoalGoal

We thus want to find nonparametric models We thus want to find nonparametric models 
which which 
•• Include commonly chosen parametric modelsInclude commonly chosen parametric models
•• Can be implemented in a Bayesian settingCan be implemented in a Bayesian setting

It is useful to consider how (It is useful to consider how (semi)parametricsemi)parametric
models are actually usedmodels are actually used

146

Statistical ModelsStatistical Models

How are (How are (semi)parametricsemi)parametric assumptions assumptions 
really used in statistical models?really used in statistical models?
•• Choice of functional for comparisonsChoice of functional for comparisons
•• Formula for computing the estimate of the Formula for computing the estimate of the 

functionalfunctional
•• Distributional family for the estimateDistributional family for the estimate
•• MeanMean--variance relationship across variance relationship across 

alternativesalternatives
•• Shape of distribution for dataShape of distribution for data
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Choice of FunctionalChoice of Functional
••Parametric: Driven by efficiency of functional Parametric: Driven by efficiency of functional 
for the particular parametric familyfor the particular parametric family

•• Normal: use meanNormal: use mean
•• Lognormal: use (log) geometric meanLognormal: use (log) geometric mean
•• Double exponential: use medianDouble exponential: use median
•• Uniform: use maximumUniform: use maximum

••SemiparametricSemiparametric: Choose functional for : Choose functional for 
scientific relevance, etc., then adopt a scientific relevance, etc., then adopt a 
semiparametricsemiparametric model in which desired model in which desired 
functional is basic to modelfunctional is basic to model

•• Survival data: consider hazard ratio and use Survival data: consider hazard ratio and use 
proportional hazardsproportional hazards
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Choice of FunctionalChoice of Functional

Better bases for choosing summary Better bases for choosing summary 
measure for decisions in order of measure for decisions in order of 
importance (nonparametric)importance (nonparametric)
•• Current state of scientific knowledgeCurrent state of scientific knowledge
•• Scientific (clinical) relevanceScientific (clinical) relevance
•• Potential for intervention to affect the measurePotential for intervention to affect the measure
•• Statistical accuracy and precision of analysisStatistical accuracy and precision of analysis
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Statistical ModelsStatistical Models

How are (How are (semi)parametricsemi)parametric assumptions assumptions 
really used in statistical models?really used in statistical models?
•• Choice of functional for comparisonsChoice of functional for comparisons
•• Formula for computing the estimate of the Formula for computing the estimate of the 

functionalfunctional
•• Distributional family for the estimateDistributional family for the estimate
•• MeanMean--variance relationship across variance relationship across 

alternativesalternatives
•• Shape of distribution for dataShape of distribution for data
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Computing EstimatesComputing Estimates

•• Parametric: Estimate parameters and then Parametric: Estimate parameters and then 
derive summary measures from parametric derive summary measures from parametric 
modelmodel

–– E.g., estimating the medianE.g., estimating the median
•• Normal: estimate mean; median=meanNormal: estimate mean; median=mean
•• Exponential: estimate mean; median = mean / log(2)Exponential: estimate mean; median = mean / log(2)
•• Lognormal: estimate geometric mean; median = Lognormal: estimate geometric mean; median = 

geometric meangeometric mean
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Computing EstimatesComputing Estimates

•• SemiparametricSemiparametric: : 
–– Parameter is fundamental to probability modelParameter is fundamental to probability model
–– Use both groups to estimate parameter using the Use both groups to estimate parameter using the 

assumption that we can transform one group by assumption that we can transform one group by 
the parameter and obtain the same distribution as the parameter and obtain the same distribution as 
the other groupthe other group

•• E.g., proportional hazards modelE.g., proportional hazards model
»» Hazard ratio estimate is average of hazard ratios at Hazard ratio estimate is average of hazard ratios at 

each failure timeeach failure time
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((Semi)parametricSemi)parametric ExampleExample

Survival cure model (Survival cure model (IbrahimIbrahim, 1999, 2000), 1999, 2000)
–– Probability model Probability model 

•• Proportion Proportion pp ii is cured (survival probability 1 at 8 ) in the is cured (survival probability 1 at 8 ) in the ii--
thth treatment grouptreatment group

•• NoncuredNoncured group has survival distribution modeled group has survival distribution modeled 
parametrically (e.g., parametrically (e.g., WeibullWeibull) or ) or semiparametricallysemiparametrically (e.g., (e.g., 
proportional hazards)proportional hazards)

•• Treatment effect is measured by Treatment effect is measured by ?? = = pp11 –– pp00

–– The problem as I see it: Incorrect assumptions The problem as I see it: Incorrect assumptions 
about the nuisance parameter can bias the about the nuisance parameter can bias the 
estimation of the treatment effectestimation of the treatment effect
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Computing EstimatesComputing Estimates

•• Nonparametric: Estimate summary measures Nonparametric: Estimate summary measures 
from nonparametric empirical distribution from nonparametric empirical distribution 
functionsfunctions

–– E.g., use sample median for inference about E.g., use sample median for inference about 
population medianspopulation medians

–– Often the nonparametric estimate agrees with a Often the nonparametric estimate agrees with a 
commonly used (commonly used (semi)parametricsemi)parametric estimateestimate

•• Interpretation may depend on sampling schemeInterpretation may depend on sampling scheme
•• In this case, the difference will come in the computation In this case, the difference will come in the computation 

of the standard errorsof the standard errors
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Statistical ModelsStatistical Models

How are (How are (semi)parametricsemi)parametric assumptions assumptions 
really used in statistical models?really used in statistical models?
•• Choice of functional for comparisonsChoice of functional for comparisons
•• Formula for computing the estimate of the Formula for computing the estimate of the 

functionalfunctional
•• Distributional family for the estimateDistributional family for the estimate
•• MeanMean--variance relationship across variance relationship across 

alternativesalternatives
•• Shape of distribution for dataShape of distribution for data
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Distribution for EstimateDistribution for Estimate

•• Parametric: Use probability theory to derive Parametric: Use probability theory to derive 
distribution of estimatedistribution of estimate

–– E.g., estimating the medianE.g., estimating the median
•• Normal: sample mean is normalNormal: sample mean is normal
•• Exponential: sum is gammaExponential: sum is gamma
•• Lognormal: log geometric mean is normalLognormal: log geometric mean is normal

•• SemiparametricSemiparametric::
–– Small sample properties: Conditional distributions Small sample properties: Conditional distributions 

based on permutationbased on permutation
–– Large sample properties: Large sample properties: AsymptoticsAsymptotics
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Distribution for EstimateDistribution for Estimate

•• Nonparametric: Asymptotic normal theory Nonparametric: Asymptotic normal theory 
(almost always)(almost always)

–– Most nonparametric estimators involve a sum Most nonparametric estimators involve a sum 
somewheresomewhere

–– Central limit theorem holds (like it or not)Central limit theorem holds (like it or not)
•• Thus gamma distributions converge to a normal…Thus gamma distributions converge to a normal…
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Statistical ModelsStatistical Models

How are (How are (semi)parametricsemi)parametric assumptions assumptions 
really used in statistical models?really used in statistical models?
•• Choice of functional for comparisonsChoice of functional for comparisons
•• Formula for computing the estimate of the Formula for computing the estimate of the 

functionalfunctional
•• Distributional family for the estimateDistributional family for the estimate
•• MeanMean--variance relationship across variance relationship across 

alternativesalternatives
•• Shape of distribution for dataShape of distribution for data
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MeanMean--Variance RelationshipsVariance Relationships

Asymptotically, most summary measures Asymptotically, most summary measures 
have a limiting normal distribution have a limiting normal distribution 
(exception is the (exception is the supremumsupremum of the of the 
difference between the difference between the cdf’scdf’s))
•• In this setting, we need only estimate the In this setting, we need only estimate the 

variance of the sampling distribution under variance of the sampling distribution under 
specific hypothesesspecific hypotheses

–– FormulasFormulas
–– Bootstrapping within groups (Population model)Bootstrapping within groups (Population model)
–– Permutation distributions (Randomization model)Permutation distributions (Randomization model)

159

Asymptotic DistributionsAsymptotic Distributions
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MeanMean--Variance RelationshipsVariance Relationships

In most cases, however, it must be In most cases, however, it must be 
recognized that we can only estimate the recognized that we can only estimate the 
variance under the truth, which may not variance under the truth, which may not 
correspond to a hypothesis of interestcorrespond to a hypothesis of interest

–– If the intervention can affect the variance of the If the intervention can affect the variance of the 
summary measures, then we must account for a summary measures, then we must account for a 
meanmean--variance relationship when considering variance relationship when considering 
different hypothesesdifferent hypotheses
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MeanMean--Variance RelationshipsVariance Relationships

Example: Two sample test of binomial Example: Two sample test of binomial 
proportionproportion
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Example: Estimating VariancesExample: Estimating Variances

Two sample test of binomial proportionTwo sample test of binomial proportion
••Estimated variance is subject to Estimated variance is subject to 

––Sampling variabilitySampling variability
––Difference between the truth and the hypothesisDifference between the truth and the hypothesis
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Estimating MeanEstimating Mean--VarianceVariance

Estimating mean variance relationshipsEstimating mean variance relationships
–– May not be too important for May not be too important for frequentistfrequentist tests of the tests of the 

null hypothesis, because convention often dictates null hypothesis, because convention often dictates 
the null variance we should usethe null variance we should use

•• Use randomization and/or population variances in Use randomization and/or population variances in 
adversarial argumentadversarial argument

•• However confidence intervals and all However confidence intervals and all 
Bayesian inference are statements about Bayesian inference are statements about 
what data would arise under a variety of what data would arise under a variety of 
hypotheseshypotheses

•• We must have some idea about how the variance might We must have some idea about how the variance might 
change with the meanchange with the mean
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MeanMean--Variance RelationshipVariance Relationship

Possible approaches to the meanPossible approaches to the mean--variance variance 
relationship estimationrelationship estimation
•• Explore various meanExplore various mean--variance relationshipsvariance relationships

–– Bootstrap tilting could be used hereBootstrap tilting could be used here

•• Assume no meanAssume no mean--variance relationshipvariance relationship
•• Sensitivity analyses intermediate to the twoSensitivity analyses intermediate to the two

? ? rVar ? ?? ?ˆ
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MeanMean--Variance RelationshipVariance Relationship

A key issue is deciding how many A key issue is deciding how many 
observations are present for estimating the observations are present for estimating the 
meanmean--variance relationshipvariance relationship

–– If the control group can be used to estimate If the control group can be used to estimate 
behavior under the null and the treatment group behavior under the null and the treatment group 
under the alternative, then possibly have twounder the alternative, then possibly have two

–– If an active intervention modifies the response in If an active intervention modifies the response in 
both groups or in population model, then may only both groups or in population model, then may only 
have onehave one
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Statistical ModelsStatistical Models

How are (How are (semi)parametricsemi)parametric assumptions assumptions 
really used in statistical models?really used in statistical models?
•• Choice of functional for comparisonsChoice of functional for comparisons
•• Formula for computing the estimate of the Formula for computing the estimate of the 

functionalfunctional
•• Distributional family for the estimateDistributional family for the estimate
•• MeanMean--variance relationship across variance relationship across 

alternativesalternatives
•• Shape of distribution for dataShape of distribution for data
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Statistical ModelsStatistical Models

Shape of distribution for dataShape of distribution for data
•• Only really an issue for prediction, which is Only really an issue for prediction, which is 

not considered herenot considered here
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Bayesian MethodsBayesian Methods

NonparametricNonparametric
Bayesian ModelsBayesian Models
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Possible ApproachesPossible Approaches

Nonparametric Bayesians have Nonparametric Bayesians have focussedfocussed
primarily on primarily on DirichletDirichlet process priorsprocess priors
•• Prior placed on all multinomial distributionsPrior placed on all multinomial distributions
•• Can be chosen to include all distributionsCan be chosen to include all distributions

Interpretation of priors is extremely difficultInterpretation of priors is extremely difficult
•• How much mass is placed on bimodal How much mass is placed on bimodal 

distributions?distributions?

Correspondence with Correspondence with frequentistfrequentist methods?methods?
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““Coarsened” Data ApproachCoarsened” Data Approach

Modification for nonparametric modelsModification for nonparametric models
•• Use summary measure estimate as the dataUse summary measure estimate as the data

–– Use asymptotic distributions under population Use asymptotic distributions under population 
modelmodel
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Impact of Coarsening DataImpact of Coarsening Data

If If 
•• the parameter estimate is the sufficient the parameter estimate is the sufficient 

statistic, statistic, 
•• if the estimate is approximately normal, and if the estimate is approximately normal, and 
•• the meanthe mean--variance relationship is correctvariance relationship is correct

ThenThen
•• the only difference is using the approximate the only difference is using the approximate 

normal distribution instead of the parametric normal distribution instead of the parametric 
formform

172

Advantage of Coarsening DataAdvantage of Coarsening Data

•• Same probability model typically used by Same probability model typically used by 
frequentistsfrequentists

–– Robust inference about summary measureRobust inference about summary measure

•• Specification of prior distributions on the Specification of prior distributions on the 
parameter of interestparameter of interest

–– Choice of conjugate Choice of conjugate normalsnormals allows conciseness of allows conciseness of 
presentation using contour plotspresentation using contour plots
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Concise Reporting of ResultsConcise Reporting of Results

The chief advantage of The chief advantage of frequentistfrequentist inference inference 
(to my mind) is that it presents a standard (to my mind) is that it presents a standard 
for concise presentation of resultsfor concise presentation of results

–– Estimates, standard errors, P values, CIEstimates, standard errors, P values, CI

Bayesian analysis requires such a Bayesian analysis requires such a 
presentation for every priorpresentation for every prior

–– Your prior does not matter to meYour prior does not matter to me
–– A consensus prior will not capture the diversity of A consensus prior will not capture the diversity of 

prior opinionprior opinion
174

Sensitivity Analysis Across PriorsSensitivity Analysis Across Priors

In the context of the coarsened In the context of the coarsened BayesBayes
approach, we can adopt a standard based approach, we can adopt a standard based 
on conjugate normal priorson conjugate normal priors
•• Two dimensional space of prior distributionsTwo dimensional space of prior distributions

–– Prior mean (pessimism)Prior mean (pessimism)
–– Prior standard deviation (dogmatism)Prior standard deviation (dogmatism)

•• Also can be measured as information in prior relative to Also can be measured as information in prior relative to 
that in planned samplethat in planned sample
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Sensitivity Analysis Across PriorsSensitivity Analysis Across Priors

•• Bayesian inference as a contour plot for each Bayesian inference as a contour plot for each 
inferential quantityinferential quantity

–– Posterior meanPosterior mean
–– Limits of credible intervalsLimits of credible intervals
–– Posterior probabilitiesPosterior probabilities

•• Under sequential sampling, present contour Under sequential sampling, present contour 
plots for each analysis timeplots for each analysis time
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Case Study:Case Study:
Posterior Mean at Second AnalysisPosterior Mean at Second Analysis
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Case Study:Case Study:
Posterior Probability of HypothesesPosterior Probability of Hypotheses
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Nonparametric Bayesian ModelsNonparametric Bayesian Models

Advantages and disadvantages of such Advantages and disadvantages of such 
sensitivity analysessensitivity analyses
•• To the extent that people can only describe To the extent that people can only describe 

the first two moments of their prior:the first two moments of their prior:
–– A convenient standard for presentationA convenient standard for presentation
–– But, normal prior is less informative than other But, normal prior is less informative than other 

priors having the same mean and variancepriors having the same mean and variance
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MeanMean--Variance RelationshipVariance Relationship

MeanMean--variance relationshipvariance relationship
•• Provide a prior distribution for summary Provide a prior distribution for summary 

measure that incorporates a prior on the measure that incorporates a prior on the 
meanmean--variance relationshipvariance relationship

•• Note that the concept of updating the prior is Note that the concept of updating the prior is 
probably not valid here, because there is probably not valid here, because there is 
really no added information about meanreally no added information about mean--
variance relationshipvariance relationship

–– The mean variance relationship is observed at two The mean variance relationship is observed at two 
points (at most)points (at most) 180

Nonparametric Bayesian ModelsNonparametric Bayesian Models

RamificationsRamifications
•• The approach to using estimates as the data The approach to using estimates as the data 

does mean that in some cases we cannot does mean that in some cases we cannot 
regard that we are continually updating our regard that we are continually updating our 
posteriorposterior

–– E.g.: The sample median of the combined sample E.g.: The sample median of the combined sample 
is not necessarily a weighted mean of the sample is not necessarily a weighted mean of the sample 
median from two separate samplesmedian from two separate samples
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Secondary EndpointsSecondary Endpoints

The approach proposed here requires a The approach proposed here requires a 
graph for every number that would have graph for every number that would have 
been reported in a been reported in a frequentistfrequentist analysisanalysis
•• I doubt many editors will agreeI doubt many editors will agree

It should be clear, however, that the It should be clear, however, that the 
frequentistfrequentist nonparametric estimate and nonparametric estimate and 
standard error are sufficient for a reader to standard error are sufficient for a reader to 
perform his/her own sensitivity analysisperform his/her own sensitivity analysis
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Final CommentsFinal Comments
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Final CommentsFinal Comments

The driving force in a clinical trial should be The driving force in a clinical trial should be 
a valid scientific experiment in an ethical a valid scientific experiment in an ethical 
mannermanner
•• The approach proposed here has placed The approach proposed here has placed 

greatest emphasis ongreatest emphasis on
–– robustness, androbustness, and
–– communicability (concise standards)communicability (concise standards)
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Final CommentsFinal Comments

There are many aspects which could be There are many aspects which could be 
improvedimproved
•• Behavior of estimates for meanBehavior of estimates for mean--variance variance 

relationshiprelationship
–– Empirical approachesEmpirical approaches

•• Robustness to “model misspecification”Robustness to “model misspecification”
–– e.g., linear contrasts used with nonlinear trendse.g., linear contrasts used with nonlinear trends

•• Adjustment for covariatesAdjustment for covariates
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Final CommentsFinal Comments

There are some important issues not really There are some important issues not really 
addressed at alladdressed at all
•• TimeTime--varying treatment effectsvarying treatment effects

–– NonproportionalNonproportional hazardshazards
–– Longitudinal dataLongitudinal data


