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Course Structure
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Topics:
* Overview
* Frequentist approach
— Inferential methods
— Fixed Sample Clinical Trial Design
— Group Sequential Sampling Plans
— Evaluation of clinical trial designs
» Bayesian approach
— Inferential methods
— Probability models
— Nonparametric Bayes
— Evaluation of clinical trial designs
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Fair Warning
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Overview

Clinical Trial Setting

Fundamental Philosophy

®ececcccccccccccccccccccccccee

Statistics is about science.

Science is about proving things to people.
* Other scientists
« Community at large

2003, Scott S. Emerson, M.D.,

Scientific Studies

®ececcccccccccccccccccccccccee

A well designed study
* Discriminates between the most important,
viable hypotheses

* Is equally informative for all possible
outcomes
—Binary search using prior probability of being true
—Also consider simplicity of experiments, time, cost

(The Scientist Game)
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Clinical Trials

®ececcccccccccccccccccccccccee

Experimentation in human volunteers
* Investigate a new treatment / preventive

agent
— Safety
« Phase |; Phase Il
— Efficacy
« Phase Il (preliminary); Phase
— Effectiveness

« Phase lll (therapy); Phase IV (prevention)

Collaboration of Multiple Disciplines

Seeccccccccccccccccccccccccee

Discipline Collaborators Issues
Epidemiologists Hypothesis generation
Scientific Basic Scientists Mechanisms
Clinical Scientists Clinical benefit

Experts in disease / treatment Efficacy of treatment

Clinical Experts in complications Adverse experiences
. Individual ethics
Ethicist:
Ethical cists Group ethics
Health services Cost effectiveness
Economic Sponsor management Cost of trial / Profitability
Sponsor marketers Marketing appeal
Safety
Governmental Regulators Efficacy
Statistical Biostatisticians Estimates of treatment effect
ausuca Precision of estimates
o i I Study coordinators Collection of data / Study burden
perationa Data management Data integrity 10

(c) 2002,
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Scientific Hypotheses
Collaboration among investigators to
* Define intervention
* Define patient population
* Define general goal

—Clinical measurement for outcome

— Relevant benefit to establish: Two or more of

« Superiority, noninferiority, approximate equivalence,
nonsuperiority, inferiority

11

Typical Scientific Hypotheses

®ececcccccccccccccccccccccccee

The intervention when administered to the
target population will tend to result in

outcome measurements that are
- N O
higher than,
an absolute standard, or

measurements in a
comparison group

h m
\\abouttesa eas/ L )

12

< lower than, or >< >
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Experimental Design

®ececcccccccccccccccccccccccee

Plan collection of a sample which allows
» Administration of intervention (ethically)
* Measurement of outcomes

» Statistical analysis of results
—Variability of subjects means that results need to
be reported in probabilistic terms
« Point estimate of summary measure of response
« Interval estimate to quantify precision
* Quantification of error rates for decisions
¢ (Binary decision?)

13

Refining Scientific Hypotheses
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In order to be able to perform analysis
» Modify intervention, endpoints to increase
precision (without changing relevance)
 Probability model for response
— Choose summary measure of response distribution

 Precise statement of hypotheses to be
discriminated
— Stated in terms of summary measure

14
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Comparison of Summary Measures

®ececcccccccccccccccccccccccee

Typical approaches to compare response
across two treatment arms

Difference / ratio of means (arithmetic, geometric, ...)
Difference / ratio of medians (or other quantiles)

Median difference of paired observations

Difference / ratio of proportion exceeding some threshold
Ratio of odds of exceeding some threshold

Ratio of instantaneous risk of some event

» (averaged across time?)

Probability that a randomly chosen measurement from
one population might exceed that from the other

15

Statistical Models
Issues when choosing statistical models

* Criteria for quantifying credibility of results
—Frequentist
—Bayesian

» Computational methods and formulas

» Covariate adjustment

16
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Impact of Statistical Model

®ececcccccccccccccccccccccccee

Choice of statistical model impacts the
scientific question actually addressed as
well as the statistical precision

* Robustness of inference depends on methods
of computing the summary measures to be
compared

* Interpretation of positive and negative studies
depends on computation of sampling variance

17

Overview

@eeccccccccccccccccccccccccccee

Where | Am Going:
“A revolution no one will notice”

18
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Ultimate Goal

®ececcccccccccccccccccccccccee

Design and analysis of clinical trials to allow
quantification of the strength of evidence
for or against scientific hypotheses

—AND to allow concise presentation of results

Need to convince the audience, who may
—Disagree on what are most important hypotheses
« What precision is necessary for what endpoints?
—Disagree on definition of statistical evidence

« Frequentist vs Bayesian (with varying priors)
19

My Optimality Criterion

| believe statistical methods should always
take the scientific setting into account
» Science ideally progresses through a series of

experiments successively addressing more
refined questions

* | am against unnecessarily assuming the
answer to more detailed questions than | am
trying to address in the scientific study

20
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There are two types of people in the world:

» Those who dichotomize everything, and

* Those who don't.

21
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Classification of Statistical Models

®ececcccccccccccccccccccccccee

Breiman (2000): The two approaches to
data analysis

* Model based vs algorithmic
—(e.g., regression vs trees, neural nets)

This talk:
* Frequentist vs Bayesian
* (Semi)Parametric vs nonparametric

22

Oultline
Frequentist Methods
» Frequentist inference in fixed sample designs

* Probability models
— (Semi)parametric vs nonparametric

» Sequential sampling
Bayesian Methods
» Bayesian paradigm
* “Coarsened” nonparametric Bayes
» Concise presentation of results

23
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Frequentist Methods

@eeccccccccccccccccccccccccccee

Frequentist Inference
in
Fixed Sample Designs

24
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lllustrative Example
Hypothetical clinical trial
» Two groups: Treatment and Placebo
* Primary outcome variable: continuous
* Notation

Treatment :
iid
Xy, W Xa~F
Contral :

EX; 7?2 varX,7222

iid
Y,, .Y,~G E¥X%?? va¥ 7?72

25

Measure of Treatment Effect

®ececcccccccccccccccccccccccee

We choose some summary measure of the
difference between the distributions of
response across the treatment arms

* Criteria (in order of importance)

— Scientifically (clinically) relevant

« Also reflects current state of knowledge
—Intervention is likely to affect

« Could be based on ability to detect variety of changes

— Statistical precision

26
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Measure of Treatment Effect
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A common choice: Difference in means

Treatment effect : ??2?27??

Why?
» Occasionally most relevant (health care costs)

 Sensitive to a wide variety of changes in
distribution of response

« Statistically most efficient in the presence of
normally distributed data

27

Statistical Design of Experiment
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Design experiment by looking to the future:
Consider how the results of the study will
be reported

—The single “best” estimate of treatment effect
—An interval estimate to quantify precision

— A guantification of the strength of evidence for or
against particular hypotheses

—Our conclusion from the study
« A binary decision

28
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One-sided Statistical Hypotheses

®ececcccccccccccccccccccccccee

Define hypotheses to be discriminated
One - sided hypotheses :
Hy:? 7?2, vs H,:?2?27?,

Decisions for superiority or not sufficiently
superior

(One-sided test can also be defined for one-
sided lesser alternative)

29
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Two-sided Statistical Hypotheses

®ececcccccccccccccccccccccccee

Define hypotheses to be discriminated
Two - sided hypotheses :
H,:2?27, vs Hg, 1?2?72
Hpr:?2 2?29 Vs H,:2?27,

Resembles two superposed one-sided tests

* Decisions for superiority, inferiority,
approximate equivalence

30

Classical Hypothesis Testing

Reject hypothesis if observed data is rare
when that hypothesis is true

Consider probability of falsely rejecting each
hypothesis

» Usually fix type | error at some prescribed
level

* Try for high power (low type Il error) for some
“design alternative”

31
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Implementation
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Define “rare data” for each hypothesis

» Choose test statistic
— Often based on an estimate of treatment effect

r .
TX,Y1?27?

—Reject low treatment effect when estimate is so
high as to only occur, say, with 5% probability

Reject Ho:? 22if ? 2, 10,

where Pr? ? Cr,y122 |?0???

32
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Hallmark of Frequentist Inference
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Frequentist inference makes probability
statements about the distribution of the
data conditional on a presumed treatment

effect, e.g., ] )
Critical value: Pre?2c, 10 [?20:?7?
R 2 92 % ) ??
Clfor? ? z: R =222 ?2z|?771?7—>
? 2 27

ES 2%

minimize Var?5|??

Unbiased estimates :
Efficient estimates :

33
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Sampling Distribution

Frequentist inference thus requires
knowledge of the sampling distribution for
the estimate of treatment effect

» Sampling distribution under the null

—Necessary and sufficient to have the correct size
test

» Sampling distribution under alternatives

—Necessary to compute
« power of tests
« confidence intervals

« optimality of estimators 2

Derivation of Sampling Distribution

®ececcccccccccccccccccccccccee

To compute sampling distribution
Pro ot |?r:
need to know the probability model to obtain
« Formula for ?
* Definition of hypotheses
* Distribution of r:X,Yr: under every hypothesis

35
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Typical Sampling Distribution

In the probability models most often used for
frequentist inference, the sampling
distribution is approximately normal
» Fixed sample setting (no early stopping)
» Large samples

)

~ 2
21?2 ~N%,
?

s <
-~

36

Part 1:9



Applied

(c) 2002,
Ph.D.

Regression Analysis, June, 2003

Approximate Frequentist Inference
Standard frequentist inference is then

» Consistent point estimate ?

» 100(1-a)% confidence interval

S \Y%
?7? 21??/2‘/3

* Pvalue to test Hq:? ??,

? 212 v
337220/
P? 2?47?2797 o)
o 2 \y o
5 2V/n %

37
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Frequentist Methods

@eeccccccccccccccccccccccccccee

Sample Size Determination

38

Decision Theoretic Approach

®ececcccccccccccccccccccccccee

Design study with sufficient precision to be
able to reject at least one hypothesis with
high confidence
 Equivalent criteria for rejection

—type | error = type Il error

—interval estimate does not contain both the null and
alternative hypotheses

» Asymmetric definitions of rejection
— Arbitrary power

39
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Sample Size Computation

®ececcccccccccccccccccccccccee

Number of “sampling units” to obtain desired
precision
Level of significance? when? ??,
Power ? when? ??;
Variability V within 1sampling unit
%1?? 12?2 ?v

n? 7
P27

40
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When Sample Size Constrained

®ececcccccccccccccccccccccccee

Often (usually?) logistical constraints impose
a maximal sample size
» Compute power to detect specified alternative

2 2
?%,272,7? ?
22221 _"092z7.,,,?
2 -2
? n ?

» Compute alternative detected with high power

')V
21?207 U 2?7, n

a1
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Threshold for Statistical Significance

®ececcccccccccccccccccccccccee

Having chosen a sample size, we can
compute
» Threshold for declaring statistical significance

- H - V
Reect Hy:? ??,if ??2?,7? 21??/2\/;

42

Inference at Threshold
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We can also anticipate the inference we will
make if we observe an estimate exactly at
the threshold

» P value equal to type | error
» Confidence interval

~ V
? ?21??/2\[F

43
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Frequentist Methods

Evaluation of
Fixed Sample Clinical
Trial Designs
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Evaluation of Designs
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Process of choosing a trial design

* Define candidate design

—Usually constrain two operating characteristics
« Type | error, power at design alternative
« Type | error, maximal sample size

» Evaluate other operating characteristics
— Different criteria of interest to different investigators

* Modify design
* lterate

45
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Operating Characteristics

®ececcccccccccccccccccccccccee

» Frequentist power curve
—Type | error (null) and power (design alternative)
» Sample size requirements
Threshold for statistical significance
» Frequentist inference at threshold
—Point estimate
— Confidence interval
—P value

Collaboration of Multiple Disciplines

Seececcccccccccccccscccscccccee

Discipline Collaborators Issues

Epidemiologists Hypothesis generation
Scientific Basic Scientists Mechanisms
Clinical Scientists Clinical benefit

Experts in disease / treatment Efficacy of treatment

Clinical Experts in complications Adverse experiences
. Individual ethics
Ethicist:
Ethical cists Group ethics
Health services Cost effectiveness
Economic Sponsor management Cost of trial / Profitability
Sponsor marketers Marketing appeal
Safety
Governmental Regulators Efficacy
i . N Estimates of treatment effect
Statistical Biostatisticians

Precision of estimates

Study coordinators Collection of data / Study burden
Data management Data integrity 47

Operational

2003, Scott S. Emerson, M.D.,

46
Evaluating Sample Size
Consider
* Feasibility of accrual (sponsor)
* Credibility of results
—"“3 over nrule”: We may have missed (Scientists,
an important subgroup with different Regulatory)
response patterns
—When combined with results from (Sponsor,
earlier trials Regulatory)
48
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Evaluating Power Curve

®ececcccccccccccccccccccccccee

Probability of rejecting null for
arbitrary alternatives
» Type | error (power under null)
» Power for specified alternative

« Alternative rejected by design
— Alternative for which study has high

power
« Interpretation of negative studies

(Regulatory)

(Scientists)

(Scientists)

49

Evaluating Boundaries

®ececcccccccccccccccccccccccee

Threshold for declaring statistical

significance
» On the scale of estimated treatment
effect
—Assess clinical importance e

—Assess economic importance (Marketing)

50

Evaluating Inference

®ececcccccccccccccccccccccccee

Inference on the boundary for
statistical significance
* Frequentist
—Point estimates
— Confidence intervals
—P values

(Scientists,
Statisticians,
Regulatory)

51

Frequentist Methods

Sequential Sampling:
Stopping Rules

52
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Statistical Design: Sampling Plan

®ececcccccccccccccccccccccccee

Ethical and efficiency concerns are
addressed through sampling which might
allow early stopping

+ During the conduct of the study, data are
analyzed and reviewed at periodic intervals

 Using interim estimates of treatment effect
—Decide whether to continue the trial

—If continuing, decide on any modifications to
sampling scheme

53
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Criteria for Early Stopping

®ececcccccccccccccccccccccccee

» Results convincing for specific hypotheses
— Superiority, approximate equivalence, inferiority

* Results suggestive of inability to ultimately
establish a hypothesis of interest
— Futility

* No advantage in continuing

—No need to collect additional data on safety, longer
term follow-up, other secondary endpoints

54

Basis for Early Stopping

®ececcccccccccccccccccccccccee

» Extreme estimates of treatment effect
e Curtailment:
—Boundary reached early

— Stochastic Curtailment: High probability that a
particular decision will be made at final analysis

» Group sequential test:

—Formal decision rule in classical frequentist
framework controlling experimentwise error

» Bayesian analysis:
— Posterior probability of hypothesis is high

55

2003, Scott S. Emerson, M.D.,

General Stopping Rule
* Analyses when sample sizes Ny,..., N,
—Can be randomly determined
* At jth analysis choose stopping boundaries
—a<b<c<d
» Compute test statistic T(X,,..., XN,-)

—Stopif T <gq (extremely low)
—Stopif b;<T <¢ (approximate equivalence)
—Stop if T > d (extremely high)

— Otherwise continue (with possible adaptive
modification of analysis schedule, sample size,

etc.) "
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Categories of Sequential Sampling

®ececcccccccccccccccccccccccee

Prespecified stopping guidelines

Adaptive procedures

57
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Prespecified Stopping Plans

®ececcccccccccccccccccccccccee

Prior to first analysis of data, specify

* Rule for determining maximal statistical
information
« E.g., fix power, maximal sample size, or calendar time
* Rule for determining schedule of analyses
« E.g., according to sample size, statistical information, or
calendar time
* Rule for determining conditions for early

stopping
« E.g., boundary shape function for stopping boundaries on
the scale of some test statistic

58

Boundary Scales

®ececcccccccccccccccccccccccee

A stopping rule for one test statistic is easily
transformed to a stopping rule for another

—"“Group sequential stopping rules”
* Sum of observations
« Point estimate of treatment effect
« Normalized (Z) statistic
* Fixed sample P value
¢ Error spending function
— Conditional probability
— Predictive probability
— Bayesian posterior probability

59

2003, Scott S. Emerson, M.D.,

Families of Stopping Rules

®ececcccccccccccccccccccccccee

Parameterization of boundary shape
functions facilitates search for stopping
rules

» Can be defined for any boundary scale

60
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Example: Unified Family

®ececcccccccccccccccccccccccee

» Down columns: Early vs no early stopping
» Across rows: One-sided vs two-sided

decisions
.2 0 s = o
r/ [ 1;;/)k r/ — 1 ]
S 1 I I A

Sartle hea”
\
\

61
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Example: Unified Family
A wide variety of boundary shapes possible

+All of the rules depicted have the same type |
error and power to detect the design alternative

— . =

=

\ //
N

Adaptive Sampling Plans

®ececcccccccccccccccccccccccee

At each analysis of the data, the sampling
plan can be modified to account for
changed perceptions of possible results

* E.g., Proschan & Hunsberger (1995)
—Use conditional power considerations to modify
ultimate sample size
* E.g., Self-designing Trial (Fisher, 1998)
— Prespecify weighting of groups “just in time”
« Weighting for each group only need be specified at
immediately preceding analysis

63
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Adaptive Sampling: The Price

®ececcccccccccccccccccccccccee

Adaptive sampling plans are less efficient

*Tsiatis & Mehta (2002)
—A classic prespecified group sequential stopping
rule can be found that is more efficient than a
given adaptive design

*Shi & Emerson (2003)

—Fisher’s test statistic in the self-designing trial
provides markedly less precise inference than
that based on the MLE

« To compute the sampling distribution of the latter, the
sampling plan must be known

64
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Prespecified Sampling: The Price

®ececcccccccccccccccccccccccee

Full knowledge of the sampling plan is
needed to assess the full complement of
frequentist operating characteristics

* In order to obtain inference with maximal

precision and minimal bias, the sampling plan
must be well quantified

* (Note that adaptive designs using ancillary
statistics pose no special problems if we
condition on those ancillary statistics.)

65
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Major Issue: Frequentist Inference

®ececcccccccccccccccccccccccee

Frequentist operating characteristics are
based on the sampling distribution

* Stopping rules do affect the sampling
distribution of the usual statistics
—MLEs are not normally distributed
—Z scores are not standard normal under the null
¢ (1.96 is irrelevant)

—The null distribution of fixed sample P values is not
uniform
¢ (They are not true P values)

Sampling Distribution of Estimates

Fixed Sample (Null: Theta = 0)

AN

-0.2 -01 0.0 0.1 0.2

Sampling Density

Estimated Treatment Effect

Fixed Sample (Alt: Theta = -.07)

AN

-0.2 -0.1 0.0 0.1 0.2

Sampling Density

67

Estimated Treatment Effect

2003, Scott S. Emerson, M.D.,

Sampling Distribution of Estimates

Fixed Sampls (Null: Theta = 0) Group Ssquential (Null: Theta = 0)

Sampling Density
Sampling Density

AN

-0.2 -0.1 0.0 01 0.2 02 -0.1 0.0 0.1 02

Estimated Treatment Effect Estimated Treatment Effect

Fixed Sample (Alt: Theta = -.07) Group Sequential (Alt: Theta = -.07)

Sampling Density
Sampling Density

-0.2 -0.1 0.0 01 0z -0.2 -0.1 0.0 01 02

Estimated Treatment Effect Estimated Treatment Effect
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Sampling Distributions of Statistics

Estimate (Null: Theta = 0) Estimate (Alt: Theta = -.07)

— Two-sided symm OBF, J= 4
o | "~ Fixed sample test (matching ASN) = |

EL
i
/

Sampling Density
Sampling Density

-0.2 -0.1 00 01 0z -0.2 -0.1 0.0 0.1 02

Estimated Treatment Effect Estimated Treatment Effect

Z Statistic (Null: Theta = Q) Fixed Sample P value (Null: Theta = 0)

Sampling Density

00 02 04 06 08 10
Sampling Density
0o 05 10 15 20 25

-2 0 2 0.0 02 0.4 06 08 10

MNormalized Z Statistic Fixed Sample P value

Operating Characteristics

®ececcccccccccccccccccccccccee

For any stopping rule we can compute the
correct sampling distribution and obtain
—Power curves
— Sample size distribution
—Bias adjusted estimates
—Correct (adjusted) confidence intervals
—Correct (adjusted) P values

» Candidate designs can then be compared
with respect to their operating characteristics

70

Sequential Sampling Issues

®ececcccccccccccccccccccccccee

» Design stage
— Satisfy desired operating characteristics
« E.g., type | error, power, sample size requirements
» Monitoring stage
— Flexible implementation of the stopping rule to
account for assumptions made at design stage

« E.g., sample size adjustment to account for observed
variance

* Analysis stage

—Providing inference based on true sampling
distribution of test statistics

71

Bottom Line

®ececcccccccccccccccccccccccee

“You better think (think)
think about what you're
trying to do...”

- Aretha Franklin

72
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Frequentist Methods

Evaluation of
Group Sequential
Clinical Trial Designs
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Case Study:
Clinical Trial In Gm- Sepsis

eececccccccccccee

Randomized, placebo controlled Phase IlI
study of antibody to endotoxin
—Intervention: Single administration

— Endpoint: Difference in 28 day mortality rates
* Placebo arm: estimate 30% mortality
« Treatment arm: hope for 23% mortality
—Analysis: Large sample test of binomial proportions
« Frequentist based inference
« Type | error: one-sided 0.025
« Power: 90% to detect ? < -0.07
« Point estimate with low bias, MSE; 95% CI

74

Evaluation of Designs

®ececcccccccccccccccccccccccee

Process of choosing a trial design

* Define candidate design

—Usually constrain two operating characteristics
« Type | error, power at design alternative
« Type | error, maximal sample size

» Evaluate other operating characteristics
— Different criteria of interest to different investigators

* Modify design
* lterate

75
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Operating Characteristics

®ececcccccccccccccccccccccccee

Same general operating characteristics of
interest no matter the type of stopping rule
—Frequentist power curve
« Type | error (null) and power (design alternative)
— Sample size requirements
« Maximum, average, median, other quantiles
« Stopping probabilities
—Inference at each boundary
« Frequentist point estimate, confidence interval, P value
— Futility measures
« Conditional power, predictive power
76
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Evaluating Sample Size

®ececcccccccccccccccccccccccee

Sample size a random variable

—Summary measures of distribution as a
function of treatment effect
« maximum (feasibility of accrual) (Sponsor)
* mean (Average Sample N- ASN)
« median, quartiles
— Stopping probabilities (Sponsor)

« Probability of stopping at each analysis as
a function of treatment effect

« Probability of each decision at each
analysis

(Sponsor, DMC)

7

Evaluating Power Curve

®ececcccccccccccccccccccccccee

Probability of rejecting null for
arbitrary alternatives

* Level of significance (power under (Regulatory)
null)
» Power for specified alternative (Scientists)
* Alternative rejected by design (scientists)
— Alternative for which study has high
power

« Interpretation of negative studies
78

Case Study:
Boundaries and Power Curves

@ececccccccccccccccccccccccce

O'Brien-Fleming, Pocock boundary shape functions
when J= 4 analyses and maintain power

FiedSange  ——

L L L
Tt Tt

Case Study:
Impact of Interim Analyses

eececccecccccccee eecee

Required increased maximal sample size in
order to maintain power
* Maximal sample size with 4 analyses
— O’'Brien-Fleming: N= 1773 ( 4.3% increase)
—Pocock N= 2340 (37.6% increase)

* Need to consider
—Average sample size
— Probability of continuing past 1700 subjects
— Conditions under which continue past 1700
subjects 80

(c) 2002, 2003, Scott S. Emerson, M.D.,

Ph.D.
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Case Study:
ASN, 75 otile of Sample Size

®ececcccccceecccccccccccccccee

O’Brien-Fleming, Pocock boundary shape
functions;J=4 analyses and maintain power

SymmODF Power

FiedSample
2

1800 asn L percantl

PN

1200

Samgle Sjze

1000

008 006 001 002 00 81

June 23,

Case Study:
Cumulative Stopping Probabilities

O'Brien-Fleming, Pocock boundary shape functions
when J=4 analyses and maintain power

lower —
uppe

L — L h S i S L
104 11111111111111111111111 11| 4444444444444444444444444 444444444444444444444 |

urletive Frobabilty

difference in probabilities

Case Study:
Impact of Interim Analyses

Increased maximal sample size actually
afforded better efficiency on average
—Pocock boundary shape function: lower ASN over
range of alternatives examined

« This improved behavior despite the 36.7% increase in
maximal sample size

—Worst case behavior
« O'Brien-Fleming: never more than N= 1773

« Pocock continues past 1755 only if MLE for treatment
effect is between -0.0357 and -0.0488

» Always less than 16.01% chance, which occurs
when the difference in mortality is -0.0422

83
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Case Study:

...Spansor’s Preferences

Sponsor preferred not to increase maximal
sample size beyond N= 1700

* When investigating the boundaries, the
sponsor was surprised to find that a difference
of -0.042 would be statistically significant

—No one had informed the clinical and management
teams of the boundary for the fixed sample test

—Such an effect was only of borderline clinical
importance

84
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Case Study:
Power Curves: Maintain N

®ececccccccccccccccccccce

OBF, Poc boundary shape functions when J= 2, 3,
or 4 analyses and maintain N = 1700

SmmoBF4  —— SmmoBF4  ——
SmmoBF2 === SymmOBF 2
SymmPoc3 e SymmPoc3

FitedSample  ——

June 23, 2003

L L
Touer

2010 008 008 004 002 00 2010 008 008 004 002 00

diference in probeiies diference in probeiies

Evaluating Boundaries

®ececcccccccccccccccccccccccee

Stopping boundary at each analysis

—On the scale of estimated treatment
effect
« Inform DMC of precision
* Assess ethics

» May have prior belief of unacceptable
levels

« Assess clinical, economic importance

—On the Z, fixed sample P value, or error
spending scales

(DMC,
Statisticians)

(DMC)

(Clinicians,
Marketing)

(Often asked
for, but of
questionable
relevance)

86

Case Study:
Tabled boundaries on MLE Scale

@eeccccccccccccccccccccccccee

Sanpl e Ef fi cacy Futility
Si ze Boundary Boundary

O’'Brien-Fleming
Time 1 425 -0.1710 0. 0855
Time 2 850 -0. 0855 0. 0000
Time 3 1275 -0.0570 -0. 0285
Tine 4 1700 -0. 0427 -0. 0427
Pocock
Tinme 1 425 -0.0991 0. 0000
Time 2 850 -0.0701 -0. 0290
Time 3 1275 -0.0572 -0.0419
Tine 4 1700 -0. 0496 -0. 0496
Fixed Sample
Tinme 1 1700 -0.0418 0. 0418 87
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Evaluating Inference

®ececcccccccccccccccccccccccee

Inference on the boundary at each
analysis
* Frequentist
—Adjusted point estimates
—Adjusted confidence intervals
—Adjusted P values

(Scientists,
Statisticians,
Regulatory)

88
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Case Study:
Inference ont

@eeccccccccccccee

e Boundaries

@eecccccccee

O'Brien-Fleming Pocock
BiasAdj
BiasAdj Estimat
N MLE |Estimate 95% CI Pval | MLE e 95% CI Pval
Efficacy
4251 -0.171 -0.163| (-0.224, -0.087) 0.000] -0.099 -0.089 | (-0.152, -0.015) 0.010
850 -0.086 -0.080 | (-0.130, -0.025) 0.002] -0.070 -0.065| (-0.114, -0.004) 0.018
1275] -0.057 -0.054 | (-0.096, -0.007) 0.012] -0.057 -0.055| (-0.101, -0.001) 0.023
1700] -0.043 -0.043| (-0.086, 0.000) 0.025] -0.050 -0.050 | (-0.099, 0.000) 0.025
Futility
4251 0.086 0.077 (0.001, 0.139) 0.977] 0.000 -0.010| (-0.084, 0.053) 0.371
850| 0.000 -0.006 | (-0.061, 0.044) 0.401] -0.029 -0.035| (-0.095, 0.014) 0.078
1275] -0.029 -0.031| (-0.079, 0.010) 0.067 | -0.042 -0.044 | (-0.098, 0.002) 0.029
1700] -0.043 -0.043| (-0.086, 0.000) 0.025] -0.050 -0.050 | (-0.099, 0.000) 0.025

89

Case Study:
Futility Bounda

eeecccccce .OO0.0.0.0.0QQ)(.O

Sponsor desired greater efficiency when
treatment effect is low
» Explored asymmetric designs with a range of
boundary shape functions from unified family
—P=0.5 (Pocock), 0.8, 0.9, 1.0 (O'Brien-Fleming)
e Compare unconditional power and ASN
curves

—Rationale: Are we losing power by stopping early?

« If not, then we are not making bad futility decisions on
average

91
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June 23,
Evaluating Futility
Probability that a different decision o
would resullt if trial continued Soonson

— Compare unconditional power to fixed
sample test with same sample size

— Conditional power
(Often asked

« Assume specific hypotheses for, but of
. questionable
« Assume current best estimate relevance)

— Predictive power
« Assume Bayesian prior distribution

90

Case Study:
Boundaries, Power, ASN Curves

®ececcccccccccccccccciocccccee

O'Brien-Fleming efficacy, spectrum of futility
boundaries; J= 4 analyses and N=1700

Power

Boundaries (Relative to Symmetric OBF) ASN

04
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Case Study:
..Sponsor’s Futility Boundary

@eeccccccccccccccece

Sponsor opted for futility boundary based on
P=0.8
» Power — ASN tradeoff

—Worst case loss of power .0071

« (from 0.738 to 0.731 when difference in mortality is -
0.0566)

—10.2% gain in average efficiency under null

* (ASN from 1099 to 987 when difference in mortality is
0.00)

93
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June
Case Study:
.l.§QtQOC.h.a.S.Oti.C.OQ.O[t.ati.ltrnent
We are sometimes asked about stochastic

curtailment

» Boundaries can be expressed on conditional
power and predictive power scales
— Conditional power:

« Probability of later reversing the potential decision at
interim analysis by conditioning on interim results and
presumed treatment effect

— Predictive power:
« Like conditional power, but use a Bayesian prior for the
presumed treatment effect

94

Case Study: Stochastic Curtailment

®ececcccccccccccccccccccccccee

Key issue: Computations are based on
assumptions about true treatment effect

— Conditional power
« “Design”: assume hypothesis being rejected
» (assumes observed data is relatively misleading)
« “Estimate”: assume that current data is representative
» (assumes observed data is exactly accurate)
— Predictive power
« “Prior assumptions”™: Use Bayesian prior distribution
» “Sponsor”: Centered at -0.07; plus/minus SD of 0.02
» “Noninformative”

95

Case Study:
Boundaries_on Futility Scales

@ececccccccccccccccccccccccce

Symmetric O’ Brien-Fleming O’ Brien-Fleming Efficacy, P=0.8 Futility

Conditional Power | Predictive Power Conditional Power | Predictive Power

N MLE | Design | Estimat Sponsorl Noninf | MLE | Design | Estimat Sponsorl Noninf

Efficacy (rejects 0.00) Efficacy (rejects 0.00)

425]-0.171 0.500 0.000 0.002 0.000| -0.170 0.500 0.000 0.002 0.000

850 | -0.085 0.500 0.002 0.015 0.023] -0.085 0.500 0.002 0.015 0.023

1275 -0.057 0.500 0.091 0.077 0.124] -0.057 0.500 0.093 0.077 0.126

Futility (rejects -0.0855) Futility (rejects -0.0866)

425] 0.085 0.500 0.000 0.077 0.000| 0.047 0.719 0.000 0.222 0.008

850 0.000 0.500 0.002 0.143 0.023] -0.010 0.648 0.015 0.247 0.063

1275 -0.028 0.500 0.091 0.241 0.124] -0.031 0.592 0.142 0.312 0.177

2003, Scott S. Emerson, M.D.,
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Case Study:
..Education of DMC, Sponsor

@eecccccccccccccee

Very different probabilities based on
assumptions about true treatment effect

— Extremely conservative O’Brien-Fleming
boundaries correspond to conditional power of
50% (!) under alternative rejected by the boundary

—Resolution of apparent paradox: if the alternative
were true, there is less than .0001 probability of
stopping for futility at the first analysis

97

June 23, 2003

Stochastic Curtailment Comments
Neither conditional power nor predictive
power have good foundational motivation

* Frequentists should use Neyman-Pearson
paradigm and consider optimal unconditional
power across alternatives

» Bayesians should use posterior distributions
for decisions

98

Stochastic Curtailment Comments

My experience
* | have consulted with many researchers on

successive clinical trials

— Often | am asked about stochastic curtailment the
first time

—Never have | been asked about it on the second
trial

99
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Evaluating Marketable Results

®ececcccccccccccccccccccccccee

Probability of obtaining estimates of
treatment effect with clinical (and
therefore marketing) appeal
» Modified power curve (Marketing)
—Unconditional
— Conditional at each analysis

* Predictive probabilities at each
analysis

100
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Case Study:
Marketabili

.OOOOOococ.c.c.c.coc)‘.c.c.c.c

Potential to have statistically significant
treatment effect estimate of -0.06 or better
» O'Brien-Fleming efficacy boundary at third
analysis:
—Terminate if bias adjusted estimate -0.055 or better

—What is the chance of obtaining -0.06 or better at
the fourth analysis if study continues?

« If true effect is -0.07, probability of 4.1% of BAM < -0.06

« If true effect is -0.06, probability of 3.6% of BAM < -0.06

101

June 23, 2003

Case Study:
..Modification for Marketability

@eeccccccccccccccccccccccee

Modify third analysis efficacy boundary to
correspond to BAM of -0.06 or better
* Probability of BAM < -0.06 increases

—If true effectis -0.07: from 66.6% to 68.6%
—If true effectis -0.06: from 50.4% to 54.0%

102

Final Comments

®ececcccccccccccccccccccccccee

Adaptive designs versus prespecified
stopping rules
» Adaptive designs come at a price of efficiency
» With careful evaluation of designs, there is
little need for adaptive designs

— Everything | showed today was known prior to
collecting any data in the clinical trial

— Prespecified stopping rules can be chosen which
find best tradeoffs among the various
collaborators’ optimality criteria

103
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Limitations of Foregoing

®ececcccccccccccccccccccccccee

We have not yet verified that the clinical trial
design will be judged credible by a
sufficiently large segment of the scientific
community

» Bayesians do not regard frequentist inference
as relevant

» We thus need to consider how to evaluate the
Bayesian operating characteristics

104
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Bayesian Methods

@eeecccccccccccccccccccccccccee

Bayesian Paradigm

105

June 23, 2003

Hallmark of Frequentist Inference

®ececcccccccccccccccccccccccee

Frequentist inference considers the
distribution of the data conditional on a
presumed (fixed) treatment effect

ra r

Power curve : ?2RI2PI22C, 190 |2
A 2.2 0% N 292
Clfor? ? z: R =22 ?z|?271?7—>
? 2 27

Unbiased estimates :
Efficient estimates :

ES 2%

minimize Var?5|??
106

Bayesian Paradigm

®ececcccccccccccccccccccccccee

In the Bayesian paradigm, the parameter
measuring treatment effect is regarded as
a random variable

* A prior distribution for ? reflects
—Knowledge gleaned from previous trials, or
—Frequentist probability of investigators’ behavior, or
— Subjective probability of treatment effect

107
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Posterior Distribution

Bayes'’ rule is used to update beliefs about
parameter distribution conditional on the
observed data

r r
pX,Y 227"

3%, v?
PEIX.Y DX, Y12 2P

where
?2%? isaprior distribution for ?

108
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Bayesian Inference

®ececcccccccccccccccccccccccee

Bayesian inference is then based on the
posterior distribution

—Point estimates:

« A summary measure of the posterior probability
distribution (mean, median, mode)

—Interval estimates:

« Set of hypotheses having the highest posterior density
—Decisions (tests):

« Reject a hypothesis if its posterior probability is low

« Quantify the posterior probability of the hypothesis

109

June 23, 2003

Information Required for Inference

®ececcccccccccccccccccccccccee

Information required for inference

* Frequentist
—Tests: need the sampling distribution under the null

—Estimates: need the sampling distribution under all
hypotheses

» Bayesian
—Tests and estimates: need the sampling
distribution under all hypotheses and a prior
distribution

110

Frequentist vs Bayesian

®ececcccccccccccccccccccccccee

* Frequentist

— A precise (objective) answer to not quite the right
guestion

—Well developed nonparametric and moment based
analyses (e.g., GEE)

— Conciseness of presentation

» Bayesian
— A vague (subjective) answer to the right question

—Adherence to likelihood principle in parametric

settings (and coarsened approach)
111
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Example: 4 Full Houses in Poker

®ececcccccccccccccccccccccccee

Bayesian:

—Knows the probability that | might be a cheater
based on information derived prior to observing
me play

—Knows the probability that | would get 4 full
houses for every level of cheating that | might
engage in

—Computes the posterior probability that | was not
cheating (probability after observing me play)

—If that probability is low, calls me a cheater

112
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Example: 4 Full Houses in Poker

®ececcccccccccccccccccccccccee

Frequentist:
—Hypothetically assumes | am not a cheater

—Knows the probability that | would get 4 full
houses if | were not a cheater

—If that probability is sufficiently low, calls me a
cheater
« Even if the frequentist dealt the cards!

113

June 23, 2003

Frequentist AND Bayesian

®ececcccccccccccccccccccccccee

| take the view that both approaches need to
be accomodated in every analysis
*Goal of the experiment is to convince the
scientific community, which likely includes
believers in both standards for evidence

*Bayesian priors should be chosen to reflect
the population of priors in the scientific
community

114

Unified Approach

Joint distribution for data and parameter
pIX, Y
Frequentist considers
P, Y2
Bayesian considers
PP X, Y

115
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Issues to be Addressed

®ececcccccccccccccccccccccccee

Choice of probability model for data

* For unified approach to make sense, the
frequentist and Bayesian should use the
same conditional distribution of the data

—"“Law of the Unconscious Frequentist”:

« Gravitate toward models with good nonparametric
behavior

Choice of prior distributions

» Everyone brings their own
116
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Bayesian Methods

@eeecccccccccccccccccccccccccee

Probability Models

117

June 23, 2003

Probability Models

®ececcccccccccccccccccccccccee

Parametric, semiparametric, and
nonparametric models for two samples
» My definition of semiparametric models is a
little stronger than some statisticians

—The distinction is to isolate models with
assumptions that | think too strong

* Notation for two sample probability model
iid
Treatment :  X,;, ,X,~F

Control : Y, LY,

118

Parametric Models

®ececcccccccccccccccccccccccee

F, G are known up to some finite
dimensional parameter vectors

F19272 1,7 « !
G1722%2,7
where:

2 %% hasknown form

? isfinite dimensional and unknown

119
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Parametric Models: Examples

®ececcccccccccccccccccccccccee

Normal:  X; ~N2,22! Y, ~N?,2%!
Bernoulli:  X; ~B?? Y, ~B22?
Exponential : X, ~E?? Y, ~E??

120
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Semiparametric Models

Forms of F, G are unknown, but related to
each other by some finite dimensional
parameter vector

* G can be determined from F and a finite
dimensional parameter

» (Most often: Under the null hypothesis, F = G)

121

June 23, 2003

Semiparametric Models: Notation

®ececcccccccccccccccccccccccee

F191221,72 !
G172212,7
where:
2 %% hasunknownform (int)

? % isfinitedimensiond and known (identifiability)

?y  isfinitedimensiond and unknown

122

Semiparametric Models: Examples

®ececcccccccccccccccccccccccee

Shift : Gt ?F12?"
. 2t?27 2
Shift-scale: G172 FH>———%
2?2 2

Accd failure: G172 F127?
Prophzd: 1-G?7212F%7

123
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Nonparametric Models

®ececcccccccccccccccccccccccee

Forms of F, G are completely arbitrary and
unknown

» An infinite dimensional parameter is needed
to derive the form of G from F

* (Sometimes we consider “nonparametric
families with restrictions”, e.g., stochastic
ordering)

124
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A Logical Disconnect

®ececcccccccccccccccccccccccee

“Because thelight is so
much better
here under the streetlamp”

- adrunk looking for the keys
helost half a block away

125

June 23, 2003

History

®ececcccccccccccccccccccccccee

In the development and (especially)
teaching of statistical models, parametric
models have received undue emphasis

» Examples:

—ttest is typically presented in the context of the
normal probability model

—theory of linear models stresses small sample
properties
—random effects specified parametrically

—Bayesian (and especially hierarchical Bayes)
models are replete with parametric distributions

The Problem

®ececcccccccccccccccccccccccee

Incorrect parametric assumptions can lead
to incorrect statistical inference
 Precision of estimators can be over- or
understated
—Hypothesis tests do not attain the nominal size
» Hypothesis tests can be inconsistent

—Even an infinite sample size may not detect the
alternative

* Interpretation of estimators can be wrong

127
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Inflammatory Assertion

®ececcccccccccccccccccccccccee

(Semi)parametric models are not typically in
keeping with the state of knowledge as an
experiment is being conducted

* The assumptions are more detailed than the
hypothesis being tested, e.g.,
— Question: How does the intervention affect the first
moment of the probability distribution?
— Assumption: We know how the intervention affects
the 2nd, 3rd, ..., 8 central moments of the
probability distribution.

128
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Foundational Issues: Null

®ececcccccccccccccccccccccccee

Which null hypothesis should we test?
» The intervention has no effect whatsoever

Ho:F(t) 2 G(t),?t

» The intervention has no effect on some
summary measure of the distribution

Ho:? 22

129

June 23, 2003

Foundational Issues: Alternative

®ececcccccccccccccccccccccccee

What should the distribution of the data
under the alternative represent?

» Counterfactual

—An imagined form for F(t), G(t) if something else
were true

» Empirical
—The most likely distribution of the data if the
alternative hypothesis about ? were true

130

My Views
The null hypothesis of greatest interest is
rarely that a treatment has no effect
* Bone marrow transplantation
* Women'’s Health Initiative
» National Lung Screening Trial

The empirical alternative is most in keeping
with inference about a summary measure

131
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An Aside

®ececcccccccccccccccccccccccee

The above views have important
ramifications regarding the computation of
standard errors for statistics under the null

» Permutation tests (or any test which
presumes F=G under the null) will generally
be inconsistent

132
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Problem with (Semi)parametrics

®ececcccccccccccccccccccccccee

Many mechanisms would seem to make it
likely that the problems in which a fully
parametric model or even a semiparametric
model is correct constitute a set of measure
zero

*Exception: independent binary data must be
binomially distributed in the population from
which they were sampled randomly
(exchangeably?)

133

Supporting Arguments

®ececcccccccccccccccccccccccee

Example 1: Cell proliferation in cancer
prevention

—Within subject distribution of outcome is skewed
(cancer is a focal disease)

— Such skewed measurements are only observed in
a subset of the subjects

—The intervention affects only hyperproliferation (our
ideal)

134
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Supporting Arguments

®ececcccccccccccccccccccccccee

Example 2: Treatment of hypertension
—Hypertension has multiple causes
—Any given intervention might treat only subgroups
of subjects (and subgroup membership is a latent
variable)
—The treated population has a mixture distribution

« (and note that we might expect greater variance in the
group with the lower mean)

135

Supporting Arguments

®ececcccccccccccccccccccccccee

Example 3: Effects on rates
—The intervention affects rates
—The outcome measures a cumulative state

— Arbitrarily complex mean-variance relationships
can result

136
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A Non-Solution: Model Checking

®ececcccccccccccccccccccccccee

Model checking is apparently used by many
to allow them to believe that their models
are correct.

» From a recent referee’s report:
—"“l know of no sensible statistician (frequentist or
Bayesian) who does not do model checking.”
» Apparently the referee believes the following
unproven proposition:
—If we cannot tell the model is wrong, then statistical
inference under the model will be correct

137
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A Non-Solution: Model Checking

®ececcccccccccccccccccccccccee

Counter example: Exponential vs Lognormal
medians

* Pretest with Kolmogorov-Smirnov test (n=40)
—Power to detect wrong model
¢ 20% (exp); 12% (Inorm)
— Coverage of 95% CI under wrong model
* 85% (exp); 88% (Inorm)

138

A Non-Solution: Model Checking

®ececcccccccccccccccccccccccee

Model checking particularly makes little
sense in a regulatory setting

e Commonly used null hypotheses presume the
model fits in the absence of a treatment effect
—Frequentists would be testing for a treatment effect
as they do model checking
» Bayesians should model any uncertainty in
the distribution
— Interestingly, if one does this, the estimate

indicating parametric family will in general vary

with the estimate of treatment effect 130
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Impact on Statistical Optimality

®ececcccccccccccccccccccccccee

Impact on what we teach about optimality of
statistical models

* Clearly, parametric theory may be irrelevant in
an exact sense (though as guidelines it is still
useful)

» Much of what we teach about the optimality of
nonparametric tests is based on
semiparametric models

—e.g., Lehmann, 1975: location-shift models

140
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Example: Wilcoxon Rank Sum Test

®ececcccccccccccccccccccccccee

Common teaching:
— A nonparametric alternative to the t test
—Not too bad against normal data
—Better than t test when data have heavy tails
— (Some texts refer to it as a test of medians)

141

Example: Wilcoxon Rank Sum Test

®ececcccccccccccccccccccccccee

More accurate guidelines:

—In the general case, the t test and the Wilcoxon are
not testing the same summary measure

« Wrong size as a test of Pr(X > Y) unless you assume a
semi-parametric model on some scale

 Inconsistent test of F(t) = G(t)
¢ (And the Wilcoxon is not transitive)
— Efficiency results when a shift model holds for
some monotonic transformation of the data
« If propensity to outliers is different between groups, the t
test may be better even with heavy tails
—(The variance can be modified to achieve
consistency) 142

(c) 2002,
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Nonparametric Approach

®ececcccccccccccccccccccccccee

The summary measure (functional)
measuring treatment effect is just some
difference between distributions

2 2dF,G"

*(Almost always, the problem is ultimately
reduced to a 1-dimensional statistic)

143

Comparison of Summary Measures

®ececcccccccccccccccccccccccee

Typical approaches to compare response
across two treatment arms

Difference / ratio of means (arithmetic, geometric, ...)
Difference / ratio of medians (or other quantiles)

Median difference of paired observations

Difference / ratio of proportion exceeding some threshold
Ratio of odds of exceeding some threshold

Ratio of instantaneous risk of some event

» (averaged across time?)

Probability that a randomly chosen measurement from
one population might exceed that from the other

144
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Goal

®ececcccccccccccccccccccccccee

We thus want to find nonparametric models
which
* Include commonly chosen parametric models
» Can be implemented in a Bayesian setting

It is useful to consider how (semi)parametric
models are actually used

145

June 23, 2003

Statistical Models

How are (semi)parametric assumptions
really used in statistical models?
*» Choice of functional for comparisons

» Formula for computing the estimate of the
functional

* Distributional family for the estimate

» Mean-variance relationship across
alternatives

» Shape of distribution for data

146

Choice of Functional

®ececcccccccccccccccccccccccee

sParametric: Driven by efficiency of functional
for the particular parametric family

« Normal: use mean

« Lognormal: use (log) geometric mean

« Double exponential: use median

¢ Uniform: use maximum
*Semiparametric: Choose functional for
scientific relevance, etc., then adopt a
semiparametric model in which desired

functional is basic to model

« Survival data: consider hazard ratio and use

proportional hazards
147
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Choice of Functional

Better bases for choosing summary
measure for decisions in order of
importance (nonparametric)
 Current state of scientific knowledge
« Scientific (clinical) relevance
* Potential for intervention to affect the measure
» Statistical accuracy and precision of analysis

148
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Statistical Models

How are (semi)parametric assumptions
really used in statistical models?
*» Choice of functional for comparisons

» Formula for computing the estimate of the
functional

* Distributional family for the estimate

» Mean-variance relationship across
alternatives

» Shape of distribution for data

149
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Computing Estimates

®ececcccccccccccccccccccccccee

» Parametric: Estimate parameters and then
derive summary measures from parametric
model

—E.g., estimating the median
+ Normal: estimate mean; median=mean

« Exponential: estimate mean; median = mean / log(2)

« Lognormal: estimate geometric mean; median =
geometric mean

150

Computing Estimates

®ececcccccccccccccccccccccccee

» Semiparametric:
—Parameter is fundamental to probability model

—Use both groups to estimate parameter using the
assumption that we can transform one group by
the parameter and obtain the same distribution as
the other group

« E.g., proportional hazards model

» Hazard ratio estimate is average of hazard ratios at
each failure time

151

2003, Scott S. Emerson, M.D.,

(Semi)parametric Example

®ececcccccccccccccccccccccccee

Survival cure model (Ibrahim, 1999, 2000)

— Probability model

« Proportion p; is cured (survival probability 1 at 8) in the i-
th treatment group

« Noncured group has survival distribution modeled
parametrically (e.g., Weibull) or semiparametrically (e.g.,
proportional hazards)

« Treatment effect is measured by ? = p; — p,
—The problem as | see it: Incorrect assumptions
about the nuisance parameter can bias the
estimation of the treatment effect
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Computing Estimates
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» Nonparametric: Estimate summary measures
from nonparametric empirical distribution
functions

—E.g., use sample median for inference about
population medians

— Often the nonparametric estimate agrees with a
commonly used (semi)parametric estimate
« Interpretation may depend on sampling scheme

« In this case, the difference will come in the computation
of the standard errors
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Statistical Models

How are (semi)parametric assumptions
really used in statistical models?
*» Choice of functional for comparisons

» Formula for computing the estimate of the
functional

* Distributional family for the estimate

» Mean-variance relationship across
alternatives

» Shape of distribution for data

154

Distribution for Estimate
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» Parametric: Use probability theory to derive
distribution of estimate
—E.g., estimating the median
* Normal: sample mean is normal
« Exponential: sum is gamma
« Lognormal: log geometric mean is normal
» Semiparametric:

—Small sample properties: Conditional distributions
based on permutation

—Large sample properties: Asymptotics
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Distribution for Estimate
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* Nonparametric: Asymptotic normal theory
(almost always)

—Most nonparametric estimators involve a sum
somewhere

— Central limit theorem holds (like it or not)
¢ Thus gamma distributions converge to a normal...
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Statistical Models

How are (semi)parametric assumptions
really used in statistical models?
*» Choice of functional for comparisons

» Formula for computing the estimate of the
functional

* Distributional family for the estimate

» Mean-variance relationship across
alternatives

» Shape of distribution for data
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Mean-Variance Relationships
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Asymptotically, most summary measures
have a limiting normal distribution
(exception is the supremum of the
difference between the cdf’s)

* In this setting, we need only estimate the
variance of the sampling distribution under
specific hypotheses

—Formulas
—Bootstrapping within groups (Population model)

— Permutation distributions (Randomization model)
158

Asymptotic Distributions
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Mean-Variance Relationships
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In most cases, however, it must be
recognized that we can only estimate the
variance under the truth, which may not
correspond to a hypothesis of interest

— If the intervention can affect the variance of the
summary measures, then we must account for a
mean-variance relationship when considering
different hypotheses
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Mean-Variance Relationships
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Example: Two sample test of binomial

proportion
r r r r
~ 2 17 2 . 2 1?7 p, 2
Py ~?px,—px:L P £ ~?py,—|DY:L B 15
? n ? ? m 7

Var 82 p, 2, % b 32 p, 7, P27 ?
n m
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Example: Estimating Variances
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Two sample test of binomial proportion

*Estimated variance is subject to
—Sampling variability
—Difference between the truth and the hypothesis

~ r ~ r ~ r A r
vars o Px A7 Pxto B2y
n m

512 5? 5A2B?
Var%,?? pa? p?, pa? p’
n m
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Estimating Mean-Variance
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Estimating mean variance relationships

—May not be too important for frequentist tests of the
null hypothesis, because convention often dictates
the null variance we should use

« Use randomization and/or population variances in
adversarial argument
» However confidence intervals and all
Bayesian inference are statements about
what data would arise under a variety of
hypotheses

« We must have some idea about how the variance might

change with the mean
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Possible approaches to the mean-variance
relationship estimation

» Explore various mean-variance relationships
—Bootstrap tilting could be used here

r.Ar
Var ? 1?2?27?'

» Assume no mean-variance relationship
 Sensitivity analyses intermediate to the two
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Mean-Variance Relationship
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A key issue is deciding how many
observations are present for estimating the
mean-variance relationship

—If the control group can be used to estimate
behavior under the null and the treatment group
under the alternative, then possibly have two

—If an active intervention modifies the response in
both groups or in population model, then may only
have one
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Statistical Models

How are (semi)parametric assumptions
really used in statistical models?
*» Choice of functional for comparisons

» Formula for computing the estimate of the
functional

* Distributional family for the estimate

» Mean-variance relationship across
alternatives

» Shape of distribution for data
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Statistical Models
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Shape of distribution for data

» Only really an issue for prediction, which is
not considered here
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Bayesian Methods

Nonparametric
Bayesian Models

168
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Possible Approaches
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Nonparametric Bayesians have focussed
primarily on Dirichlet process priors
* Prior placed on all multinomial distributions
» Can be chosen to include all distributions
Interpretation of priors is extremely difficult

» How much mass is placed on bimodal
distributions?

Correspondence with frequentist methods?
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“Coarsened” Data Approach
Modification for nonparametric models

» Use summary measure estimate as the data

—Use asymptotic distributions under population
model

r. r
p?|? 27"

p?>|’.5??

0812 2P0
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Impact of Coarsening Data
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If

* the parameter estimate is the sufficient
statistic,

« if the estimate is approximately normal, and
 the mean-variance relationship is correct
Then

« the only difference is using the approximate

normal distribution instead of the parametric
form
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Advantage of Coarsening Data

» Same probability model typically used by
frequentists
—Robust inference about summary measure

 Specification of prior distributions on the
parameter of interest

—Choice of conjugate normals allows conciseness of
presentation using contour plots

172
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Concise Reporting of Results

The chief advantage of frequentist inference
(to my mind) is that it presents a standard
for concise presentation of results

— Estimates, standard errors, P values, Cl

Bayesian analysis requires such a
presentation for every prior
—Your prior does not matter to me

— A consensus prior will not capture the diversity of
prior opinion
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Sensitivity Analysis Across Priors

In the context of the coarsened Bayes
approach, we can adopt a standard based
on conjugate normal priors
» Two dimensional space of prior distributions

— Prior mean (pessimism)

— Prior standard deviation (dogmatism)

« Also can be measured as information in prior relative to
that in planned sample
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Sensitivity Analysis Across Priors

» Bayesian inference as a contour plot for each
inferential quantity
—Posterior mean
— Limits of credible intervals
— Posterior probabilities

» Under sequential sampling, present contour
plots for each analysis time
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Case Study:
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Case Study:
_..Posterior Probability of Hypotheses

Nonparametric Bayesian Models

Advantages and disadvantages of such
sensitivity analyses
» To the extent that people can only describe
the first two moments of their prior:
— A convenient standard for presentation

—But, normal prior is less informative than other
priors having the same mean and variance
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Mean-Variance Relationship

Mean-variance relationship

 Provide a prior distribution for summary
measure that incorporates a prior on the
mean-variance relationship

* Note that the concept of updating the prior is
probably not valid here, because there is
really no added information about mean-
variance relationship

—The mean variance relationship is observed at two
points (at most) 179

Nonparametric Bayesian Models

Ramifications

» The approach to using estimates as the data
does mean that in some cases we cannot
regard that we are continually updating our
posterior

—E.g.: The sample median of the combined sample
is not necessarily a weighted mean of the sample
median from two separate samples
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Secondary Endpoints
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The approach proposed here requires a
graph for every number that would have
been reported in a frequentist analysis

* | doubt many editors will agree

It should be clear, however, that the
frequentist nonparametric estimate and
standard error are sufficient for a reader to
perform his/her own sensitivity analysis
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Final Comments
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Final Comments
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The driving force in a clinical trial should be
a valid scientific experiment in an ethical
manner
» The approach proposed here has placed

greatest emphasis on
—robustness, and
— communicability (concise standards)
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Final Comments
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There are many aspects which could be
improved
» Behavior of estimates for mean-variance
relationship
— Empirical approaches
* Robustness to “model misspecification”
—e.g., linear contrasts used with nonlinear trends
* Adjustment for covariates
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Final Comments

There are some important issues not really
addressed at all
» Time-varying treatment effects

—Nonproportional hazards
—Longitudinal data
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