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Topics:

* First (and a half) Session: General Setting
— Censored data setting
— Estimation of survivor functions
— Survival analysis models

» Second session: Comparison of Two Samples
— Logrank statistic
— Nonproportional hazards
— Weighted logrank statistics

» Third session: Sequential Analysis
— Stopping rules
— Weighted logrank statistics in nonproportional hazards
— Reweighted statistics

Overview
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Scientific Studies

Fundamental Philosophy

Statistics is about science.

Science is about proving things to people.
» Other scientists
« Community at large




Scientific Studies

A well designed study
* Discriminates between the most important,
viable hypotheses
— “Discriminates” defined by what convinces your
audience
* Is equally informative for all possible study
results
—Binary search using prior probability of being true
— Also consider simplicity of experiments, time, cost

(The Scientist Game)

Scientific Questions

Ultimately, scientific questions are most
often concerned with investigating cause
and effect
* E.g., in biomedical settings:

—What are the causes of disease?
—What are the effects of interventions?

Typical Inferential Setting

In the studies considered here, we define

* Some “primary outcome” measurement
— A “response variable” in regression
» Groups that are homogeneous with respect to
the level of some factor(s)
— Predictor of interest
— Effect modifiers
— Confounders
— Precision variables

Primary Outcome Measurement

The primary outcome can be derived from
more than one measured variable

—E.qg., for repeated measurements made on the
same experimental unit
+ Contrast across repeated measurements
» Weighted average of repeated measurements
—E.g., for random process defined by longitudinal
follow up of experimental units
+ Contrast across time
» Weighted average over time
* Time until an event




Typical Scientific Hypotheses

The specified level of some factor will cause
outcome measurements that are

~N N
higher than,
an absolute standard, or

< lower than, or >< >

measurements in a
comparison group

h
about the same as D L )

Causation vs Association

Truly determining causation requires a
suitable interventional study (experiment)
— Statistical analyses tell us about associations
— Associations in the presence of an appropriate

experimental design allows us to infer causation

+ But even then, we need to be circumspect in identifying
the true mechanistic cause
» E.g., a treatment that causes headaches, and
therefore aspirin use, may result in lower heart attack
rates due entirely to the use of aspirin
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First Statistical Refinement

The group with the specified level of some
factor will have outcome measurements

that are
~N N
higher than,
an absolute standard, or

< lower than, or >< >

measurements in a
comparison group

bout th
aboutthe same as g W,

Deterministic Setting

Conditions of scientific studies might make
answering questions difficult even when
study results are deterministic

— Difficulties in isolating specific causes
» E.g., isolating REM sleep from total sleep
* E.g., interactions between genetics and environment
— Difficulties in measuring potential effects
* E.g., measuring time to survival
» length of study
» competing risks
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Can Statistics Help?

Litmus Test # 1:

* If the scientific question cannot be answered
by an experiment when outcomes are entirely
deterministic, there is NO chance that
statistics can be of any help.

Variation in Response

There is, of course, usually variation in
outcome measurements across repetitions
of an experiment

« Variation can be due to

—Unmeasured (hidden) variables
» E.g., mix of etiologies, duration of disease, comorbid
conditions, genetics when studying new cancer therapies

— Inherent randomness
+ (as dictated by quantum theory)
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Second Statistical Refinement

The group with the specified level of some
factor will tend to have outcome

measurements that are
~N N
higher than,
an absolute standard, or

< lower than, or >< >

measurements in a
comparison group

\_ _/

about the same as

Refining Scientific Hypotheses
In order to be able to perform analysis we
must define “will tend to have”

* Probability model for response
—Nonparametric, semiparametric, parametric

(Looking ahead: | am a big proponent of
nonparametric interpretations of statistical
analyses)
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Ordering Probability Distributions

In general, the space of all probability
distributions is not totally ordered
—There are an infinite number of ways we can
define a tendency toward a “larger” outcome
— This can be difficult to decide even when we have
data on the entire population
« Ex: Is the highest paid occupation in the US the one with
» the higher mean?
» the higher median?
» the higher maximum?
» the higher proportion making $1M per year?

Can Statistics Help?

Litmus Test # 2:

« If the scientific researcher cannot decide on
an ordering of probability distributions which
would be appropriate when measurements
are available on the entire population, there is
NO chance that statistics can be of any help.
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Summary Measures

Typically we order probability distributions
on the basis of some summary measure

« Statistical hypotheses are then stated in terms
of the summary measure
— Primary analysis based on detecting an effect on
(most often) one summary measure

« Avoids pitfalls of multiple comparisons
» Especially important in a regulatory environment

Purposeful Vagueness
What | call “summary measures”, others

might call “parameters”

—“Parameters” suggests use of parametric and
semiparametric statistical models
» | am generally against such analysis methods

“Functionals” is probably the best word
—“Functional’= anything computed from a cdf
—But too much of a feeling of “statistical jargon”
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Marginal Summary Measures

Many times, statistical hypotheses are
stated in terms of summary measures for
univariate (marginal) distributions

* Means (arithmetic, geometric, harmonic, ...)

* Medians (or other quantiles)

» Proportion exceeding some threshold

* Odds of exceeding some threshold

« Time averaged hazard function (instantaneous risk)

.
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Comparisons Across Groups

Comparisons across groups then use
differences or ratios

« Difference / ratio of means (arithmetic, geometric, ...)

« Difference / ratio of proportion exceeding some threshold
« Difference / ratio of medians (or other quantiles)

+ Ratio of odds of exceeding some threshold

+ Ratio of hazard (averaged across time?)
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Joint Summary Measures

Other times groups are compared using a
summary measure for the joint distribution

« Median difference / ratio of paired observations

 Probability that a randomly chosen measurement from
one population might exceed that from the other

.
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Looking Ahead: Transitivity

The distinction between marginal versus
joint summary measures impacts
comparisons across studies

— Most often (always?) transitivity is not guaranteed
unless comparisons can be defined using marginal
distributions

* Intransitivity: Pairwise comparisons might suggest
» A>B, and
» B> C, but
» C>A

24




Can Statisticians Help?

While | claim that the choice of the definition
for “tends to be larger” is primarily a
scientific issue, statisticians do usually
play an important role

« Statisticians do explain how different
summary measures capture key features of a
probability distribution

25

Overview

Choice of Summary Measure
for Inference
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Hypothetical Example: Setting

Consider survival with a particular treatment
used in renal dialysis patients

 Extract data from registry of dialysis patients

—To ensure quality, only use data after 1995
« Incident cases in 1995: Follow-up 1995 — 2002 (8 years)
» Prevalent cases in 1995: Data from 1995 - 2002
» Incident in 1994: Information about 2" — 9th year
» Incident in 1993: Information about 3 — 10t year
» ...
» Incident in 1988: Information about 8t — 15t year
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Hypothetical Example: Analysis

Methods to account for censoring/truncation
+ Descriptive statistics using Kaplan-Meier

» Options for inference
— Parametric models
* Weibull, lognormal, etc.
— Semiparametric models
» Proportional hazards, etc.
—Nonparametric
» Weighted rank tests: logrank, Wilcoxon, etc.
» Comparison of Kaplan-Meier estimates

28




Hypothetical Example: KM Curves

Kaplan-Meier Curves for Simulated Data (n=5623)
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Time (years) 29

Who Wants To Be A Millionaire?

Proportional hazards analysis estimates a
Treatment : Control hazard ratio of

A:  2.07 (logrank P =.0018)
B: 1.13 (logrank P =.0018)
C: 0.87 (logrank P =.0018)
D: 0.48 (logrank P =.0018)

—Lifelines:
* 50-50? Ask the audience? Call a friend?
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Criteria for Summary Measure

We choose some summary measure of the
probability distribution according to the
following criteria (in order of importance)

— Scientifically (clinically) relevant
» Also reflects current state of knowledge
—Is likely to vary across levels of the factor of
interest
» Ability to detect variety of changes
— Statistical precision
» Only relevant if all other things are equal
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Example of Scientific Issues

* E.g., Is the arithmetic mean’s sensitivity to
outliers desirable or undesirable?
— Do we want to detect better infant mortality?
— Does making one person immortal make up for
killing others prematurely?
* E.g., Is the scientific importance of a
difference in distribution best measured by the
proportion exceeding some threshold?

—Is an increase in survival time only important if the
patient eventually makes it out of intensive care?

32




Common Practice
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The overwhelming majority of statistical
inference is based on means

—Means of continuous random variables
« ttest, linear regression

— Proportions (means of binary random variables)
« chi square test (t test)

—Rates (means) for count data
« Poisson analyses

33

Use of the Mean
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Rationale

— Scientific relevance
» Measure of “central tendency” or “location”
» Related to totals, e.g. total health care costs
— Plausibility that it would differ across groups
» Sensitive to many patterns of differences in distributions
(especially in tails of distributions)
— Statistical properties
« Distributional theory known
» Optimal (most precise) for many distributions
+ (Ease of interpretation?)
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Comments on Statistical Criteria

Many of the reasons used to justify other
tests are based on misconceptions

— The validity of t tests does NOT depend heavily
upon normally distributed data
» Modern computation allows exact small sample inference
for means in same manner as used for other tests
—The statistical theory used to demonstrate
inefficiency of the mean is most often based on
unreasonable (and sometimes untestable)
assumptions
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(Right) Censored Data

The Setting

36




Censored Variables

A special type of missing data

* The exact value is not always known
—Right censoring:

« For some observations it is only known that the true
value exceeds some threshold

— Left censoring:

» For some observations it is only known that the true
value is below some threshold

— Interval censoring:

» For some observations it is only known that the true
value is between some thresholds
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Example

A clinical trial is conducted to examine

aspirin in prevention of cardiovascular
mortality
— 10,000 subjects are randomized equally to receive
either aspirin or placebo
— Subjects are randomized over a three year period

— Subjects are followed for fatal events for an

additional three year period following accrual of the
last subject

38

The Problem

At the end of the clinical trial
* Some subjects have been observed to die
—True time to death is known for these subjects
* Most subjects are likely to be still alive

—Death times of these subjects are only known to be
longer than the observation time

—“(Right) Censored observations”

39

What Should We Do?

*Cannot ignore
—These are our treatment successes
*Cannot just treat as binary (live/die) data:

—Potential time of follow-up (censoring time) differs

across subjects due to time of study entry
« Confounding vs loss of precision

—(Censored data may also arise due to loss to
follow-up, e.g., moved away)

—(Could figure out whether alive/dead at earliest
censored observation, but this is inefficient and
may not answer the question of interest)

40




Right Censored Data
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Notation:
Unobserved :
True times to event : {ﬂo,ﬂo,...,Tno}

Censoring Times : {Cl ,Cy,..,C, }

Observed data :
Observation Times: T, = min(Tl.O,C[ )
1 if7=T"
Event indicators : D, = L K
0 otherwise »

(Right) Censored Data

Motivating Example

42

Motivating Example

Hypothetical study of subject survival
» Subjects accrued to study and followed until
time of analysis

— Study done at three centers, which started the
studies in three successive years

— Censoring time thus differs across centers

43

Data (Real Time)

Staggered study entry by site

Accrual Group

Year A B C
1990 On study 100 - -
Died 43
Surviving 57
1991 On study 57 100 --
Died 27 53
Surviving 30 47
1992 On study 30 47 100
Died 13 22 55

Surviving 17 25 45

44




Data (Study Time)
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Realign data according to time on study

Accrual Group

Year A B C
1 On study 100 100 100
Died 43 53 55
Surviving 57 47 45
2 On study 57 47 -=
Died 27 22
Surviving 30 25
3 On study 30 - -
Died 13
Surviving 17

45

Combined Data
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Accrual Group

Year A B c Combined

1 On study 100 100 100 300
Died 43 53 55 151
Surviving 57 47 45 149

2 On study 57 47 - 104
Died 27 22 49
Surviving 30 25 55

3 On study 30 - - 30
Died 13 13
Surviving 17 17
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Problem Posed by Missing Data

Sampling scheme causes (informative)
missing data
* Potentially, we might want to estimate three
year survival probabilities
« Different centers contribute information for
varying amounts of time
—One year survival can be estimated at A, B, C
—Two year survival can be estimated at A, B
—Three year survival can be estimated at A
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Possible Remedies

* WRONG: Ignore missing
—E.g., 17 of 300 subjects alive at three years

* RIGHT BUT WRONG QUESTION: Use data
only up to earliest censoring time
—E.g., 149 of 300 subjects alive at one year

* RIGHT BUT INEFFICIENT: Use only center A
—E.g., 17 of 100 subjects alive at three years

48




Best Remedy

* RIGHT AND EFFICIENT
—Use all available data to estimate that portion of
survival for which it is informative

» Use Centers A, B, and C to estimate one year survival

« Use Centers A and B to estimate proportion of one-year
survivors who survive to two years

» Use Center A to estimate proportion of two-year
survivors who survive to three years

49

Theoretical Basis for Approach

Properties of probabilities
* Probability of event A and B occurring is

product of
— Probability that A occurs when B has occurred

— Probability that B has occurred

Pr(4n B)="Pr(4| B)xPr(B)
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Application of Theory to Survival

For times T, < T, , probability of surviving
beyond time T, is the product of

— Probability of surviving beyond time T, given
survival beyond time T,, and
— Probability of surviving beyond time T,

Forty <t <t, <---<1;

Pr(r>1,)=PeT > 1, AT >1,,)
=T > 1, 1T >t )Pe(r>1,,)
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Estimation of Conditional Survival

Estimate conditional probability of survival
within each time interval
» Condition on surviving up until the start of the

time interval
—Denominator is number of subjects at start of
interval
—Numerator is deaths during the interval

52




Requirements for Valid Estimates

Consistent estimates of survival probabilities
depend on
* The subjects available at the start of each
time interval must be a random sample of the
population suriviving to that time

—“Noninformative censoring”
« cf: Nonignorable missing, but noninformative censoring

53

Estimation of Survival Probability

Estimate probability of survival at the

endpoint of each time interval

* Multiply the conditional probabilities for all
intervals prior to the time point of interest
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Obtaining Estimates

Within interval conditional probabilities
—Use A, B, C to estimate Pr(T > 1)
—-Use A, B to estimate Pr(T>2|T>1)
—Use A to estimate Pr(T>3 | T > 2)

Multiply to obtain unconditional cumulative
survival
—Pr(T>1)
—Pr(T>2)= Pr(T>2|T>1) Pr(T>1)
—Pr(T>3)= Pr(T>3|T>2) Pr(T>2)
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Combined Data

Year
1 On study
Died
Surviving

2 On study
Died

Surviving

3 On study
Died

Surviving

A
100

43

57

57
27
30

30
13
17

Accrual Group

B C
100 100
53 55
47 45
47 -
22

25

Combined
300
151
149

104
49
55

30
13
17
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Survival Probability Estimates
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Survival Probabilities
Yr Combined Each Year Cumulative

1 On study 300
Died 151

Surviving 149 149/300 = 49.67% 49.67%

2 On study 104

Died 49
Surviving 55 55/104 = 52.88% .4967*.5288 = 26.27%
3 On study 30
Died 13
Surviving 17 17/ 30 = 56.67% .2627*%.5667 = 14.88%
57

Improved Precision
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Intuitively, these estimates would provide
greater precision, because they are based
on more data than using Center A alone

* We can show this exactly using confidence
intervals

Number At Risk and Number Failed

For notational convenience
ForO=¢,<t, <1, <<ty

n; = Number at risk in interval (t jfl,tj]

d ; = Number failed in interval (t o1t j]

59
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Survival Probability Notation
For notational convenience
ForO=ty<t;, <t, <---<1;
7 =Pr(r>0,)=PT >0, AT 51,
=T > 1, (T > 1, )Pr(T > 1,
=Pl T
=Pl X P2 XX P
J
:Hpi\i—]
i=1
60




Survival Probability Estimates

Maximum likelihood estimates for
» Conditional survival probability within intervals
* Unconditional survival probability

Logarithmic Transformation

Sums are easier to work with than products

* The log transformed unconditional survival
probability is the sum of log transformed
conditional survival probabilities

J
log(ﬂj ) = Z 10g(Pi\z>1 )
i1

togl#,)= Z/: tog(p-1)
i1

62

P :1‘7/:
J
7%1' :Hﬁi\i—l
i=1
61
Basic Approach

We will find the standard error of the log

transformed survival probabilities by

» Estimating each conditional survival
probability and finding the variance of the log
transformed estimates

* Invoking noninformative censoring to argue
that the sum of our log transformed estimates
must have the same distribution as the sum of
log transformed independent estimates

63

Standard Error of Proportions

From the laws of expectation, for the jth

interval y
For 1,Y,,....Y,, ~ Bernoulli(pj‘j_l)

E [’7 ]: P

Var(7)= L2 (I-pj,)

64




Large Sample Approximation
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From the central limit theorem

iid
For 1}.Y,,....Y, ~ Bernoulli(p)

N . P (l=pj-1)
pj‘];l =Y = N[pjjbujlj

n;j

65

Logarithmic Transformation
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From the delta method

For Y ~ N(Q, Kj

n

«ff) ¥ elo) e @F -

iid
So, for 1},Y,,..., Y, ~ Bernoulli (pﬂH)

log(]}j\/‘,l )* N[log(pjjl)v (1_]7“_1)]

njPjj-1
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Noninformative Censoring

In the presence of noninformative censoring,
the risk set in any interval should look like
a random sample of the population at risk

 Estimates of the conditional probability of
survival for the intervals should be
uncorrelated

i=1 lplll

ol )= Yol )+ [z( 3o
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Confidence Intervals

Using the large sample approximation with
plug-in estimates for standard errors

100(1 - & % CI for log(z )

; L (1- py
> tog(pyia )£ 2102 Zw

P i1 MiPii-1

100(1-a )% CI for 7z

J
exp Z log(i)i\i—l )J—r Z1-al2

i=1

68




Survival Probability Estimates
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Note the improved precision (and accuracy)
* Narrower Cl even for the third year estimates

Survival Probabilities (95% CI)

Yr Site A Only Combined

1 0.570 (0.473, 0.667) 0.497 (0.443, 0.557)
2 0.300 (0.210, 0.390) 0.263 (0.212, 0.325)
3 0.170 (0.096, 0.244) 0.149 (0.102, 0.217)
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Aside: Greenwood’s Formula
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SE for the survival probabilities by a second
application of the delta method

i j J o
togl#; )= 3 los (1)< N[zlog(pml)’ Z(lpll)]
i=l i=1

o1 iPii-1

= eXp[ZJ: IOg(ﬁi\i—l )J - N(”‘/a ”fzjle

i=1 o1 MiPii-1

100(1-a)% Cl for 7

T2z g X7
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Aside: Alternatives for CI
Three common methods for Cl
» Based on log ( S(t) )
» Based on Greenwood’s formula
» Based on log (- log ( S(t)))

—These intervals will always be between 0 and 1
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(Right) Censored Data

Product Limit
(Kaplan-Meier)
Estimates

72




Kaplan-Meier Estimates
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Computation of probability of survival

Ordered distinct observation times : 0=ty <t;<---<t,
Time interval : (t jo1ot j]

Number atrisk at ¢, : N,

Number of events at 7 : D,

Conditional probability of survival in interval :

D.
P>, | T>t,,)=1-—L
J J-1

N.f
73

Kaplan-Meier Estimates
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Product Limit Estimate

Cumulative probability of survival :
Pe(r>1,)=Pe(T >0, |T> 1, )Pe(T>1,,)

D D,
B A (V1 I X...X(l_Dlj
N, N N,
J
B [1_ J
i=1

D;
N;
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Kaplan-Meier Estimates

Note that in the above definition

< An interval which ends in a censored
observation with no observed events has
conditional probability of surviving within the
interval is 1.

« If the largest observation time is censored, the
KM (PLE) survivor function never goes to zero

—We generally regard the KM (PLE) survivor
function to be undefined for times beyond the
largest observation time in this situation

75

Kaplan-Meier Estimates

Properties

» The KM (PLE) survivor functions can be
shown to be

— Consistent: As sample sizes go to infinity, they
estimate the true value

—Nonparametric maximum likelihood estimates

+ (but usual asymptotic theory for regular, parametric
MLE’s does not necessarily hold)

76




Alternative Derivations

The KM (PLE) survivor functions can also be
derived as the

— Self-consistent estimator
* (see Miller, Survival Analysis)
—“Redistribute to the right” estimator
 Provides intuition regarding noninformative censoring

77

Redistribute to the Right

Basic idea

* Recall the empirical cdf assigns probability
1/n to each observation
— Each subject in a sample is representative of 1/n of
the population
» A censored observation should be equally
likely to have event time like any of the
remaining uncensored observations

— Recursively redistribute the mass of each
censored observation among the subjects

remaining at risk
78

Redistribute to the Right Example

» Data: 1, 3, 4%, 5, 7%, 9, 10 (asterisk means
censored)

* Initially: each point has mass 1/7

» Determine probability of events at earliest
observed (uncensored) event times
-Pr(T=1)=17
-Pr(T=3)=1/7

79

Redistribute to the Right Example

« Censored observation at 4

— Divide the mass at 4 equally among the remaining
subjects at risk
* Now mass of 1/7 + 1/28 = 5/28 for each of 5, 7, 9, 10

» Determine probability of events at next
observed (uncensored) event times
—Pr(T=5)=5/28

80




Redistribute to the Right Example
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» Censored observation at 7

—Divide the mass at 7 equally among the remaining
subjects at risk
» Now mass of 5/28 + 5/56 = 15/56 for each of 9, 10

» Determine probability of events at next
observed (uncensored) event times
—Pr (T =9)=15/56
—Pr (T = 10) = 15/56

81

General Analysis Models

Risk Sets and
Hazard Functions

82

Hazard Functions

From the approach to nonparametric
estimation of survival curves we see the
importance of the hazard function

» Hazard = instantaneous risk of failure

— Conditional upon being still alive, what is the
probability (rate) of failing in the next instant

Hazard function :
Pr(T e[t,0+h)| T >1)
h

=i

83

General Notation

Failure time 7 > 0 measures time to an event :

Cumulative distribution function : F(@)= Pr(T < t)
Survivor function : S@) = Pr(T > t) =1-F(¢t)
Density : f(@)= %F(t)
>
Hazard function : ﬂ(t) =lim Pr(T < [t’t Al h)| r= t)
h0 h

r
Cumulative hazard function : A@t) = j A(u) du

0

84




Relationship to Survivor Function

The survivor function (and, hence, the cdf) is
uniquely determined by the hazard and
vice versa

S(0) = expl ) = exp[_ J-Ot/?.(u)duj

At)= —%log S@t) = szt(’_))

Continuous distributions :

0)=~ L 10e ()= gfi

(t) 8

~—

Estimating the Hazard Function

The intuitive estimator of the hazard function
is thus the conditional probability of failure
at each point in time

Number at risk at ¢ : N,
Number of events at ¢ : D,
. A D,
Estimated hazard at ¢ : Ale)= F’
t
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Risk Sets

Survival analysis often focuses on the “risk
set” at each time
* “Risk set at time t’= the set of subjects in the
sample who are at risk for failure at t

—These subjects can be used to compute and
compare hazard functions and, hence, survival
probabilities

87

Risk Based Analysis Models

Analyses based on hazard functions afford
the opportunity to allow sampling schemes
which sample the population at risk at
each time

+ Advantages:
— More efficient use of available data
— Time-varying covariates

* Disadvantages:
—Less intuitive summary measures

— Temptation to use time-varying covariates
88




General Analysis Models

A Useful Analogy

89

Urn Model

Balls in an urn of various colors and patterns

+ Balls might represent people in a study

— At any given time, the balls that are in the urn are
therefore the risk set

» Colors and patterns represent risk factors

90

Death Process

Periodically, | come in and choose a ball
from the urn and take it
* When a ball is chosen it fails

* My predilection for choosing certain colors or
patterns identifies true risk factors

» Characteristics of the balls that | do not notice
have no effect on survival probabilities

91

Evidence for Risk Factors

A certain color/pattern must be my favorite if

* (Time based observations)
— | come in more often when that color/pattern is in
the urn
* You need not consider what else is in the urn
* (Risk set based observations)
— 1 choose that color/pattern with a frequency
disproportionate to its frequency in the urn

« If I am blind to a characteristic, my choices should look
like random sampling

* You need not consider the times that | come in
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(Semi)parametric Models

Two general (semi)parametric probability
models used in survival analysis
* Accelerated failure time models
— Consider time of failure
* Proportional hazards models

— Consider relations among hazards

— (Additive hazards models also used, but less
frequently)

93

Accelerated Failure Time Models

Two groups that differ in some risk factor
have survivor functions related by a
parameter measuring acceleration or
deceleration of time

$i(e)=5,(er)

* E.g,
— A smoker ages twice as fast as a nonsmoker
— Each human year is seven dog years
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Proportional Hazards Models

Two groups that differ in some risk factor
have survivor functions related by a
parameter measuring increased hazard

A4()=02 ()

$(0)=[S,()f

* E.g,
— At any given time, a smoker is ten times more
likely to develop lung cancer as a nonsmoker
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Scientific Studies

As a scientist you may

* Observe
—When | come into the room and take a ball,
— The colors/patterns on all the balls in the urn, and
—The color/patterns on the ball that | take

* Experiment

— Change the compostion in the urn and see
* Whether | come in the room more or less often, and

» The lengths to which | might go to find balls with certain
colors or patterns by restricting my choices

96




Altering the Risk Set
Censoring and time-varying covariates are
analogous to changes in the composition
of the urn
» Censoring = removing balls from the urn
» Time-varying covariates = repainting the balls
or adding different balls
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Caveats: Informative Censoring

Altering the risk set can be problematic

» Recall that in order for survival estimates to
be consistent, the risk set in the sample must
look like a random sample from the population

—You should not selectively remove or change balls
that were (for their risk factors) particularly more
likely or less likely to be chosen

« If you notice that | search the urn from top to bottom,
» Don't just change the balls sitting at the top of the urn
» Make sure you stir the urn after each change
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Caveats: Time-varying Covariates

Time-varying covariates are far more easily
implemented in the hazard based models
* Risk set approach makes this easy

However, scientifically we run the risk of
overfitting our data using variables we are
less interested in
A priest delivering last rites is highly predictive

of death and that may obscure that it was a
gunshot wound that led to the death 99

General Analysis Models

Noninformative Censoring

100




Noninformative Censoring

Censoring must not be informative about
subjects who were either more or less
likely to have an event in the immediate
future
* The censored individuals must look like a

random sample of those individuals at risk at
the time of censoring

* (Later we shall say that they are a random
sample from all subjects at risk having similar

modeled covariates)
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Examples of Informative Censoring

» Subjects in a clinical trial are withdrawn due to
treatment failure (likely they would die sooner
than those remaining)

* Subjects in a clinical trial in a fatal condition
are lost to follow up when they go on vacation
(likely they are healthier than those
remaining)
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Examples of Informative Censoring

» Leukemia patients in a clinical trial of bone
marrow transplantation are censored if they
die of infections rather than dying of cancer
(the subjects who died of infections might
have had a more effective regimen to wipe
out existing cancer)
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Detecting Informative Censoring

As a general rule it is impossible to use the
data to detect informative censoring
» The necessary data is almost certainly
missing in the data set
* In some cases, it is impossible to ever
observe the missing data
—Nonfelines can only die once

—We cannot observe whether subjects dying of one
cause are more or less likely to die of another if we
cure them of the first cause
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Competing Risks

This last situation is often referred to as
“Competing Risks”
* Some “nuisance” event sometimes precludes

your ability to ever observe the event of
interest

* In the presence of competing risks, we must
decide how best to address the scientific
question of interest
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Example: Censoring Mechanisms

Consider a study of smoking as a risk factor
for incidence of cancer
* Possible causes of censored observations
— Subject still alive at time of data analysis
— Subject lost to follow-up during study
— Subject died in airline accident
— Subject died in single car accident
— Subject died of Ml
— Subject died of emphysema
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Censoring Competing Risks

Time to cancer, but competing risk of death

* Suppose we censor deaths

— If deaths represent noninformative censoring

» People who died of, say, Ml neither more nor less likely
to get cancer in the near term

» Estimates desired hazard rate
— If deaths represent informative censoring

» Estimates cause specific hazard in presence of
unchanged risk of competing event

« Results are not generalizable to a population with an
altered risk of death
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Competing Risks: Alternatives

* Model informative censoring
* Model must be based on untestable assumptions

* Event free survival
+ Like censoring deaths if competing risk hazard low
* Like censoring deaths if everyone gets cancer first
* Loss of power if truly noninformative censoring

« Wilcoxon like statistic

» Rank first on death times; break ties with cancer dx
+ Like survival only if everyone dies

* Survival only

+ Not really the question, especially if competing risk

hazard is high 108




General Analysis Models

Time-varying Covariates
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Fixed Covariates

In a typical study, we compare the
distribution of some outcome across
groups defined at the start of the study
+ Example: Risk of hang gliding

— Identify two groups
* Hang gliders
» Cowards

— Follow survival experience over time
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Problem
What if a coward obtains courage?

» Misclassification will attenuate the true effect
of hang gliding on survival
— Biased estimates
—Less precision
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A Wrong Approach

We cannot divide the sample into groups
according to lifetime habits

* Suppose we consider
— Ever hang glided (hung glide?) vs Constant coward

* We might detect spurious associations due to
“survivorship”

— If we started study at birth, we might find hang gliding
is beneficial
* Most people don't start hang gliding until teenaged

* We would detect the fact that hang gliders survived at least

that long
112




A Correct Approach

Let each subject contribute observation time
to the appropriate group according to
covariate at the relevant time

* Proportional hazards model
— Easily done, if noninformative censoring results

» Accelerated failure time model

— Difficult due to need to integrate hazards over
disjoint intervals
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Issues

Issues related to the use of time-varying
covariates are analogous to those when
deciding to adjust for any variable

» Can regard measurements made at different
times as different covariates
* Need to consider
— Causal pathway of interest

— Confounding (bias)
— Precision

» Time aspect does increase the dimensionality
114

Issues: Informative Censoring

Possibility that impending event causes
informative censoring (confounding?)

* Types of variables

— Extrinsic: Unaffected by individual decisions

« As arule, time-varying extrinsic variables will not cause
informative censoring

« E.g., Air pollution on a given day in an asthma study
» (providing it does not affect relocation)
— Intrinsic: Potentially affected by impending event
« E.g., Marijuana use
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Causation versus Association

Example: Scientific interest in causal
pathways between marijuana use and
heart attacks (Ml)

« Pictorial representation of hypothetical causal effect of
marijuana on MI that might be of scientific interest

e

Marijuana causes
increased heart rate

116




Causation versus Association

In an observational study, we cannot thus be
sure which causative mechanism an
association might represent

« Either of these mechanisms will result in an association
between marijuana use and Ml

Anxiety preceding MI
causes use of marijuana

@< < >
—~

Marijuana causes
increased heart rate
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Issues: Obscuring Effect of Interest

With time-varying covariates, we have
increased opportunity to measure short
term effects
 This is good if that is our interest

—Immediate effects of blood pressure on
hemorrhagic stroke
» This is bad if we wanted to assess long acting
risk factors

— Chronic effect of asbestos on lung cancer
+ A former asbestos worker is still at high risk

118

Issues: Causal Pathway of Interest

Capability for modeling time-varying
covariates also increases chances for
modeling a variable in the causal pathway
of interest
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Issues: Summary Measure

As illustrated previously, the interpretation of
some of the statistics commonly used in
survival analysis is heavily dependent
upon the censoring distribution
« It is very difficult to explore how the changing

size of risk sets might be altering the
interpretation of the time-averaged hazard
ratio in a proportional hazards model
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Issues: Final Comments

9000000000000 000000000000000CFO

Time-varying covariates are definitely of
scientific interest

However, they should not be used casually
 Usually, my first choice is to try to address
scientific questions with fixed covariates

— | will put up with some misclassification, to avoid
making mistakes that are due to incorrect,
untestable assumptions
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General Analysis Models

Choice of Summary Measures
Used for Inference
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Summarizing Effect

Based on marginal distributions
« Difference / ratio of means (arithmetic, geometric, ...)
« Difference / ratio of proportion exceeding some threshold
« Difference / ratio of medians (or other quantiles)
« Ratio of odds of exceeding some threshold
» Ratio of hazard (averaged across time?)

Based on joint distribution

« Median difference / ratio of paired observations

« Probability that a randomly chosen measurement from
one population might exceed that from the other

.

123

Statistical Models

Options for inference
— Parametric models
* Weibull, lognormal, etc.
— Semiparametric models
 Proportional hazards, etc.
— Nonparametric

» Weighted rank tests: logrank, Wilcoxon, etc.
» Comparison of Kaplan-Meier estimates
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(Semi)parametric vs Nonparametric
Choice of statistical model can affect

» Computational methods for estimating the
summary measure

* Precision of summary measure estimates

General Analysis Models

_ Probability Models
* Robustness of inference about the summary
measure
+ Ability to estimate the summary measure
125 126
Right Censored Data Probability Distributions
Notation: Failure time 7' > 0 measures time to an event :
Cumulative distribution function : F(¢) = Pr(T <t
Unobserved : Survivor function : S(0)=Pr(T >1)=1-F(1)
1 . 0 0 0
True tu.nes t(') event: {T1 1T, } Density - f0)= %F(z)
Censoring Times : {CI,CZ,...,Cn} Pr(T [0+ 1)\ T > 1)
Hazard function : /I(t) =1lim 2 =
o h
Observed data : Cumulative hazard function :  A(f) = J'O'/l(u) du
Observation Times: T, = min(Tl.o,C,. )
C L 1 ifT, = T[0 Censoring variable distribution : C has cdf G(); pdf g(-)
Event indicators : D, = )
0 otherwise . 8




Parametric Models

9000000000000 000000000000000CFO

F is known up to some finite dimensional
parameter vectors

Fe)=v(, @)
where :
¥(,)  hasknown form

O] is finite dimensional and unknown
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Parametric Survival Models

9000000000000 000000000000000CFO

Commonly used parametric survival models
are generally accelerated failure time
models
* Exponential
* Weibull
+ Gamma
* Lognormal
* Log logistic
» Families joining several of the above
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Parametric Inference

Parametric inference generally proceeds
through likelihood methods
* MLE found by Newton-Raphson iteration

» Asymptotic distributions from theory of regular
problems

L(a;f, _): .
i=l

(2 d)1-6(@) (sr:®)g(r)) ™
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Parametric Summary Measures

Mean : 0= J'u f(u;CT)) du
0

Median : 0= _1(0.5;&))

F
Proportion above threshold : 0= I flu; CT)) du
Weighted average of hazard : 0= I w(u)l(u;cf))du
0
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Parametric Models: Issues

Advantages

* Can estimate any of the summary measures
* Can handle sparse data

Disadvantages

* Not robust to other distributions
— Parametric estimates with censoring do not
generally have easy nonparametric interpretation
» E.g., lognormal model is not particularly robust
+ Little reason to suggest particular distribution

— But motivation does exist for Weibull and Gamma
133

Semiparametric Models

Exact form of within group distributions are
unknown, but related to each other by
some finite dimensional parameter vector
* Full inference only for comparing distributions

* One group’s distn can be found from another
group’s and a finite dimensional parameter

* (Most often: Distributions equal under H)

(My definition of semiparametric models is a little stronger than some
statisticians’, but agrees with commonly used semiparametric survival models)
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Semiparametric Models: Notation

For group £ : Fk(t): T(t, Ci),()

‘P(,) has unknown form (in ¢)
®, =0 foridentifiability of ¥(-,)
D, is finite dimensional and unknown

(estimable by comparing two or more groups)
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Semiparametric Survival Models

Accel failure: F (1) = F, (16, )
Prop hzd : S, (t)= [S 0 (t)]e"

where in a regression problem

g(‘gk ) =X kT ,B
for some link function g()
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Semiparametric Inference

Semiparametric inference generally
proceeds through estimating equations
» Estimates found by iterative search
» Asymptotic distributions from special theory

137

PH Partial Likelihood

Proportional hazards regression based on
hazard of observed failure relative to sum
of hazards in the risk set

S,(¢)= [So (t)]'gf ;2;(t)=6,24(t) wherelog (01-): XI'p

Partal likelihood: £(5)= [ ]|~ (z.)
@) L 0
j:TZT[ ,(T3) ‘

i=1

>
J

Semiparametric Summary Measures

Estimation of summary measures is
generally limited to the parameter
fundamental to the semiparametric model

* Proportional hazards
—Only make inference about hazard ratio

* Accelerated failure time
—Only make inference about ratio of quantiles
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Semiparametric Models: Issues

Advantages
» Can handle sparse data
* More robust than any single parametric model

Disadvantages
* Not easily interpreted when semiparametric
model does not hold

« Little reason to suggest a given risk factor
would affect distribution in only one way
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A Logical Disconnect

“Because the light is so
much better
here under the streetlamp”

- a drunk looking for the keys
he lost half a block away
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Inflammatory Assertion

(Semi)parametric models are not typically in
keeping with the state of knowledge as an
experiment is being conducted
* The assumptions are more detailed than the

hypothesis being tested, e.g.,

—Question: How does the intervention affect the first
moment of the probability distribution?

— Assumption: We know how the intervention affects
the 2nd, 3rd, ..., « central moments of the
probability distribution.
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The Problem

Incorrect parametric assumptions can lead
to incorrect statistical inference
* Precision of estimators can be over- or
understated
—Hypothesis tests do not attain the nominal size
* Hypothesis tests can be inconsistent

—Even an infinite sample size may not detect the
alternative

* Interpretation of estimators can be wrong
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(Semi)parametric Example

Survival cure model (Ibrahim, 1999, 2000)

— Probability model
 Proportion 17; is cured (survival probability 1 at «) in the i-
th treatment group

» Noncured group has survival distribution modeled
parametrically (e.g., Weibull) or semiparametrically (e.g.,
proportional hazards)

* Treatment effect is measured by 6 = m, — 1,
—The problem as | see it: Incorrect assumptions
about the nuisance parameter can bias the
estimation of the treatment effect
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Foundational Issues: Null

Which null hypothesis should we test?
* The intervention has no effect whatsoever

H,: F(t)=G(t),Vt

* The intervention has no effect on some
summary measure of the distribution
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Foundational Issues: Alternative

What should the distribution of the data
under the alternative represent?

* Counterfactual

— An imagined form for F(t), G(t) if something else
were true

* Empirical

— The most likely distribution of the data if the
alternative hypothesis about  were true
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My Views

The null hypothesis of greatest interest is
rarely that a treatment has no effect
* Bone marrow transplantation
* Women’s Health Initiative
* National Lung Screening Trial

The empirical alternative is most in keeping
with inference about a summary measure
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The above views have important
ramifications regarding the computation of
standard errors for statistics under the null
* Permutation tests (or any test which

presumes F=G under the null) will generally
be inconsistent
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Problem with (Semi)parametrics
Many mechanisms would seem to make it
likely that the problems in which a fully
parametric model or even a
semiparametric model is correct constitute
a set of measure zero
» Treatments are often directed to outliers
» Treatments are often only effective in subsets

« Factors affect rates; outcomes measure
cumulative effects
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A Non-Solution: Model Checking

Model checking is apparently used by many
to allow them to believe that their models
are correct.

* From a recent referee’s report:
—“l know of no sensible statistician (frequentist or
Bayesian) who does not do model checking.”
» Apparently the referee believes the following
unproven proposition:

— If we cannot tell the model is wrong, then statistical
inference under the model will be correct
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A Non-Solution: Model Checking

Counter example: Exponential vs Lognormal
medians
* Pretest with Kolmogorov-Smirnov test (n=40)

— Power to detect wrong model
* 20% (exp); 12% (Inorm)

— Coverage of 95% CI under wrong model
» 85% (exp); 88% (Inorm)
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A Non-Solution: Model Checking

Model checking particularly makes little
sense in a regulatory setting

» Commonly used null hypotheses presume the
model fits in the absence of a treatment effect
— Frequentists would be testing for a treatment effect
as they do model checking
+ Bayesians should model any uncertainty in
the distribution

— Interestingly, if one does this, the estimate
indicating parametric family will in general vary

with the estimate of treatment effect 152




Nonparametric Models

Form of F is completely arbitrary and
unknown within groups
» The summary measure measuring factor
effect is just some difference between
distributions
* The summary measure is estimated

nonparametrically
— (preferably within groups and then compared
across groups)
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Comparison of Summary Measures

Typical approaches to compare response
across two treatment arms

« Difference / ratio of means (arithmetic, geometric, ...)
« Difference / ratio of medians (or other quantiles)
» Median difference of paired observations
« Difference / ratio of proportion exceeding some threshold
+ Ratio of odds of exceeding some threshold
+ Ratio of instantaneous risk of some event
» (averaged across time?)

* Probability that a randomly chosen measurement from
one population might exceed that from the other
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Nonparametric Summary Measures

Nonparametric: Estimate summary
measures from nonparametric empirical
distribution functions

—E.g., use sample median for inference about
population medians

—In the presence of censoring, use estimates based
on Kaplan-Meier estimates

— Often the nonparametric estimate agrees with a
commonly used (semi)parametric estimate
« Interpretation may depend on sampling scheme

« In this case, the difference will come in the computation
of the standard errors 155

Nonparametric Summary Measures

Using Kaplan - Meier survival estimate S )
Mean : ézj.ﬁ(u)du
0
S

Median : 0= 71(0.5)
Proportion above threshold : 0= (a)

S
Weighted average of hazard : 0= I w(u)/i(u) du
0
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Nonparametric Summary Measures

Depending on the censoring scheme, not all
summary measures are estimable

— The support of the censoring distribution may
preclude estimation of the mean and some
quantiles

—Can instead use the mean of the truncated
distribution

« “Average increase in days alive during first 5 years”

Mean of truncated distribution: 6 = S‘(u)du

S e Q
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Inference

In most cases, variance estimates can be
obtained from the asymptotic theory of the
Kaplan-Meier estimates

* There are still some issues to be solved

—Regression modeling needs to be worked out
— Software is not readily available (Why not?)
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