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Course Structure

Topics: 
• First (and a half) Session: General Setting

– Censored data setting
– Estimation of survivor functions
– Survival analysis models

• Second session: Comparison of Two Samples
– Logrank statistic
– Nonproportional hazards
– Weighted logrank statistics

• Third session: Sequential Analysis
– Stopping rules
– Weighted logrank statistics in nonproportional hazards
– Reweighted statistics
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Overview

Scientific Studies

4

Fundamental Philosophy

Statistics is about science.

Science is about proving things to people.
• Other scientists
• Community at large
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Scientific Studies

A well designed study
• Discriminates between the most important, 

viable hypotheses
– “Discriminates” defined by what convinces your 

audience
• Is equally informative for all possible study 

results
– Binary search using prior probability of being true
– Also consider simplicity of experiments, time, cost

(The Scientist Game)
6

Scientific Questions

Ultimately, scientific questions are most 
often concerned with investigating cause 
and effect
• E.g., in biomedical settings:

– What are the causes of disease?
– What are the effects of interventions?
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Typical Inferential Setting

In the studies considered here, we define
• Some “primary outcome” measurement

– A “response variable” in regression
• Groups that are homogeneous with respect to 

the level of some factor(s)
– Predictor of interest
– Effect modifiers
– Confounders
– Precision variables
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Primary Outcome Measurement

The primary outcome can be derived from 
more than one measured variable

– E.g., for repeated measurements made on the 
same experimental unit

• Contrast across repeated measurements
• Weighted average of repeated measurements

– E.g., for random process defined by longitudinal 
follow up of experimental units

• Contrast across time
• Weighted average over time
• Time until an event
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Typical Scientific Hypotheses

The specified level of some factor will cause 
outcome measurements that are

higher than,

lower than, or

about the same as

an absolute standard, or

measurements in a 
comparison group
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Causation vs Association

Truly determining causation requires a 
suitable interventional study (experiment)

– Statistical analyses tell us about associations
– Associations in the presence of an appropriate 

experimental design allows us to infer causation
• But even then, we need to be circumspect in identifying 

the true mechanistic cause
» E.g., a treatment that causes headaches, and 

therefore aspirin use, may result in lower heart attack 
rates due entirely to the use of aspirin
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First Statistical Refinement

The group with the specified level of some 
factor will have outcome measurements 
that are
higher than,

lower than, or

about the same as

an absolute standard, or

measurements in a 
comparison group
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Deterministic Setting

Conditions of scientific studies might make 
answering questions difficult even when 
study results are deterministic

– Difficulties in isolating specific causes
• E.g., isolating REM sleep from total sleep
• E.g., interactions between genetics and environment

– Difficulties in measuring potential effects
• E.g., measuring time to survival

» length of study
» competing risks
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Can Statistics Help?

Litmus Test # 1:

• If the scientific question cannot be answered 
by an experiment when outcomes are entirely 
deterministic, there is NO chance that 
statistics can be of any help.
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Variation in Response

There is, of course, usually variation in 
outcome measurements across repetitions 
of an experiment
• Variation can be due to

– Unmeasured (hidden) variables
• E.g., mix of etiologies, duration of disease, comorbid

conditions, genetics when studying new cancer therapies

– Inherent randomness
• (as dictated by quantum theory)
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Second Statistical Refinement

The group with the specified level of some 
factor will tend to have outcome 
measurements that are
higher than,

lower than, or

about the same as

an absolute standard, or

measurements in a 
comparison group
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Refining Scientific Hypotheses

In order to be able to perform analysis we 
must define “will tend to have”
• Probability model for response

– Nonparametric, semiparametric, parametric

(Looking ahead: I am a big proponent of 
nonparametric interpretations of statistical 
analyses)
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Ordering Probability Distributions

In general, the space of all probability 
distributions is not totally ordered

– There are an infinite number of ways we can 
define a tendency toward a “larger” outcome

– This can be difficult to decide even when we have 
data on the entire population

• Ex: Is the highest paid occupation in the US the one with
» the higher mean?
» the higher median?
» the higher maximum?
» the higher proportion making $1M per year?
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Can Statistics Help?

Litmus Test # 2:

• If the scientific researcher cannot decide on 
an ordering of probability distributions which 
would be appropriate when measurements 
are available on the entire population, there is 
NO chance that statistics can be of any help.

19

Summary Measures

Typically we order probability distributions 
on the basis of some summary measure
• Statistical hypotheses are then stated in terms 

of the summary measure
– Primary analysis based on detecting an effect on 

(most often) one summary measure
• Avoids pitfalls of multiple comparisons

» Especially important in a regulatory environment

20

Purposeful Vagueness

What I call “summary measures”, others 
might call “parameters”

– “Parameters” suggests use of parametric and 
semiparametric statistical models

• I am generally against such analysis methods

“Functionals” is probably the best word
– “Functional”= anything computed from a cdf
– But too much of a feeling of “statistical jargon”
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Marginal Summary Measures

Many times, statistical hypotheses are 
stated in terms of summary measures for 
univariate (marginal) distributions

• Means (arithmetic, geometric, harmonic, …)
• Medians (or other quantiles)
• Proportion exceeding some threshold
• Odds of exceeding some threshold
• Time averaged hazard function (instantaneous risk)
• …
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Comparisons Across Groups

Comparisons across groups then use 
differences or ratios

• Difference / ratio of means (arithmetic, geometric, …)
• Difference / ratio of proportion exceeding some threshold
• Difference / ratio of medians (or other quantiles)
• Ratio of odds of exceeding some threshold
• Ratio of hazard (averaged across time?)
• …
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Joint Summary Measures

Other times groups are compared using a 
summary measure for the joint distribution

• Median difference / ratio of paired observations
• Probability that a randomly chosen measurement from 

one population might exceed that from the other
• …
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Looking Ahead: Transitivity

The distinction between marginal versus 
joint summary measures impacts 
comparisons across studies

– Most often (always?) transitivity is not guaranteed 
unless comparisons can be defined using marginal 
distributions

• Intransitivity: Pairwise comparisons might suggest
» A > B, and
» B > C, but
» C > A
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Can Statisticians Help?

While I claim that the choice of the definition 
for “tends to be larger” is primarily a 
scientific issue, statisticians do usually 
play an important role
• Statisticians do explain how different 

summary measures capture key features of a 
probability distribution

26

Overview

Choice of Summary Measure
for Inference

27

Hypothetical Example: Setting

Consider survival with a particular treatment 
used in renal dialysis patients
• Extract data from registry of dialysis patients

– To ensure quality, only use data after 1995
• Incident cases in 1995: Follow-up 1995 – 2002 (8 years)
• Prevalent cases in 1995: Data from 1995 - 2002

» Incident in 1994: Information about 2nd – 9th year
» Incident in 1993: Information about 3rd – 10th year
» …
» Incident in 1988: Information about 8th – 15th year
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Hypothetical Example: Analysis

Methods to account for censoring/truncation
• Descriptive statistics using Kaplan-Meier
• Options for inference

– Parametric models
• Weibull, lognormal, etc.

– Semiparametric models
• Proportional hazards, etc.

– Nonparametric
• Weighted rank tests: logrank, Wilcoxon, etc.
• Comparison of Kaplan-Meier estimates
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Hypothetical Example: KM Curves
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Kaplan-Meier Curves for Simulated Data (n=5623)
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Who Wants To Be A Millionaire?

Proportional hazards analysis estimates a 
Treatment : Control hazard ratio of

A:      2.07   (logrank P = .0018)
B:      1.13   (logrank P = .0018)
C:      0.87   (logrank P = .0018)
D:      0.48   (logrank P = .0018)

– Lifelines: 
• 50-50? Ask the audience? Call a friend?

31

Criteria for Summary Measure

We choose some summary measure of the 
probability distribution according to the 
following criteria (in order of importance)

– Scientifically (clinically) relevant
» Also reflects current state of knowledge

– Is likely to vary across levels of the factor of 
interest

» Ability to detect variety of changes

– Statistical precision
» Only relevant if all other things are equal

32

Example of Scientific Issues

• E.g., Is the arithmetic mean’s sensitivity to 
outliers desirable or undesirable?

– Do we want to detect better infant mortality?
– Does making one person immortal make up for 

killing others prematurely?
• E.g., Is the scientific importance of a 

difference in distribution best measured by the 
proportion exceeding some threshold?

– Is an increase in survival time only important if the 
patient eventually makes it out of intensive care?
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Common Practice

The overwhelming majority of statistical 
inference is based on means

– Means of continuous random variables
• t test, linear regression

– Proportions (means of binary random variables)
• chi square test (t test)

– Rates (means) for count data
• Poisson analyses

34

Use of the Mean

Rationale
– Scientific relevance

• Measure of “central tendency” or “location”
• Related to totals, e.g. total health care costs

– Plausibility that it would differ across groups
• Sensitive to many patterns of differences in distributions 

(especially in tails of distributions)

– Statistical properties
• Distributional theory known
• Optimal (most precise) for many distributions
• (Ease of interpretation?)

35

Comments on Statistical Criteria

Many of the reasons used to justify other 
tests are based on misconceptions

– The validity of t tests does NOT depend heavily 
upon normally distributed data

• Modern computation allows exact small sample inference 
for means in same manner as used for other tests

– The statistical theory used to demonstrate 
inefficiency of the mean is most often based on 
unreasonable (and sometimes untestable) 
assumptions

36

(Right) Censored Data

The Setting
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Censored Variables

A special type of missing data
• The exact value is not always known

– Right censoring:
• For some observations it is only known that the true 

value exceeds some threshold 

– Left censoring:
• For some observations it is only known that the true 

value is below some threshold

– Interval censoring:
• For some observations it is only known that the true 

value is between some thresholds

38

Example

A clinical trial is conducted to examine 
aspirin in prevention of cardiovascular 
mortality

– 10,000 subjects are randomized equally to receive 
either aspirin or placebo

– Subjects are randomized over a three year period
– Subjects are followed for fatal events for an 

additional three year period following accrual of the 
last subject
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The Problem

At the end of the clinical trial
• Some subjects have been observed to die

– True time to death is known for these subjects
• Most subjects are likely to be still alive

– Death times of these subjects are only known to be 
longer than the observation time

– “(Right) Censored observations”

40

What Should We Do?

•Cannot ignore
–These are our treatment successes

•Cannot just treat as binary (live/die) data: 
–Potential time of follow-up (censoring time) differs 
across subjects due to time of study entry

• Confounding vs loss of precision

–(Censored data may also arise due to loss to 
follow-up, e.g., moved away)

–(Could figure out whether alive/dead at earliest 
censored observation, but this is inefficient and 
may not answer the question of interest)
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Right Censored Data

Notation:
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(Right) Censored Data

Motivating Example

43

Motivating Example

Hypothetical study of subject survival
• Subjects accrued to study and followed until 

time of analysis
– Study done at three centers, which started the 

studies in three successive years
– Censoring time thus differs across centers

44

Data (Real Time)

Staggered study entry by site
Accrual Group

Year                 A       B       C 
1990  On study      100      -- --

Died       43              
Surviving       57              

1991  On study       57     100      --
Died       27      53      

Surviving       30      47      

1992  On study       30      47     100 
Died       13      22      55 

Surviving       17      25      45 
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Data (Study Time)

Realign data according to time on study
Accrual Group

Year                 A       B       C 
1   On study      100     100     100 

Died       43      53      55        
Surviving       57      47      45         

2   On study       57      47      --
Died       27      22      

Surviving       30      25      

3   On study       30      -- --
Died       13       

Surviving       17       
46

Combined Data

Accrual Group
Year                 A       B       C        Combined 
1   On study      100     100     100          300

Died       43      53      55          151
Surviving       57      47      45          149 

2   On study       57      47      -- 104
Died       27      22                   49

Surviving       30      25                   55

3   On study       30      -- -- 30 
Died       13                           13

Surviving       17                           17

47

Problem Posed by Missing Data

Sampling scheme causes (informative) 
missing data
• Potentially, we might want to estimate three 

year survival probabilities 
• Different centers contribute information for 

varying amounts of time
– One year survival can be estimated at A, B, C
– Two year survival can be estimated at A, B
– Three year survival can be estimated at A

48

Possible Remedies

• WRONG: Ignore missing
– E.g., 17 of 300 subjects alive at three years

• RIGHT BUT WRONG QUESTION: Use data 
only up to earliest censoring time

– E.g., 149 of 300 subjects alive at one year

• RIGHT BUT INEFFICIENT: Use only center A
– E.g., 17 of 100 subjects alive at three years



Applied Regression Analysis, June, 2003 June 23, 2003

(c) 2002, 2003, Scott S. Emerson, M.D., Ph.D. Part 1:13

49

Best Remedy

• RIGHT AND EFFICIENT
– Use all available data to estimate that portion of 

survival for which it is informative
• Use Centers A, B, and C to estimate one year survival
• Use Centers A and B to estimate proportion of one-year 

survivors who survive to two years
• Use Center A to estimate proportion of two-year 

survivors who survive to three years
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Theoretical Basis for Approach

Properties of probabilities
• Probability of event A and B occurring is 

product of
– Probability that A occurs when B has occurred
– Probability that B has occurred

( ) ( ) ( )BBABA Pr|PrPr  ×=∩
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Application of Theory to Survival

For times T1 < T2 , probability of surviving 
beyond time T2 is the product of

– Probability of surviving beyond time T2 given 
survival beyond time T1, and

– Probability of surviving beyond time T1
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Estimation of Conditional Survival

Estimate conditional probability of survival 
within each time interval
• Condition on surviving up until the start of the 

time interval
– Denominator is number of subjects at start of 

interval
– Numerator is deaths during the interval
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Requirements for Valid Estimates

Consistent estimates of survival probabilities 
depend on
• The subjects available at the start of each 

time interval must be a random sample of the 
population suriviving to that time

– “Noninformative censoring”
• cf: Nonignorable missing, but noninformative censoring
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Estimation of Survival Probability

Estimate probability of survival at the 
endpoint of  each time interval

• Multiply the conditional probabilities for all 
intervals prior to the time point of interest
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Obtaining Estimates

Within interval conditional probabilities
– Use A, B, C  to estimate Pr(T > 1)
– Use A, B       to estimate Pr(T > 2 | T > 1)
– Use A           to estimate Pr(T > 3 | T > 2)

Multiply to obtain unconditional cumulative 
survival

– Pr(T > 1)
– Pr(T > 2) =   Pr(T > 2 | T > 1)  Pr(T > 1)
– Pr(T > 3) =   Pr(T > 3 | T > 2)  Pr(T > 2)

56

Combined Data

Accrual Group
Year                 A       B       C        Combined 
1   On study      100     100     100          300

Died       43      53      55          151
Surviving       57      47      45          149 

2   On study       57      47      -- 104
Died       27      22                   49

Surviving       30      25                   55

3   On study       30      -- -- 30 
Died       13                           13

Surviving       17                           17
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Survival Probability Estimates

Survival Probabilities  
Yr  Combined       Each Year              Cumulative

1  On study 300
Died 151

Surviving 149  149/300 = 49.67%                 49.67%

2  On study 104
Died  49

Surviving  55   55/104 = 52.88%   .4967*.5288 = 26.27%

3  On study  30   
Died  13  

Surviving  17   17/ 30 = 56.67%   .2627*.5667 = 14.88%
58

Improved Precision

Intuitively, these estimates would provide 
greater precision, because they are based 
on more data than using Center A alone
• We can show this exactly using confidence 

intervals
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Number At Risk and Number Failed

For notational convenience
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Survival Probability Notation

For notational convenience
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Survival Probability Estimates

Maximum likelihood estimates for
• Conditional survival probability within intervals
• Unconditional survival probability
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Logarithmic Transformation

Sums are easier to work with than products
• The log transformed unconditional survival 

probability is the sum of log transformed 
conditional survival probabilities
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Basic Approach

We will find the standard error of the log 
transformed survival probabilities by
• Estimating each conditional survival 

probability and finding the variance of the log 
transformed estimates

• Invoking noninformative censoring to argue 
that the sum of our log transformed estimates 
must have the same distribution as the sum of 
log transformed independent estimates
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Standard Error of Proportions

From the laws of expectation, for the jth
interval
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Large Sample Approximation

From the central limit theorem
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Logarithmic Transformation

From the delta method
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Noninformative Censoring

In the presence of noninformative censoring, 
the risk set in any interval should look like 
a random sample of the population at risk
• Estimates of the conditional probability of 

survival for the intervals should be 
uncorrelated
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Confidence Intervals

Using the large sample approximation with 
plug-in estimates for standard errors
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Survival Probability Estimates

Note the improved precision (and accuracy)
• Narrower CI even for the third year estimates

Survival Probabilities (95% CI)  

Yr       Site A Only                  Combined

1    0.570 (0.473, 0.667)        0.497 (0.443, 0.557)

2    0.300 (0.210, 0.390)        0.263 (0.212, 0.325)

3    0.170 (0.096, 0.244)        0.149 (0.102, 0.217)
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Aside: Greenwood’s Formula

SE for the survival probabilities by a second 
application of the delta method
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Aside: Alternatives for CI

Three common methods for CI
• Based on log ( S(t) )
• Based on Greenwood’s formula
• Based on log ( - log ( S(t) ) )

– These intervals will always be between 0 and 1
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(Right) Censored Data

Product Limit
(Kaplan-Meier)

Estimates
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Kaplan-Meier Estimates

Computation of probability of survival 
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Kaplan-Meier Estimates

Product Limit Estimate
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Kaplan-Meier Estimates

Note that in the above definition
• An interval which ends in a censored 

observation with no observed events has 
conditional probability of surviving within the 
interval is 1.

• If the largest observation time is censored, the 
KM (PLE) survivor function never goes to zero

– We generally regard the KM (PLE) survivor 
function to be undefined for times beyond the 
largest observation time in this situation

76

Kaplan-Meier Estimates

Properties
• The KM (PLE) survivor functions can be 

shown to be
– Consistent: As sample sizes go to infinity, they 

estimate the true value
– Nonparametric maximum likelihood estimates

• (but usual asymptotic theory for regular, parametric 
MLE’s does not necessarily hold)
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Alternative Derivations

The KM (PLE) survivor functions can also be 
derived as the

– Self-consistent estimator
• (see Miller, Survival Analysis)

– “Redistribute to the right” estimator
• Provides intuition regarding noninformative censoring

78

Redistribute to the Right

Basic idea
• Recall the empirical cdf assigns probability 

1/n to each observation
– Each subject in a sample is representative of 1/n of 

the population
• A censored observation should be equally 

likely to have event time like any of the 
remaining uncensored observations

– Recursively redistribute the mass of each 
censored observation among the subjects 
remaining at risk

79

Redistribute to the Right Example

• Data: 1, 3, 4*, 5, 7*, 9, 10 (asterisk means 
censored)

• Initially: each point has mass 1/7

• Determine probability of events at earliest 
observed (uncensored) event times

– Pr (T = 1) = 1/7
– Pr (T = 3) = 1/7
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Redistribute to the Right Example

• Censored observation at 4
– Divide the mass at 4 equally among the remaining 

subjects at risk
• Now mass of 1/7 + 1/28 = 5/28 for each of 5, 7, 9, 10

• Determine probability of events at next 
observed (uncensored) event times

– Pr (T = 5) = 5/28
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Redistribute to the Right Example

• Censored observation at 7
– Divide the mass at 7 equally among the remaining 

subjects at risk
• Now mass of 5/28 + 5/56 = 15/56 for each of 9, 10

• Determine probability of events at next 
observed (uncensored) event times

– Pr (T = 9) = 15/56
– Pr (T = 10) = 15/56
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General Analysis Models

Risk Sets and
Hazard Functions

83

Hazard Functions

From the approach to nonparametric 
estimation of survival curves we see the 
importance of the hazard function
• Hazard = instantaneous risk of failure

– Conditional upon being still alive, what is the 
probability (rate) of failing in the next instant
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General Notation
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Relationship to Survivor Function

The survivor function (and, hence, the cdf) is 
uniquely determined by the hazard and 
vice versa
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Estimating the Hazard Function

The intuitive estimator of the hazard function 
is thus the conditional probability of failure 
at each point in time
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Risk Sets

Survival analysis often focuses on the “risk 
set” at each time
• “Risk set at time t”= the set of subjects in the 

sample who are at risk for failure at t
– These subjects can be used to compute and 

compare hazard functions and, hence, survival 
probabilities

88

Risk Based Analysis Models

Analyses based on hazard functions afford 
the opportunity to allow sampling schemes 
which sample the population at risk at 
each time
• Advantages:

– More efficient use of available data
– Time-varying covariates

• Disadvantages:
– Less intuitive summary measures
– Temptation to use time-varying covariates
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General Analysis Models

A Useful Analogy

90

Urn Model

Balls in an urn of various colors and patterns
• Balls might represent people in a study

– At any given time, the balls that are in the urn are 
therefore the risk set

• Colors and patterns represent risk factors
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Death Process

Periodically, I come in and choose a ball 
from the urn and take it
• When a ball is chosen it fails
• My predilection for choosing certain colors or 

patterns identifies true risk factors
• Characteristics of the balls that I do not notice 

have no effect on survival probabilities
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Evidence for Risk Factors

A certain color/pattern must be my favorite if 
• (Time based observations)

– I come in more often when that color/pattern is in 
the urn

• You need not consider what else is in the urn

• (Risk set based observations)
– I choose that color/pattern with a frequency 

disproportionate to its frequency in the urn
• If I am blind to a characteristic, my choices should look 

like random sampling
• You need not consider the times that I come in
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(Semi)parametric Models

Two general (semi)parametric probability 
models used in survival analysis
• Accelerated failure time models

– Consider time of failure
• Proportional hazards models

– Consider relations among hazards
– (Additive hazards models also used, but less 

frequently)

94

Accelerated Failure Time Models

Two groups that differ in some risk factor 
have survivor functions related by a 
parameter measuring acceleration or 
deceleration of time

• E.g.,
– A smoker ages twice as fast as a nonsmoker
– Each human year is seven dog years

( ) ( )tStS θ01 =
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Proportional Hazards Models

Two groups that differ in some risk factor 
have survivor functions related by a 
parameter measuring increased hazard

• E.g.,
– At any given time, a smoker is ten times more 

likely to develop lung cancer as a nonsmoker
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Scientific Studies

As a scientist you may
• Observe

– When I come into the room and take a ball,
– The colors/patterns on all the balls in the urn, and
– The color/patterns on the ball that I take

• Experiment
– Change the compostion in the urn and see

• Whether I come in the room more or less often, and
• The lengths to which I might go to find balls with certain 

colors or patterns by restricting my choices
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Altering the Risk Set

Censoring and time-varying covariates are 
analogous to changes in the composition 
of the urn
• Censoring = removing balls from the urn
• Time-varying covariates = repainting the balls 

or adding different balls

98

Caveats: Informative Censoring

Altering the risk set can be problematic
• Recall that in order for survival estimates to 

be consistent, the risk set in the sample must 
look like a random sample from the population

– You should not selectively remove or change balls 
that were (for their risk factors) particularly more 
likely or less likely to be chosen

• If you notice that I search the urn from top to bottom,
» Don’t just change the balls sitting at the top of the urn
» Make sure you stir the urn after each change
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Caveats: Time-varying Covariates

Time-varying covariates are far more easily 
implemented in the hazard based models
• Risk set approach makes this easy

However, scientifically we run the risk of 
overfitting our data using variables we are 
less interested in
• A priest delivering last rites is highly predictive 

of death and that may obscure that it was a 
gunshot wound that led to the death 100

General Analysis Models

Noninformative Censoring
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Noninformative Censoring

Censoring must not be informative about 
subjects who were either more or less 
likely to have an event in the immediate 
future
• The censored individuals must look like a 

random sample of those individuals at risk at 
the time of censoring

• (Later we shall say that they are a random 
sample from all subjects at risk having similar 
modeled covariates)

102

Examples of Informative Censoring

• Subjects in a clinical trial are withdrawn due to 
treatment failure (likely they would die sooner 
than those remaining)

• Subjects in a clinical trial in a fatal condition 
are lost to follow up when they go on vacation 
(likely they are healthier than those 
remaining)

103

Examples of Informative Censoring

• Leukemia patients in a clinical trial of bone 
marrow transplantation are censored if they 
die of infections rather than dying of cancer 
(the subjects who died of infections might 
have had a more effective regimen to wipe 
out existing cancer)
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Detecting Informative Censoring

As a general rule it is impossible to use the 
data to detect informative censoring
• The necessary data is almost certainly 

missing in the data set
• In some cases, it is impossible to ever 

observe the missing data
– Nonfelines can only die once
– We cannot observe whether subjects dying of one 

cause are more or less likely to die of another if we 
cure them of the first cause
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Competing Risks

This last situation is often referred to as 
“Competing Risks”
• Some “nuisance” event sometimes precludes 

your ability to ever observe the event of 
interest

• In the presence of competing risks, we must 
decide how best to address the scientific 
question of interest

106

Example: Censoring Mechanisms

Consider a study of smoking as a risk factor 
for incidence of cancer
• Possible causes of censored observations

– Subject still alive at time of data analysis
– Subject lost to follow-up during study
– Subject died in airline accident
– Subject died in single car accident
– Subject died of MI
– Subject died of emphysema

107

Censoring Competing Risks

Time to cancer, but competing risk of death
• Suppose we censor deaths

– If deaths represent noninformative censoring
• People who died of, say, MI neither more nor less likely 

to get cancer in the near term
• Estimates desired hazard rate

– If deaths represent informative censoring
• Estimates cause specific hazard in presence of 

unchanged risk of competing event
• Results are not generalizable to a population with an 

altered risk of death

108

Competing Risks: Alternatives

• Model informative censoring
• Model must be based on untestable assumptions

• Event free survival
• Like censoring deaths if competing risk hazard low
• Like censoring deaths if everyone gets cancer first
• Loss of power if truly noninformative censoring

• Wilcoxon like statistic
• Rank first on death times; break ties with cancer dx
• Like survival only if everyone dies

• Survival only
• Not really the question, especially if competing risk 

hazard is high
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General Analysis Models

Time-varying Covariates

110

Fixed Covariates

In a typical study, we compare the 
distribution of some outcome across 
groups defined at the start of the study
• Example: Risk of hang gliding

– Identify two groups
• Hang gliders
• Cowards

– Follow survival experience over time

111

Problem

What if a coward obtains courage?
• Misclassification will attenuate the true effect 

of hang gliding on survival
– Biased estimates
– Less precision

112

A Wrong Approach

We cannot divide the sample into groups 
according to lifetime habits
• Suppose we consider 

– Ever hang glided (hung glide?) vs Constant coward
• We might detect spurious associations due to 

“survivorship”
– If we started study at birth, we might find hang gliding 

is beneficial
• Most people don’t start hang gliding until teenaged
• We would detect the fact that hang gliders survived at least 

that long
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A Correct Approach

Let each subject contribute observation time 
to the appropriate group according to 
covariate at the relevant time
• Proportional hazards model

– Easily done, if noninformative censoring results
• Accelerated failure time model

– Difficult due to need to integrate hazards over 
disjoint intervals

114

Issues

Issues related to the use of time-varying 
covariates are analogous to those when 
deciding to adjust for any variable
• Can regard measurements made at different 

times as different covariates
• Need to consider

– Causal pathway of interest
– Confounding (bias)
– Precision

• Time aspect does increase the dimensionality

115

Issues: Informative Censoring

Possibility that impending event causes 
informative censoring (confounding?)
• Types of variables

– Extrinsic: Unaffected by individual decisions
• As a rule, time-varying extrinsic variables will not cause 

informative censoring
• E.g., Air pollution on a given day in an asthma study

» (providing it does not affect relocation)

– Intrinsic: Potentially affected by impending event
• E.g., Marijuana use

116

Causation versus Association

Example: Scientific interest in  causal 
pathways between marijuana use and 
heart attacks (MI)

• Pictorial representation of hypothetical causal effect of 
marijuana on MI that might be of scientific interest

Marijuana MI

Marijuana causes 
increased heart rate
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Causation versus Association

In an observational study, we cannot thus be 
sure which causative mechanism an 
association might represent

• Either of these mechanisms will result in an association 
between marijuana use and MI

Marijuana causes 
increased heart rate

Anxiety preceding MI
causes use of marijuana

MIMarijuana
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Issues: Obscuring Effect of Interest

With time-varying covariates, we have 
increased opportunity to measure short 
term effects
• This is good if that is our interest

– Immediate effects of blood pressure on 
hemorrhagic stroke

• This is bad if we wanted to assess long acting 
risk factors

– Chronic effect of asbestos on lung cancer
• A former asbestos worker is still at high risk

119

Issues: Causal Pathway of Interest

Capability for modeling time-varying 
covariates also increases chances for 
modeling a variable in the causal pathway 
of interest

120

Issues: Summary Measure

As illustrated previously, the interpretation of 
some of the statistics commonly used in 
survival analysis is heavily dependent 
upon the censoring distribution
• It is very difficult to explore how the changing 

size of risk sets might be altering the 
interpretation of the time-averaged hazard 
ratio in a proportional hazards model
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Issues: Final Comments

Time-varying covariates are definitely of 
scientific interest

However, they should not be used casually
• Usually, my first choice is to try to address 

scientific questions with fixed covariates
– I will put up with some misclassification, to avoid 

making mistakes that are due to incorrect, 
untestable assumptions
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General Analysis Models

Choice of Summary Measures
Used for Inference

123

Summarizing Effect

Based on marginal distributions
• Difference / ratio of means (arithmetic, geometric, …)
• Difference / ratio of proportion exceeding some threshold
• Difference / ratio of medians (or other quantiles)
• Ratio of odds of exceeding some threshold
• Ratio of hazard (averaged across time?)
• …

Based on joint distribution
• Median difference / ratio of paired observations
• Probability that a randomly chosen measurement from 

one population might exceed that from the other
• …
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Statistical Models

Options for inference
– Parametric models

• Weibull, lognormal, etc.

– Semiparametric models
• Proportional hazards, etc.

– Nonparametric
• Weighted rank tests: logrank, Wilcoxon, etc.
• Comparison of Kaplan-Meier estimates
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(Semi)parametric vs Nonparametric

Choice of statistical model can affect
• Computational methods for estimating the 

summary measure
• Precision of summary measure estimates
• Robustness of inference about the summary 

measure
• Ability to estimate the summary measure
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General Analysis Models

Probability Models

127

Right Censored Data

Notation:
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Probability Distributions
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Parametric Models

F is known up to some finite dimensional 
parameter vectors 
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Parametric Survival Models

Commonly used parametric survival models 
are generally accelerated failure time 
models
• Exponential
• Weibull
• Gamma
• Lognormal
• Log logistic
• Families joining several of the above
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Parametric Inference

Parametric inference generally proceeds 
through likelihood methods
• MLE found by Newton-Raphson iteration
• Asymptotic distributions from theory of regular 

problems
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Parametric Summary Measures
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Parametric Models: Issues

Advantages
• Can estimate any of the summary measures
• Can handle sparse data

Disadvantages
• Not robust to other distributions

– Parametric estimates with censoring do not 
generally have easy nonparametric interpretation

• E.g., lognormal model is not particularly robust

• Little reason to suggest particular distribution
– But motivation does exist for Weibull and Gamma
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Semiparametric Models

Exact form of within group distributions are 
unknown, but related to each other by 
some finite dimensional parameter vector 
• Full inference only for comparing distributions
• One group’s distn can be found from another 

group’s and a finite dimensional parameter
• (Most often: Distributions equal under H0)

(My definition of semiparametric models is a little stronger than some 
statisticians’, but agrees with commonly used semiparametric survival models)
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Semiparametric Models: Notation
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Semiparametric Survival Models
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Semiparametric Inference

Semiparametric inference generally 
proceeds through estimating equations
• Estimates found by iterative search
• Asymptotic distributions from special theory
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PH Partial Likelihood

Proportional hazards regression based on 
hazard of observed failure relative to sum 
of hazards in the risk set
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Semiparametric Summary Measures

Estimation of summary measures is 
generally limited to the parameter 
fundamental to the semiparametric model
• Proportional hazards

– Only make inference about hazard ratio
• Accelerated failure time

– Only make inference about ratio of quantiles
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Semiparametric Models: Issues

Advantages
• Can handle sparse data
• More robust than any single parametric model

Disadvantages
• Not easily interpreted when semiparametric

model does not hold
• Little reason to suggest a given risk factor 

would affect distribution in only one way
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“Because the light is so 
much better 

here under the streetlamp”
- a drunk looking for the keys 

he lost half a block away

A Logical Disconnect

142

Inflammatory Assertion

(Semi)parametric models are not typically in 
keeping with the state of knowledge as an 
experiment is being conducted
• The assumptions are more detailed than the 

hypothesis being tested, e.g.,
– Question: How does the intervention affect the first 

moment of the probability distribution?
– Assumption: We know how the intervention affects 

the 2nd, 3rd, …, ∞ central moments of the 
probability distribution.
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The Problem

Incorrect parametric assumptions can lead 
to incorrect statistical inference
• Precision of estimators can be over- or 

understated
– Hypothesis tests do not attain the nominal size

• Hypothesis tests can be inconsistent
– Even an infinite sample size may not detect the 

alternative
• Interpretation of estimators can be wrong

144

(Semi)parametric Example

Survival cure model (Ibrahim, 1999, 2000)
– Probability model 

• Proportion πi is cured (survival probability 1 at ∞) in the i-
th treatment group

• Noncured group has survival distribution modeled 
parametrically (e.g., Weibull) or semiparametrically (e.g., 
proportional hazards)

• Treatment effect is measured by θ = π1 – π0

– The problem as I see it: Incorrect assumptions 
about the nuisance parameter can bias the 
estimation of the treatment effect
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Foundational Issues: Null

Which null hypothesis should we test?
• The intervention has no effect whatsoever

• The intervention has no effect on some 
summary measure of the distribution

ttGtF ∀= ),()(:H 0

00 :H θθ =
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Foundational Issues: Alternative

What should the distribution of the data 
under the alternative represent?
• Counterfactual

– An imagined form for F(t), G(t) if something else 
were true

• Empirical
– The most likely distribution of the data if the 

alternative hypothesis about      were true θ
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My Views

The null hypothesis of greatest interest is 
rarely that a treatment has no effect
• Bone marrow transplantation
• Women’s Health Initiative
• National Lung Screening Trial

The empirical alternative is most in keeping 
with inference about a summary measure
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An Aside

The above views have important 
ramifications regarding the computation of 
standard errors for statistics under the null
• Permutation tests (or any test which 

presumes F=G under the null) will generally 
be inconsistent 
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Problem with (Semi)parametrics

Many mechanisms would seem to make it 
likely that the problems in which a fully 
parametric model or even a 
semiparametric model is correct constitute 
a set of measure zero
• Treatments are often directed to outliers
• Treatments are often only effective in subsets
• Factors affect rates; outcomes measure 

cumulative effects
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A Non-Solution: Model Checking

Model checking is apparently used by many 
to allow them to believe that their models 
are correct.
• From a recent referee’s report:

– “I know of no sensible statistician (frequentist or 
Bayesian) who does not do model checking.”

• Apparently the referee believes the following 
unproven proposition:

– If we cannot tell the model is wrong, then statistical 
inference under the model will be correct
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A Non-Solution: Model Checking

Counter example: Exponential vs Lognormal 
medians
• Pretest with Kolmogorov-Smirnov test (n=40)

– Power to detect wrong model
• 20% (exp);  12% (lnorm)

– Coverage of 95% CI under wrong model
• 85% (exp);  88% (lnorm)
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A Non-Solution: Model Checking

Model checking particularly makes little 
sense in a regulatory setting
• Commonly used null hypotheses presume the 

model fits in the absence of a treatment effect
– Frequentists would be testing for a treatment effect 

as they do model checking
• Bayesians should model any uncertainty in 

the distribution
– Interestingly, if one does this, the estimate 

indicating parametric family will in general vary 
with the estimate of treatment effect
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Nonparametric Models

Form of F is completely arbitrary and 
unknown within groups
• The summary measure measuring factor 

effect is just some difference between 
distributions

• The summary measure is estimated 
nonparametrically

– (preferably within groups and then compared 
across groups)
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Comparison of Summary Measures

Typical approaches to compare response 
across two treatment arms

• Difference / ratio of means (arithmetic, geometric, …)
• Difference / ratio of medians (or other quantiles)
• Median difference of paired observations
• Difference / ratio of proportion exceeding some threshold
• Ratio of odds of exceeding some threshold
• Ratio of instantaneous risk of some event

» (averaged across time?)
• Probability that a randomly chosen measurement from 

one population might exceed that from the other
• …
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Nonparametric Summary Measures

Nonparametric: Estimate summary 
measures from nonparametric empirical 
distribution functions

– E.g., use sample median for inference about 
population medians

– In the presence of censoring, use estimates based 
on Kaplan-Meier estimates

– Often the nonparametric estimate agrees with a 
commonly used (semi)parametric estimate

• Interpretation may depend on sampling scheme
• In this case, the difference will come in the computation 

of the standard errors 156

Nonparametric Summary Measures
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Nonparametric Summary Measures

Depending on the censoring scheme, not all 
summary measures are estimable

– The support of the censoring distribution may 
preclude estimation of the mean and some 
quantiles

– Can instead use the mean of the truncated 
distribution

• “Average increase in days alive during first 5 years”

( )∫=
a

duuS
0

ˆˆ      :ondistributi  truncatedofMean θ
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Inference

In most cases, variance estimates can be 
obtained from the asymptotic theory of the 
Kaplan-Meier estimates
• There are still some issues to be solved

– Regression modeling needs to be worked out
– Software is not readily available (Why not?)


