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Two Sample Inference

The Setting

Two Sample Setting

"Because the simplest thing statisticians
need to do is compare two groups.
And we don't know how to do it."

— Attributed to Fred Mosteller when asked by Dr.
Elliot Antman (a well known cardiologist) to explain
why we need so many types of two sample
comparison procedures.

Survival Analysis Methods

Most commonly used methods
» Parametric
— Accelerated failure time regression models
» Semiparametric
— Proportional hazards regression models
* Nonparametric

—Kaplan-Meier curves
—Weighted logrank statistics




Weighted Logrank Statistics

Generalization of statistics derived from the
proportional hazards setting
* Particularly of interest in the setting of
nonproportional hazards
— Early, transient treatment effects
— Late treatment effects occurring after some delay

Constant, Late, Early Effects

Right Censored Data

Notation:
Observed data :
Observation Times: 7T, = min(TiO,Ci )
o _ 0
Event indicators : D, = LT, _?"
0 otherwise
. 1 if treatment
Predictor : X; = .
0 if control

Logrank Statistic

Originally described as a straightforward

approach to the presence of censoring

« If we had followed all subjects a fixed amount
of time, we could use binomial proportions or
odds

» Time is merely a confounder and/or precision
variable in the analysis of the probability of
failure

» Adjust for time by stratification (dummy
variables)




Logrank Statistic
Analysis of stratified 2x2 contingency tables
* Mantel-Haenszel statistic

* Noninformative censoring allows the repeated
use of the same people in all of the strata

Can also be derived as the score statistic
from the proportional hazards partial
likelihood

Partial Likelihood
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Logrank Statistic

Under proportional hazards, the efficient
score statistic is a weighted average of
differences in hazards (proportions)

* Weights are roughly proportional to the size of
the risk sets at each failure time

— Intuitively reasonable if the treatment effect is
constant over time

—Under time-varying treatment effects, we might

want to weight more heavily the times with a
difference in hazards




Weighted Logrank Statistics

Choose additional weights to detect
anticipated effects
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G*7 Family of weighted logrank statistics :

w0)=[5.0F 5.0

G*” Family

Fleming & Harrington:
 Logrank statistic: p=0; y=0
» Wilcoxon statistic: p=1; y=0

—Weights early differences more heavily
» “Early” defined relative to survivor function, not time

. p:’], Y=1
—Places greatest weight between 25™, 75t quantiles
. p:O, Y=1

— Weights late differences more heavily

Constant, Late, Early Effects

Constant (PH) Effects: Power
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Early Effects: Power

Rho=0, Gamma=( (Logrank)
Rho=1, Gamma=0 (Wilcoxon)
Rho=0, Gamma=1

Rhos1, Gammas1

Power
0.6 0.8
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Late Effects: Power
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Caveats

The scientific interpretation of these
weighted logrank statistics is difficult in the
presence of nonproportional hazards

* (And why use them when we have PH?)
» The weights we specify are only part of the
story

—The size of the risk sets at each failure time also
affects the inference

Other Factors Affecting Weights

The size of the risk set is affected by
» The survivor function in each group
— Something we care about
— Something we hope is consistent across studies
* The censoring distribution in each group

— Something that we usually regard a matter of
convenience

— Something that we hope will not affect the scientific
estimates, just the statistical precision
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Censoring Affected By Accrual

Consider patterns of accrual that are either
uniform, faster early, or faster late

Cur alai9a D stnbutien Function

Extry Tima

Inference for PH, Late Tx Effects

Accrual Pattern
(/P statistic Uniform Larly Late
Proportional/Constant Difference Hazards
GO0 (Logranlk) 1.00 1.00 1.00
(U0 {generalized Wilcoxon) 1.00 1.00 1.00
(58 1.00 1.00 1.00
01 1.00 1.00 1.00
ey 1.00 1.00 1.00
{Estimated hazard ratio) 0.50 0.50 0.50
Non-proportional /Non-constant Difference Hazards

GO0 Togrank) 1.00 113 0.84
(1Y (generalized Wilcoxon) 1.00 113 0.84
(155 1.00 1.11 0.86
o1 1.00 1.0% 0.87
Gt 1.00 1.09 0.87
(Estimated hazard ratio) 0.73 0.69 0.74
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Effect of Censoring on Inference

The estimates of treatment benefit can vary
even more markedly according to the
censoring distribution
» With “crossing hazards”, changes in

censoring can make any of the weighted
logrank statistics qualitatively differ from each
other

—And it is possible for the conclusion drawn from the
statistic to differ markedly from the conclusion
suggested by the survival curves
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Hypothetical Example: Setting

Consider survival with a particular treatment
used in renal dialysis patients

 Extract data from registry of dialysis patients

—To ensure quality, only use data after 1995
* Incident cases in 1995: Follow-up 1995 — 2002 (8 years)
» Prevalent cases in 1995: Data from 1995 - 2002
» Incident in 1994: Information about 2" — 9t year
» Incident in 1993: Information about 3 — 10t year
» ...
» Incident in 1988: Information about 8t — 15t year
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Hypothetical Example: KM Curves

Kaplan-Meier Curves for Simulated Data (n=5623)
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Who Wants To Be A Millionaire?

Proportional hazards analysis estimates a
Treatment : Control hazard ratio of

B: 1.13 (logrank P =.0018)

The weighting using the risk sets made no
scientific sense

+ Statistical precision to estimate a meaningless
quantity is meaningless

Transitivity
The weighting scheme used in the weighted
logrank statistics also introduces
intransitivity to studies
* The weights are stochastically determined
from
— Each group’s survivor function
—The censoring distribution
* Hence we can obtain A>B>C>A

— Very distressing to regulatory agencies, if not all
scientists
27
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Empirical power for concluding Propartion
Example simultanecusly
Statistic distributions PriY>X)> 12 PrZ>Y)>1/2 PrX>Z =12  demonstrating
non-transitivity
B = (0.a0, 040, Uda, 100y,
gl g (0.50,0.25,0.25,0.00), 0841 0,830 0,902 54.85
r = (0.13,0.40, 0.40,0.05, 0.00)
p = (0.05, 0.05, 0,05, 0.85),
301 = (005, 0,30, 0,45, 0,20, 0.070 0503 0,009 67.2%
r = (045, 0,05, 0.05,0.45,0.05)
p = (0,05, 0,05, 0,05, 0,8),
ot = (0.03,0.10,0.45, 0.40), 0089 0.738 0.900 T1.2%
r = (0.05,0.25.0.05.0.45,0.20)




Sequential Clinical Trials

Overview
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Clinical Trials

Experimentation in human volunteers
— Efficacy: Can the treatment alter the disease
process in a beneficial way?
» Phase Il (preliminary); Phase IlI
— Safety: Are there adverse effects that clearly
outweigh any potential benefit?
¢ Phase |; Phase Il
— Effectiveness: Would adoption of the treatment as
a standard affect morbidity / mortality in the
population?
» Phase Il (therapy); Phase IV (prevention)
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Collaboration of Multiple Disciplines

Discipline Collaborators Issues
Epidemiologists Hypothesis generation
Scientific Basic Scientists Mechanisms
Clinical Scientists Clinical benefit
Clinical Experts in disease / treatment Efficacy of treatment
Experts in i Ad experiences

Individual ethics

Ethical Ethicists
Group ethics
Health services Cost effectiveness
Economic Sponsor management Cost of trial / Profitability
Sponsor marketers Marketing appeal
Safety
Governmental Regulators
9 Efficacy
e R . Estimates of treatment effect
Statistical Biostatisticians . :
Precision of estimates
Stud: dinat Collecti f data / Study b
Operational udy coordinators ollection of data udy urd;p

Data management Data integrity

Statistical Planning

Ensure that the trial will satisfy the various
collaborators as much as possible
— Discriminate between relevant scientific
hypotheses
« Scientific and statistical credibility
— Protect economic interests of sponsor
« Efficient designs; Economically important estimates
— Protect interests of patients on trial
« Stop if unsafe or unethical and when credible decision
can be made
— Promote rapid discovery of new beneficial

treatments 2




Address Variability

At the end of the study

» Estimate of the treatment effect
— Single best estimate
— Precision of estimates

+ Decision for or against hypotheses
—Binary decision
— Quantification of strength of evidence
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Statistical Design: Sampling Plan

Ethical and efficiency concerns are
addressed through sampling which might
allow early stopping

* During the conduct of the study, data are
analyzed at periodic intervals and reviewed by
the DMC

* Using interim estimates of treatment effect

— Decide whether to continue the trial

— If continuing, decide on any modifications to
sampling scheme
34

Sampling Plan
» Perform analyses at sample sizes N,.. . N,
—Can be randomly determined
» At each analysis choose stopping boundaries
—g<bj<gc<d

* Compute test statistic T(X;. . . Xy )

—Stop if T < g (extremely low)
—Stop if bj<T<c,  (approximate equivalence)
—Stopif T > d, (extremely high)

— Otherwise continue (with possible adaptive
modification of analysis schedule, sample size,

etc.) .

Sampling Plan

* Issues when using a sequential sampling plan
—Design stage
» Boundaries to satisfy desired operating characteristics
» E.g., type | error, power, sample size requirements
— Monitoring stage
* Flexible implementation of the stopping rule to account
for assumptions made at design stage

» E.g., sample size adjustment to account for observed
variance

— Analysis stage

 Providing inference based on true sampling distribution
of test statistics
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Sampling Plan: Examples

Alternative plans for a sepsis trial comparing
28 day mortality rates with 90% power to
detect a 7% improvement using N=1700

— Fixed sample study:
+ Gather data on 1700 patients and analyze data
— Group sequential study (OBF efficacy, P=0.8
futility):
» Perform analysis after 425 patients
« If test statistic very low or very high, stop
« |f test statistic intermediate, accrue another 425
* Repeat, as necessary, until maximum of 1700 patients
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Sampling Plan: Examples

Advantage of stopping rule:
—Fixed sample: 4.18% improvement is significant

« Harmful: Power= 0.001; Average N= 1700
* No effect: Power=0.025; Average N= 1700
* Low effect: Power= 0.500; Average N= 1700
« Beneficial: Power= 0.975; Average N= 1700
— Grp sequential: 4.24% improvement is significant
* Harmful: Power=0.001; Average N= 785
« No effect: Power= 0.025; Average N= 987
* Low effect: Power= 0.477; Average N= 1330
« Beneficial: Power= 0.966; Average N= 1104
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Major Issue: Frequentist Inference
Often, the criteria for judging statistical
evidence in clinical trial results are based
on frequentist criteria
» Experimentwise error probabilities
—Type |, Il errors, power
» Optimality of point estimates
—Bias, mean squared error

» Computation of precision
— Confidence intervals

39

Major Issue: Frequentist Inference

Frequentist operating characteristics are
based on the sampling distribution
+ Stopping rules do affect the sampling
distribution of the usual statistics
—MLEs are not normally distributed

—Z scores are not standard normal under the null
* (1.96 is irrelevant)

—The null distribution of fixed sample P values is not
uniform
* (They are not true P values)
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Sampling Distribution of Estimates

Fixed Sample (Null: Theta = 0)

AN

0.2 0.1 0.0 01 0.2

Sampling Density

Estimated Treatment Effect

Fixed Sample (Alt: Theta = -.07)

AN

0z 0.1 00 0.1 02 41
Estimated Treatment Effect

Sampling Density

Sampling Distribution of Estimates

Fixed Sample (Null: Theta = Q) Group Sequential (Null: Theta = 0)

= =
2 = 3 =
£ =
-0.2 =01 00 0.1 02 -0.2 -01 0.0 0.1 02
Estimated Treatment Effect Estimated Treatment Effect

Fixed Sample (Alt: Theta =-.07) Group Sequential (Alt: Theta = -.07)

-3 =
2 = 2 =
: = L 3 = Jb
02 01 00 01 02 02 01 0o 0.1 02
Estimated Treatment Effect Estimsted Treatment Effect

Sampling with Stopping Rules

Estimate (Null: Theta = 0) Estimate (Alt: Theta = -.07)
—Two-sided symm OBF, J=4
< | ~—-Fixed sample test (maiching ASN = |
= =
8 s 3 =
£ - Ee] fﬂ/ [
02 01 0.0 01 02 0z 01 0.0 0.1 02
Estimated Treatment Effect Estimated Treatment Effect
Z Statistic (Null: Theta = 0) Fixed Sample P value (Null: Theta = 0)
= =1 = &
£ 5] 27 e
g3 g7
B o 3w
2 0 2 0.0 0.2 0.4 06 08 10

Normalized Z Statistic Fixed Sample P value

Operating Characteristics

For any stopping rule, however, we can
compute the correct sampling distribution
with specialized software

* From the computed sampling distributions we
then compute
—Bias adjusted estimates
— Correct (adjusted) confidence intervals
— Correct (adjusted) P values
» Candidate designs can then be compared

with respect to their operating characteristics
44




Stopping Criteria: Boundary Scales

Various test statistics are transformations

*A stopping rule for one test statistic is easily
transformed to a rule for another statistic
—“Group sequential stopping rules”
* Sum of observations
 Point estimate of treatment effect
* Normalized (Z) statistic
» Fixed sample P value
« Error spending function
—Conditional probability
—Predictive probability
—Bayesian posterior probability 45

Unified Family: MLE Scale

Boundary shape function unifies families of
stopping rules

—Wang & Tsiatis (1987) based families
» O'Brien & Fleming (1979); Pocock (1977)

» Also used by Emerson & Fleming (1989); Pampallona &
Tsiatis (1994)

— Triangular test (Whitehead, 1983)

— Seq cond probability ratio test (Xiong & Tan, 1994)
— Conditional or predictive power

— Peto-Haybittle (using Burington & Emerson, 2003)

46

Conditions for Early Stopping

* Down columns: Early vs no early stopping
* Across rows: One-sided vs two-sided

[ ] N
1 I J " J I I7|
s T T T
. L . ] . _|_| ] | Al 1
L I L | L |
I | ]7

.. = 47

Boundary Shape Functions
A wide variety of boundary shapes possible

* All of the rules depicted have the same type |
error and power to detect the alternative




Evaluation of Designs

Process of choosing a trial design

+ Define candidate design

— Usually constrain two operating characteristics
» Type | error, power at design alternative
» Type | error, maximal sample size

» Evaluate other operating characteristics

— Different criteria of interest to different investigators
* Modify design
* lterate

49

Operating Characteristics

Generally the same for all stopping rule s
— Frequentist power curve
* Type | error (null) and power (design alternative)
— Sample size requirements
* Maximum, average, median, other quantiles
+ Stopping probabilities
—Inference at study termination (at each boundary)
» Frequentist inference
» Bayesian inference under spectrum of priors
— Futility measures
» Conditional power, predictive power
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Sequential Clinical Trials

Time Varying Treatment
Effects

51

Time Invariant Treatment Effects
The design, monitoring, and analysis of
sequential trials is fairly well established
for treatment effects that do not vary over
time
* Means
* Proportions
» Odds
* Proportional hazards
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Nonproportional Hazards
With nonproportional hazards, new issues
must be addressed

* Choice of summary measure

—Handling any dependence on the censoring
distribution

+ Definition of alternative
» Computation of operating characteristics
* Flexible implementation
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Censoring Distribution

A summary measure that depends on the
censoring distribution is the biggest
problem

* In a survival study, we typically have a
different censoring distribution at successive
analyses

* Hence, different summary measures are
being tested at different analyses
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Weighted Logrank Statistics
This is particularly true with weighted
logrank statistics

+ At the final analysis, weights will be applied
over a wider range of time than is possible at
earlier analyses

» At the earlier analyses, early results are
weighted more heavily than they will be later
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Example
A 7 year trial is planned using a weighted
logrank statistic to place weight late
* Plan:
—1/28, 2/28, 3/28, ..., 7/28 weight over the 7 years

+ An interim analysis conducted after 3 years

—1/6, 2/6, 3/6 over the first three years
* (later years have no data, hence no weights)
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One Proposed Solution

Apply weights due to be used late in study to
the most longterm experience
* In the example, we would apply weights
—1/28, 2/28, 25/28

» Tends to (appropriately) inflate variability of
statistic at interim analyses

* Intuitively reasonable in that the results for the
longest observations should be more
indicative of the future

— Similar to imputing future observations
57

Reassigning weights
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Null Hypothesis (Sy = 1) Alternative (Figure 5.1)

Analysis Proportionate G Reweighted fely aht Reweizhted gl
Time {yrs)  Information (s.e.) (se.) (se) (s.e.)
Non-staggered Entry
0.50 012 -0.005 (0.048) -0.016 (0.125) 0.005 (0.048) 0.012 {0.125)
1.00 0.42 -0.007 (0.096)  0.020 (0.223) -0.064 (D.0BY)  -0.221 (0.196)
1.50 0.67 -0.010 (0.129)  -0.024 (0.239) 0,909 (0.113) 0,350 (0.197)
2.00 0.84 -0.010 (0.146) 0.005 (0.207) -0.297 (0.126) -0.373 (0.175)
2.50 0.03 -0.003 (0.154) 0.006 (0.176) -0.346 (0.133) -0.383 (0.152)
3.00 0.08 0.003 {0.158) 0.010 (0.162) -0.375 (0.136) -0.398 (0.141)
3.50 0.09 0.006 (0.159) 0.011 (0.159) -0.387 (0.137) -0.396 (0.138)
4.00 1.00 0.007 (0.150) 0.000 (0.150) 0,389 (0.137) -0.394 (0.138)

Entry Times Distributed Unif(0.5)

137 0.12 0,003 (0.078) 0,003 (0.139) 0,022 (0.068)  -0.080 (0.127)
2.38 042 -0.002 (0.108) 0,014 (0.135) 0,084 (0.005)  -0.114 (0.121)
3.10 0.67 L0010 (0.121)  -0.013 (0.132) 0,143 (0.105)  -0.170 (0.118)
357 0.84 L0012 (0.126)  -0.017 (0.132) L0180 (0.110)  -0.203 (0.118)
379 0.03 0013 (0.128)  -0.017 (0.134) 0106 (0.112)  -0.215 (0.118)
3.88 0.08 0,013 (0.129)  -0.015 (0.134) 0,203 (0.113)  -0.222 (0.118)
3.07 0.00 0011 (0.130) 0,014 (0.134) 0.208 (0.113)  -0.226 (0.118)
4.00 100 0.012 (0.130)  -0.015 (0.134) 0.212 (0.113)  -0.231 (0.118)

Inferential Methods

Analysis at the end of the trial must take into
account the sampling plan
» Methods for confidence intervals involve
defining an “ordering of the sample space”

—Must decide how to order results obtained at
different stopping times

* Previously described methods
— Analysis time or stagewise ordering
—MLE ordering
—Z statistic ordering
60




Optimality Criteria
There is no single best ordering

» Whitehead and Jennison & Turnbull prefer the
analysis time ordering

* In the presence of time invariant treatment
effects, it does not usually make too much of
a difference

Optimality Criteria

However, the analysis time ordering
corresponds to the error spending function
—You can never get a P value less than the error
spent

—This means that with late onset treatment effects,
you can not achieve as low P values as might
otherwise be indicated

» Great impact on “pivotal trials”
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Power to Obtain Low P values
$00000000000000000000000000000
Delay in o
Treatment
Effect (yrs) Ordering 000625 001 .01 (025 000625 001 01 025
DSN1 (Pocock) DSN2 {O'Brien-Fleming)

0 Z-statistic 0284 0330 0766 0018 0.384 0431 0872 0.054
Analysis Time 0266 0311 0621 0914 0.266 0.311 0860 0052

1 Z-statistic 0112 0.119 0152 0.160 0.185 0202 0314 0327
Analysis Time  0.001 0.0001 0012 0.160 0.00 0.001 0311 0327

2 Z-statistic 0.010 0010 0017 0.029 0.034 0.034 0042 0.47
Analysis Time  0.000 0000 0007 0020 0.000 0.000  0.009  0.47

DSN3 DSN4

0 Z-statistic 0.390 0.440  0.878 0958 0.496 0.553 (.88 0.964
Analysis Time 0.266 0.311  0.852 0956 0.266 0.552  0.853  0.961

1 Z-statistic 0240 0287 0605 0.702 0.272 0.316 0822 0.047
Analysis Time  0.000 0000 0221 0.402 0.00 0240 0606  0.0d5

2 Z-statistic 0.054 005 0061 0.066 0.352 0.387 0585 0.600
Analysis Time 0000 0,000 0000 0.066 0.000 0.000 0010 0.600




Final Comments

We have found that our first attempts at
improving the scientific use of the
weighted logrank statistics has worked
well
 Greatly improved consistent estimation
* Minimal loss of power
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Final Comments

Much more work is needed when using
sequential methods with time varying
treatment effects

* We are exploring the use of Bayesian random
walk processes to model the types of
alternatives that might be addressed

* However, this is truly an insoluble problem:

—There is nothing in the data that can guarantee
what future data might look like
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Final Comments

In any case, however, the issue of
paramount importance is that decisions
about the summary measure be driven by
the scientifically important effects

» Censored survival data requires a bit of extra
care

» But the scientific issues are the same

67




