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Two Sample Inference

The Setting
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Two Sample Setting

"Because the simplest thing statisticians
need to do is compare two groups. 
And we don't know how to do it."

– Attributed to Fred Mosteller when asked by Dr. 
Elliot Antman (a well known cardiologist) to explain 
why we need so many types of two sample 
comparison procedures. 
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Survival Analysis Methods

Most commonly used methods
• Parametric

– Accelerated failure time regression models
• Semiparametric

– Proportional hazards regression models
• Nonparametric

– Kaplan-Meier curves
– Weighted logrank statistics
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Weighted Logrank Statistics

Generalization of statistics derived from the 
proportional hazards setting
• Particularly of interest in the setting of 

nonproportional hazards
– Early, transient treatment effects
– Late treatment effects occurring after some delay
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Constant, Late, Early Effects
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Right Censored Data

Notation:
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Logrank Statistic

Originally described as a straightforward 
approach to the presence of censoring
• If we had followed all subjects a fixed amount 

of time, we could use binomial proportions or 
odds

• Time is merely a confounder and/or precision 
variable in the analysis of the probability of 
failure

• Adjust for time by stratification (dummy 
variables)
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Logrank Statistic

Analysis of stratified 2x2 contingency tables
• Mantel-Haenszel statistic
• Noninformative censoring allows the repeated 

use of the same people in all of the strata

Can also be derived as the score statistic 
from the proportional hazards partial 
likelihood
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Partial Likelihood
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Partial Likelihood Based Score
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Logrank Statistic

Under proportional hazards, the efficient 
score statistic is a weighted average of 
differences in hazards (proportions)
• Weights are roughly proportional to the size of 

the risk sets at each failure time
– Intuitively reasonable if the treatment effect is 

constant over time
– Under time-varying treatment effects, we might 

want to weight more heavily the times with a 
difference in hazards
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Weighted Logrank Statistics

Choose additional weights to detect 
anticipated effects
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Gργ Family 

Fleming & Harrington:
• Logrank statistic: ρ=0; γ=0
• Wilcoxon statistic: ρ=1; γ=0

– Weights early differences more heavily
• “Early” defined relative to survivor function, not time

• ρ=1; γ=1
– Places greatest weight between 25th, 75th quantiles

• ρ=0; γ=1
– Weights late differences more heavily
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Constant, Late, Early Effects
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Constant (PH) Effects: Power
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Early Effects: Power
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Late Effects: Power
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Caveats

The scientific interpretation of these 
weighted logrank statistics is difficult in the 
presence of nonproportional hazards

• (And why use them when we have PH?)

• The weights we specify are only part of the 
story

– The size of the risk sets at each failure time also 
affects the inference
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Other Factors Affecting Weights

The size of the risk set is affected by
• The survivor function in each group

– Something we care about
– Something we hope is consistent across studies

• The censoring distribution in each group
– Something that we usually regard a matter of 

convenience
– Something that we hope will not affect the scientific 

estimates, just the statistical precision
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Censoring Affected By Accrual

Consider patterns of accrual that are either 
uniform, faster early, or faster late
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Inference for PH, Late Tx Effects
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Effect of Censoring on Inference

The estimates of treatment benefit can vary 
even more markedly according to the 
censoring distribution
• With “crossing hazards”, changes in 

censoring can make any of the weighted 
logrank statistics qualitatively differ from each 
other

– And it is possible for the conclusion drawn from the 
statistic to differ markedly from the conclusion 
suggested by the survival curves
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Hypothetical Example: Setting

Consider survival with a particular treatment 
used in renal dialysis patients
• Extract data from registry of dialysis patients

– To ensure quality, only use data after 1995
• Incident cases in 1995: Follow-up 1995 – 2002 (8 years)
• Prevalent cases in 1995: Data from 1995 - 2002

» Incident in 1994: Information about 2nd – 9th year
» Incident in 1993: Information about 3rd – 10th year
» …
» Incident in 1988: Information about 8th – 15th year
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Hypothetical Example: KM Curves
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Who Wants To Be A Millionaire?

Proportional hazards analysis estimates a 
Treatment : Control hazard ratio of

B:      1.13   (logrank P = .0018)

The weighting using the risk sets made no 
scientific sense
• Statistical precision to estimate a meaningless 

quantity is meaningless
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Transitivity

The weighting scheme used in the weighted 
logrank statistics also introduces 
intransitivity to studies
• The weights are stochastically determined 

from
– Each group’s survivor function
– The censoring distribution

• Hence we can obtain A > B > C > A
– Very distressing to regulatory agencies, if not all 

scientists
28

Demonstrating Intransitivity
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Sequential Clinical Trials

Overview
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Clinical Trials

Experimentation in human volunteers
– Efficacy: Can the treatment alter the disease 

process in a beneficial way?
• Phase II (preliminary); Phase III

– Safety: Are there adverse effects that clearly 
outweigh any potential benefit?

• Phase I; Phase II

– Effectiveness: Would adoption of the treatment as 
a standard affect morbidity / mortality in the 
population?

• Phase III (therapy); Phase IV (prevention)
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Collaboration of Multiple Disciplines
IssuesCollaboratorsDiscipline

Collection of data / Study burden
Data integrity

Study coordinators
Data management

Operational

Estimates of treatment effect
Precision of estimates

Safety
Efficacy

Cost effectiveness
Cost of trial / Profitability
Marketing appeal

Individual ethics
Group ethics

Efficacy of treatment
Adverse experiences

Hypothesis generation
Mechanisms
Clinical benefit

BiostatisticiansStatistical

RegulatorsGovernmental

Health services
Sponsor management
Sponsor marketers

Economic

EthicistsEthical

Experts in disease / treatment
Experts in complications

Clinical

Epidemiologists
Basic Scientists
Clinical Scientists

Scientific
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Statistical Planning

Ensure that the trial will satisfy the various 
collaborators as much as possible

– Discriminate between relevant scientific 
hypotheses

• Scientific and statistical credibility

– Protect economic interests of sponsor
• Efficient designs; Economically important estimates

– Protect interests of patients on trial
• Stop if unsafe or unethical and when credible decision 

can be made

– Promote rapid discovery of new beneficial 
treatments
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Address Variability

At the end of the study 
• Estimate of the treatment effect

– Single best estimate
– Precision of estimates

• Decision for or against hypotheses
– Binary decision
– Quantification of strength of evidence
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Statistical Design: Sampling Plan

Ethical and efficiency concerns are 
addressed through sampling which might 
allow early stopping
• During the conduct of the study, data are 

analyzed at periodic intervals and reviewed by 
the DMC

• Using interim estimates of treatment effect
– Decide whether to continue the trial
– If continuing, decide on any modifications to 

sampling scheme
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Sampling Plan 

• Perform analyses at sample sizes N1. . . NJ
– Can be randomly determined

• At each analysis choose stopping boundaries
– aj < bj < cj < dj

• Compute test statistic T(X1. . . XNJ
)

– Stop if T  < aj (extremely low)
– Stop if bj < T < cj (approximate equivalence)
– Stop if T > dj (extremely high)
– Otherwise continue (with possible adaptive 

modification of analysis schedule, sample size, 
etc.)
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Sampling Plan 

• Issues when using a sequential sampling plan
– Design stage

• Boundaries to satisfy desired operating characteristics
» E.g., type I error, power, sample size requirements

– Monitoring stage
• Flexible implementation of the stopping rule to account 

for assumptions made at design stage
» E.g., sample size adjustment to account for observed 

variance

– Analysis stage
• Providing inference based on true sampling distribution 

of test statistics
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Sampling Plan: Examples

Alternative plans for a sepsis trial comparing 
28 day mortality rates with 90% power to 
detect a 7% improvement using N=1700

– Fixed sample study:
• Gather data on 1700 patients and analyze data

– Group sequential study (OBF efficacy, P=0.8 
futility):

• Perform analysis after 425 patients
• If test statistic very low or very high, stop
• If test statistic intermediate, accrue another 425
• Repeat, as necessary, until maximum of 1700 patients
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Sampling Plan: Examples

Advantage of stopping rule:
– Fixed sample:    4.18% improvement is significant

• Harmful:                Power= 0.001;     Average N= 1700
• No effect:              Power= 0.025;     Average N= 1700
• Low effect:            Power= 0.500;     Average N= 1700
• Beneficial:             Power= 0.975;     Average N= 1700

– Grp sequential: 4.24% improvement is significant  
• Harmful:                Power= 0.001;     Average N=   785
• No effect:              Power= 0.025;     Average N=   987
• Low effect:            Power= 0.477;     Average N= 1330
• Beneficial:             Power= 0.966;     Average N= 1104

39

Major Issue: Frequentist Inference

Often, the criteria for judging statistical 
evidence in clinical trial results are based 
on frequentist criteria
• Experimentwise error probabilities

– Type I, II errors, power
• Optimality of point estimates

– Bias, mean squared error
• Computation of precision

– Confidence intervals
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Major Issue: Frequentist Inference

Frequentist operating characteristics are 
based on the sampling distribution
• Stopping rules do affect the sampling 

distribution of the usual statistics 
– MLEs are not normally distributed
– Z scores are not standard normal under the null

• (1.96 is irrelevant)

– The null distribution of fixed sample P values is not 
uniform

• (They are not true P values)
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Sampling Distribution of Estimates
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Sampling Distribution of Estimates
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Sampling with Stopping Rules
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Operating Characteristics

For any stopping rule, however, we can 
compute the correct sampling distribution 
with specialized software
• From the computed sampling distributions we 

then compute
– Bias adjusted estimates
– Correct (adjusted) confidence intervals
– Correct (adjusted) P values

• Candidate designs can then be compared 
with respect to their operating characteristics
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Stopping Criteria: Boundary Scales

Various test statistics are transformations
•A stopping rule for one test statistic is easily 
transformed to a rule for another statistic

–“Group sequential stopping rules”
• Sum of observations
• Point estimate of treatment effect
• Normalized (Z) statistic
• Fixed sample P value
• Error spending function

–Conditional probability
–Predictive probability
–Bayesian posterior probability 46

Unified Family: MLE Scale

Boundary shape function unifies families of 
stopping rules 

– Wang & Tsiatis (1987) based families
• O’Brien & Fleming (1979); Pocock (1977)
• Also used by Emerson & Fleming (1989); Pampallona & 

Tsiatis (1994)

– Triangular test (Whitehead, 1983)
– Seq cond probability ratio test (Xiong & Tan, 1994)
– Conditional or predictive power
– Peto-Haybittle (using Burington & Emerson, 2003)
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Conditions for Early Stopping

• Down columns: Early vs no early stopping
• Across rows: One-sided vs two-sided
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Boundary Shape Functions

A wide variety of boundary shapes possible
• All of the rules depicted have the same type I 

error and power to detect the alternative
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Evaluation of Designs

Process of choosing a trial design
• Define candidate design

– Usually constrain two operating characteristics
• Type I error, power at design alternative
• Type I error, maximal sample size

• Evaluate other operating characteristics
– Different criteria of interest to different investigators

• Modify design
• Iterate
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Operating Characteristics

Generally the same for all stopping rule s
– Frequentist power curve

• Type I error (null) and power (design alternative)

– Sample size requirements
• Maximum, average, median, other quantiles
• Stopping probabilities

– Inference at study termination (at each boundary)
• Frequentist inference
• Bayesian inference under spectrum of priors

– Futility measures
• Conditional power, predictive power
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Sequential Clinical Trials

Time Varying Treatment
Effects
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Time Invariant Treatment Effects

The design, monitoring, and analysis of 
sequential trials is fairly well established 
for treatment effects that do not vary over 
time
• Means
• Proportions
• Odds
• Proportional hazards
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Nonproportional Hazards

With nonproportional hazards, new issues 
must be addressed
• Choice of summary measure

– Handling any dependence on the censoring 
distribution

• Definition of alternative
• Computation of operating characteristics
• Flexible implementation
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Censoring Distribution

A summary measure that depends on the 
censoring distribution is the biggest 
problem
• In a survival study, we typically have a 

different censoring distribution at successive 
analyses

• Hence, different summary measures are 
being tested at different analyses
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Weighted Logrank Statistics

This is particularly true with weighted 
logrank statistics
• At the final analysis, weights will be applied 

over a wider range of time than is possible at 
earlier analyses

• At the earlier analyses, early results are 
weighted more heavily than they will be later
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Example

A 7 year trial is planned using a weighted 
logrank statistic to place weight late
• Plan:

– 1/28, 2/28, 3/28, …, 7/28 weight over the 7 years
• An interim analysis conducted after 3 years

– 1/6, 2/6, 3/6 over the first three years
• (later years have no data, hence no weights)
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One Proposed Solution

Apply weights due to be used late in study to 
the most longterm experience
• In the example, we would apply weights

– 1/28, 2/28, 25/28
• Tends to (appropriately) inflate variability of 

statistic at interim analyses
• Intuitively reasonable in that the results for the 

longest observations should be more 
indicative of the future

– Similar to imputing future observations
58

Reassigning weights
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Inferential Methods

Analysis at the end of the trial must take into 
account the sampling plan
• Methods for confidence intervals involve 

defining an “ordering of the sample space”
– Must decide how to order results obtained at 

different stopping times
• Previously described methods

– Analysis time or stagewise ordering
– MLE ordering
– Z statistic ordering
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Optimality Criteria

There is no single best ordering
• Whitehead and Jennison & Turnbull prefer the 

analysis time ordering
• In the presence of time invariant treatment 

effects, it does not usually make too much of 
a difference
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Optimality Criteria

However, the analysis time ordering 
corresponds to the error spending function

– You can never get a P value less than the error 
spent

– This means that with late onset treatment effects, 
you can not achieve as low P values as might 
otherwise be indicated

• Great impact on “pivotal trials”
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Power to Obtain Low P values
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Final Comments

We have found that our first attempts at 
improving the scientific use of the 
weighted logrank statistics has worked 
well
• Greatly improved consistent estimation
• Minimal loss of power
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Final Comments

Much more work is needed when using 
sequential methods with time varying 
treatment effects
• We are exploring the use of Bayesian random 

walk processes to model the types of 
alternatives that might be addressed

• However, this is truly an insoluble problem:
– There is nothing in the data that can guarantee 

what future data might look like
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Final Comments

In any case, however, the issue of 
paramount importance is that decisions 
about the summary measure be driven by 
the scientifically important effects
• Censored survival data requires a bit of extra 

care
• But the scientific issues are the same


