
Biost/Stat 533
Emerson, Spr 99

Homework #1 Key
April 27, 1999

1. Suppose Yi ∼ (µ0, σ
2) for i = 1, . . . , n0 and Yi ∼ (µ1, σ

2) for i = n0 + 1, . . . , n = n0 + n1, with
Cov(Yi, Yj) = 0 for i �= j. We are interested in estimating µ1 − µ0. For notational convenience, let �w

be an n-vector such that wi = 1 for 1 ≤ i ≤ n0 and wi = 0 otherwise, and let �z = �1n − �w.

a. Using design matrix X = (�1n �w), find the best linear unbiased estimator �̂β for regression model
�Y = X�β + �ε. Find vector �a such that estimable function �aT �β = µ1 − µ0, and provide the formula

and mean and variance for �aT �̂β.

Ans: For notational convenience define Y 0 =
∑n0

i=1 Yi/n0 and Y 1 =
∑n

i=n0+1 Yi/n1. By straightfor-
ward matrix operations we find

XT X =
(

�1T
n
�1n

�1T
n �w

�wT�1n �wT �w

)
=
(

n0 + n1 n0

n0 n0

)
(XTX)−1 =

( 1
n1

− 1
n1

− 1
n1

1
n0

+ 1
n1

)

XT �Y =
(

n0Y 0 + n1Y 1

n0Y 0

)
�̂β = (XTX)−1XT �Y =

(
Y 1

Y 0 − Y 1

)

Taking the expectation of �̂β we find

E[ �̂β] =
(

µ1

µ0 − µ1

)
Thus for �a = (0 − 1)T , we have �aT �β = µ1 − µ0. So

�aT �̂β = Y 1 − Y 0

E[�aT �̂β] = �aT E[ �̂β] = µ1 − µ0

V ar[�aT �̂β] = �aT V ar[ �̂β]�a = σ2�aT (XTX)−1�a = σ2(
1
n0

+
1
n1

)

(Note that this is the estimate and variance for the two sample Z test.)

b. Using design matrix X = (�1n �z), find the best linear unbiased estimator �̂β for regression model
�Y = X�β + �ε. Find vector �a such that estimable function �aT �β = µ1 − µ0, and provide the formula

and mean and variance for �aT �̂β.

Ans: By straightforward matrix operations we find

XTX =
(

�1T
n
�1n

�1T
n�z

�zT�1n �zT �z

)
=
(

n0 + n1 n1

n1 n1

)
(XT X)−1 =

( 1
n0

− 1
n0

− 1
n0

1
n0

+ 1
n1

)

XT �Y =
(

n0Y 0 + n1Y 1

n1Y 1

)
�̂β = (XT X)−1XT �Y =

(
Y 0

Y 1 − Y 0

)

Taking the expectation of �̂β we find

E[ �̂β] =
(

µ0

µ1 − µ0

)
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Thus for �a = (0 1)T , we have �aT �β = µ1 − µ0. So

�aT �̂β = Y 1 − Y 0

E[�aT �̂β] = �aT E[ �̂β] = µ1 − µ0

V ar[�aT �̂β] = �aT V ar[ �̂β]�a = σ2�aT (XTX)−1�a = σ2(
1
n0

+
1
n1

)

(Note again that this is the estimate and variance for the two sample Z test.)

c. Using design matrix X = (�w �z), find the best linear unbiased estimator �̂β for regression model
�Y = X�β + �ε. Find vector �a such that estimable function �aT �β = µ1 − µ0, and provide the formula

and mean and variance for �aT �̂β.

Ans: By straightforward matrix operations we find

XTX =
(

�wT�1n �wT�z
�zT �w �zT�z

)
=
(

n0 0
0 n1

)
(XT X)−1 =

( 1
n0

0
0 1

n1

)

XT �Y =
(

n0Y 0

n1Y 1

)
�̂β = (XT X)−1XT �Y =

(
Y 0

Y 1

)

Taking the expectation of �̂β we find

E[ �̂β] =
(

µ0

µ1

)

Thus for �a = (−1 1)T , we have �aT �β = µ1 − µ0. So

�aT �̂β = Y 1 − Y 0

E[�aT �̂β] = �aT E[ �̂β] = µ1 − µ0

V ar[�aT �̂β] = �aT V ar[ �̂β]�a = σ2�aT (XTX)−1�a = σ2(
1
n0

+
1
n1

)

(Note again that this is the estimate and variance for the two sample Z test.)

d. Using design matrix X = (�1n �w �z), find the best linear unbiased estimator �̂β for regression model
�Y = X�β + �ε. Find vector �a such that estimable function �aT �β = µ1 − µ0, and provide the formula

and mean and variance for �aT �̂β.

Ans: In this case, the design matrix is not of full rank, because �w + �z = �1n. We thus have to find a
LSE either by eliminating a linearly dependent column, augmenting the design matrix with a
constraint, or using a generalized inverse. As the last method is commonly effected using one
of the first two, I will only demonstrate those first two methods.

Since any two columns of X are linearly independent, I decide to eliminate the third column.
Thus I can use the results of part (a) to find the estimates β̂0 = Y 1 and β̂1 = Y 0 − Y 1, and I
set β̂2 = 0. We can define the generalized inverse

(XTX)− =

 1
n1

− 1
n1

0
− 1

n1

1
n0

+ 1
n1

0
0 0 0


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Taking the expectation of �̂β we find

E[ �̂β] =
(

µ1

µ0 − µ1

)
Thus for �a = (0 − 1 0)T , we have �aT �β = µ1 − µ0. So

�aT �̂β = Y 1 − Y 0

E[�aT �̂β] = �aT E[ �̂β] = µ1 − µ0

V ar[�aT �̂β] = �aT V ar[ �̂β]�a = σ2�aT (XTX)−�a = σ2(
1
n0

+
1
n1

)

An alternative approach to this problem would have been to use an identifiability constraint.
One such constraint that might typically used in this situation is that β̂1 + β̂2 = 0. We thus
create augmented vectors and matrices

�U =
(

�Y
0

)
V =

(
�1n �w �z
0 1 1

)
By straightforward matrix operations we find

VTV =

 �1T
n
�1n

�1T
n �w �1T

n�z
�wT�1n �wT �w + 1 �wT�z + 1
�zT�1n �zT �w + 1 �zT �z + 1

 =

n0 + n1 n0 n1

n0 n0 + 1 1
n1 1 n1 + 1



(VTV)−1 =

 n+n0n1
4n0n1

n1−n0−n0n1
4n0n1

n0−n1−n0n1
4n0n1

n1−n0−n0n1
4n0n1

n+n0n1
4n0n1

n0n1−n
4n0n1

n0−n1−n0n1
4n0n1

n0n1−n
4n0n1

n+n0n1
4n0n1



VT �U =

n0Y 0 + n1Y 1

n0Y 0

n1Y 1

 �̂β = (VTV)−1VT �U =


Y 0+Y 1

2
Y 0−Y 1

2
Y 1−Y 0

2


where to find the inverse of the 3 by 3 matrix I used the following result for the inverse of a
symmetric partitioned matrix(

A B
BT D

)−1

=
(

A−1 + FE−1FT −FE−1

−E−1FT E−1

)

where E = D − BTA−1B and F = A−1B (see Seber, p. 390-1). Taking the expectation of �̂β
we find

E[ �̂β] =

 (µ0 + µ1)/2
(µ0 − µ1)/2
(µ1 − µ0)/2


Thus for �a = (0 − 1 1)T , we have �aT �β = µ1 − µ0 (note that �a must be in the range space
of XT ). So

�aT �̂β = Y 1 − Y 0

E[�aT �̂β] = �aT E[ �̂β] = µ1 − µ0

V ar[�aT �̂β] = �aT V ar[ �̂β]�a = σ2�aT (VTV)−1�a = σ2(
1
n0

+
1
n1

)
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(Note again that this is the estimate and variance for the two sample Z test.)

2. Let X (dimension n × p) and W (dimension n × r) be design matrices with the same range spaces (so
R[X] = R[W], where R[X] = {�y : �y = X�a, �a ∈ Rp} and R[W] = {�y : �y = W�a, �a ∈ Rr}). Show
that regression models �Y = X�β + �ε and �Y = W�γ + �ε are alternative parameterizations of each other.
Furthermore show that if �aT �β is an estimable function, then there exists an estimable function �bT�γ such

that estimates �aT �̂β and �bT �̂γ are equal for all �Y ∈ Rn and all least squares estimators �̂β and �̂γ.

Ans: �̂β and �̂γ are LSE, so we know

XTX�̂β = XT �Y

WTW�̂γ = WT �Y

Because X and W have the same range space, we know there exist matrices A and B (not
necessarily unique if X and W are not full rank) such that W = XA and X = WB. Hence
we find

WTW�̂γ = WT �Y = AT XT �Y = ATXTX�̂β = WTX�̂β

XTX�̂β = XT �Y = BT WT �Y = BTWT W�̂γ = XTW�̂γ

and from this we find
WT (W�̂γ − X�̂β) = �0

XT (W�̂γ − X�̂β) = �0

Now from �̂γ = (WT W)−WT �Y it is clear that �̂γ is in the range space of WT , and similary
�̂β is in the range space of XT , which by hypothesis is equal to the range space of WT . Thus

we can conclude W�̂γ −X�̂β = �0 and W�̂γ = X�̂β, and the two regression models are alternative
parameterizations of each other. Furthermore, because W = XA and X = WB,

WTW(�̂γ −B�̂β) = �0

XTX(A�̂γ − �̂β) = �0

and �̂γ = B�̂β and �̂β = A�̂γ for some matrices B and A. Hence for estimable function �aT �β,
�bT�γ = �aTA�γ is estimable.

3. Suppose n-vector �ε has E[�ε] = �0 and Cov[�ε] = V with rank(V) = n. Let �̂β = (XTX)−XT �Y be the

ordinary least squares estimator of �β and �̂βG = (XT V−1X)−XT V−1�Y be the generalized least squares
estimator of �β in regression model �Y = X�β +�ε.

a. Find the mean and variance of estimators �aT �̂β and �aT �̂βG of estimable function �aT β.

Ans: Using the laws of expectation we have

E[�aT �̂β] = �aT (XTX)−XT E[�Y ] = �aT (XTX)−XT X�β

Now because �aT β is estimable, we know by Proposition II.A.10 that there exists a vector
�b ∈ Rn such that �aT = �bTX. Furthermore, from the definition of a generalized inverse
we know XTX(XT X)−XTX = XTX, so X(XTX)−XT X = X. Thus �aT (XT X)−XTX�β =
�bTX(XT X)−XTX�β = �bTX�β = �aT �β.

Using the results for the covariance of a vector product, we have

V ar(�aT �̂β) = �aT (XTX)−XT V ar(�Y )X(XT X)−�a = σ2�aT (XT X)−�a
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when V ar(�Y ) = σ2In.

For the general case we have that �̂βG is the OLSE for transformed model �Z = W�β +�ε∗, where
�Z = V−1/2�Y , W = V−1/2X, and �ε∗ ∼ (�0, In). And under the results given above, thus in

this transformed problem OLSE �aT �̂βG of estimable function �aT �β has expectation �aT �β as given
above. The variance is found to be

V ar(�aT �̂βG) = �aT (XTV−1X)−XTV−1V ar(�Y )V−1X(XTV−1X)−�a

= �aT (XTV−1X)−XTV−1VV−1X(XTV−1X)−�a

= σ2�aT (XTV−1X)−�a

b. Show that a best linear unbiased estimator of estimable function �aT �β is �aT �̂βG.

Ans: We again consider the transformed problem in which �ε∗ ∼ (�0, In). Then by Proposition

II.A.11 in the class notes, �aT �̂βG is unique for all �a ∈ Rp. �aT �̂βG is also unbiased as noted
above. Let �bT �Z be any other unbiased estimator. So E[�bT �Z ] = �bTW�β = �aT �β and bTW = aT .

V ar(�bT �Z) = �bT�b and V ar(�aT �̂βG) = �aT (WT W)−�a = �bTW(WTW)−WT�b. So

V ar(�bT �Z) − V ar(�aT �̂βG) = �bT (In −W(WT W)−WT )�b = �bT (In − P)�b

And (In − P)(In −P) = (In − P) and symmetric, so

V ar(�bT �Y ) − V ar(�aT �̂βG) = �dT �d ≥ 0

with equality only if �d = �0, which corresponds to �bT �Y = �aT �̂βG. (Note that this proof proceeds
exactly like the case for a design matrix of full rank, and that we establish the BLUE optimality
in the transformed setting.)

4. Consider again the setting of problem 1 in which Yi ∼ (µ0, σ
2) for i = 1, . . . , n0 and Yi ∼ (µ1, σ

2) for
i = n0 + 1, . . . , n = n0 + n1 = 2n0, except observations within each group are correlated. That is, we
have Cov(Yi, Yj) = ρσ2 for i, j = 1, . . . , n0; i �= j, Cov(Yi, Yj) = ρσ2 for i, j = n0 + 1, . . . , n; i �= j, and
Cov(Yi, Yj) = 0 for i = 1, . . . , n0; j = n0 + 1, dots, n. For notational convenience, let �w be an n-vector
such that wi = 1 for 1 ≤ i ≤ n0 and wi = 0 otherwise, and let �z = �1n − �w. Consider linear regression
model �Y = X�β +�ε with X = (�w �z). We are interested in estimating �aT �β = µ1 − µ0.

a. Show that the ordinary least squares estimator �̂β is equal to the generalized least squares estimator
�̂βG. What is the mean and variance of these estimators?

Ans: The OLSE �̂β is found from

XTX =
(

�wT �w �wT�z
�zT �w �zT �z

)
=
(

n0 0
0 n1

)
(XTX)−1 =

( 1
n0

0
0 1

n1

)

XT �Y =
(

n0Y 0

n1Y 1

)
�̂β = (XTX)−1XT �Y =

(
Y 0

Y 1

)

Taking the expectation of �̂β we find

E[ �̂β] =
(

µ0

µ1

)
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The variance of �̂β is found by

V ar(�̂β) = (XT X)−1XT V ar(�Y )X(XTX)−1

=
( 1

n0
0

0 1
n1

)
σ2

(
n0(1 + (n0 − 1)ρ) 0

0 n1(1 + (n1 − 1)ρ)

)( 1
n0

0
0 1

n1

)

= σ2

(
1+(n0−1)ρ

n0
0

0 1+(n1−1)ρ
n1

)

To find the GLSE �̂βG, we first consider the form of V−1. Let Rm be a m×m matrix with 1’s
on the diagonal ane ρ elsewhere, and 0 be a conformable matrix full of 0’s. Then

V = σ2

(
Rn0 0
0 Rn1

)
and V−1 =

1
σ2

(
R−1

n0
0

0 R−1
n1

)
where R−1

m has the same symmetrical structure as Rm. Let the diagonal elements of R−1
m be

equal to r and the off diagonal elements be equal to s. Then because RmR−1
m = Im we have

the simultaneous equations
1 = r + (m − 1)sρ
0 = rρ + s + (m − 2)sρ

which can be solved to yield

r =
1 + (m − 2)ρ

1 + (m − 2)ρ− (m − 1)ρ2

s = − ρ

1 + (m− 2)ρ − (m − 1)ρ2

Let r0 and s0 be the values of r and s when m = n0, and r1 and s1 be the values of r and s
when m = n1. From this we can then find

XTV−1X =
1
σ2

(
n0(r0 + (n0 − 1)s0) 0

0 n1(r1 + (n1 − 1)s1)

)

(XTV−1X)−1 = σ2

( 1
n0(r0+(n0−1)s0)

0
0 1

n1(r1+(n1−1)s1)

)

XT V−1�Y =
(

n0(r0 + (n0 − 1)s0)Y 0

n1(r1 + (n1 − 1)s1)Y 1

)

�̂βG = (XTV−1X)−1XTV−1�Y =
(

Y 0

Y 1

)
which is the same as the OLSE, and thus has the same expectation and variance (you can
check that σ2(XTV−1X)−1 gives the same answer as found above– it does).

b. Provide an estimate of the variance of �̂βG and �aT �̂βG assuming that ρ is known.
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Ans: The variance of �̂βG is given above. In order to estimate µ1−µ0, we are interested in estimating
�aT �β, where �a = (−1 1)T . The variance of the GLSE for that estimable function is thus

V ar(�aT �̂βG) = �aT V ar(�̂βG)�a = σ2

(
1 + (n0 − 1)ρ

n0
+

1 + (n1 − 1)ρ
n1

)

c. Provide an estimate of the variance of �̂β and �aT �̂β under the assumption that the observations are
independent. How do they compare to the answers in b?

Ans: When we assume ρ = 0, we obtain

V ar(�̂β) = σ2

( 1
n0

0
0 1

n1

)

V ar(�aT �̂β) = σ2

(
1
n0

+
1
n1

)
Note that for positive ρ, the true variance is greater than that which would be estimated
when we assume ρ = 0. Thus in this case where the data within groups defined by predictors
are positively correlated, inference based on the assumption of independence would be anti-
conservative.

5. Now consider the setting of problem 4 in which Yi ∼ (µ0, σ
2) for i = 1, . . . , n0 and Yi ∼ (µ1, σ

2)
for i = n0 + 1, . . . , n = n0 + n1 = 2n0, except observations are paired across groups. That is, we
have Cov(Yi, Yi) = σ2 for i = 1, dots, n, Cov(Yi, Yn0+i) = ρσ2 for i = 1, . . . , n0, and Cov(Yi, Yj) = 0
otherwise. For notational convenience, let �w be an n-vector such that wi = 1 for 1 ≤ i ≤ n0 and wi = 0
otherwise, and let �z = �1n − �w. Consider linear regression model �Y = X�β +�ε with X = (�w �z). We are
interested in estimating �aT �β = µ1 − µ0.

a. Show that the ordinary least squares estimator �̂β is equal to the generalized least squares estimator
�̂βG. What is the mean and variance of these estimators?

Ans: The OLSE �̂β is the same as given in problem 4a, and the expectation is the same as was given

in that answer. The variance of �̂β is found from the results for (XT X)−1 with n0 = n1

V = V ar(�Y ) = σ2

(
In0 ρIn0

ρIn0 In0

)

V ar(�̂β) = (XT X)−1XT V ar(�Y )X(XTX)−1

=
( 1

n0
0

0 1
n0

)
σ2

(
n0 n0ρ
n0ρ n0

)( 1
n0

0
0 1

n0

)

= σ2

( 1
n0

ρ
n0

ρ
n0

1
n0

)

To find the GLSE �̂βG, we use the result for inverse of a symmetric partitioned matrix to find

V−1 =
1
σ2

( 1
1−ρ2 In0

−ρ
1−ρ2 In0

−ρ
1−ρ2 In0

1
1−ρ2 In0

)
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. From this we can then find

XTV−1X =
1
σ2

( n0
1−ρ2 − n0ρ

1−ρ2

− n0ρ
1−ρ2

n0
1−ρ2

)
(XT V−1X)−1 = σ2

( 1
n0

ρ
n0

ρ
n0

1
n0

)

XTV−1�Y =
1
σ2

( n0
1−ρ2 Y 0 − n0ρ

1−ρ2 Y 1

n0
1−ρ2 Y 1 − n0ρ

1−ρ2 Y 0

)
�̂βG = (XT V−1X)−1XTV−1�Y =

(
Y 0

Y 1

)
which is the same as the OLSE, and thus has the same expectation and variance (you can
check that σ2(XTV−1X)−1 gives the same answer as found above– it does).

b. Provide an estimate of the variance of �̂βG and �aT �̂βG assuming that ρ is known.

Ans: The variance of �̂βG is given above. In order to estimate µ1−µ0, we are interested in estimating
�aT �β, where �a = (−1 1)T . The variance of the GLSE for that estimable function is thus

V ar(�aT �̂βG) = �aT V ar(�̂βG)�a = σ2 2(1 − ρ)
n0

c. Provide an estimate of the variance of �̂β and �aT �̂β under the assumption that the observations are
independent. How do they compare to the answers in b?

Ans: When we assume ρ = 0, we obtain

V ar(�̂β) = σ2

( 1
n0

0
0 1

n1

)

V ar(�aT �̂β) = σ2

(
2
n0

)
Note that for positive ρ, the true variance is less than that which would be estimated when we
assume ρ = 0. Thus in this case when the correlated observations are sampled at different values
of the covariate, inference based on the assumption of independence would be conservative,
resulting in a substantial loss of statistical power.

d. How does the effect of correlated observations affect an ordinary least squares analysis differ when
the correlated observations are within groups sharing the same predictor values versus when the
correlated observations have different predictor values?

Ans: As noted above, when we consider a cluster of correlated observations of response, if the cor-
relation among the predictors is of the same sign as the correlation among the errors within
that cluster, the true variance tends to be greater than the variance estimated under inde-
pendence, and tests and confidence intervals will be anti-conservative. On the other hand,
if the correlation among the predictors within a cluster is of opposite sign of the correlation
among the errors, then the true variance tends to be smaller than the variance estimated under
independence.

So, for instance, in problem 4 the predictors in a cluster were positively correlated in the sense
that the cluster had all the same values for the predictor. In that problem, when ρ > 0, the
estimated variance was too small. However, if ρ < 0 in that problem, the variance estimated
under independence is too large.

In problem 5, the predictors in a cluster were negatively correlated in the sense that repeated
observations within a cluster were for different values of the predictor. In that problem, when
ρ > 0, the variance estimated under independence was too large. On the other hand, if ρ < 0
the variance estimated under independence was too small, thereby leading to anti-conservative
testing.


