Biost/Stat 533
Emerson, Spr 99
Homework #1 Key
April 27, 1999

1. Suppose Y; ~ (ug,0?) fori =1,...,n9and Y; ~ (u1,0%) fori =ng+1,...,n = ng + ny, with

Cov(Y;,Y;) = 0 for i # j. We are interested in estimating p; — po. For notational convenience, let @
be an n-vector such that w; =1 for 1 <7 < ng and w; = 0 otherwise, and let 2= 1, — .

-

a. Using design matrix X = (I,, @), find the best linear unbiased estimator 3 for regression model
Y = X3+ €. Find vector @ such that estimable function @’ = p; — o, and provide the formula

and mean and variance for a’ (3.

Ans: For notational convenience define Yo = Y1, Y;/ng and Y = > —not1 Yi/n1. By straightfor-
ward matrix operations we find

TT7 T = 1 _1
X.TX. —_ (;%%n 57%";}7> _ (n():nl ZO) (X.TX.)_l — ( nll 1 nlL)
n 0 0 o + o
ro  [noYo 4-_711?1 3 T~ ITv ?1_
XY_( no¥o > 8 =(X"X) XY_(YO—Y1>

Taking the expectation of 3 we find

Thus for @ = (0 —1)T, we have @ § = p1 — po. So

TRV, -7,
Ela"f) =a"E|f] = m — uo
Varld@ ) = @ Var{3)a = 0" (XTX) "' = 0*(— + —)

(Note that this is the estimate and variance for the two sample Z test.)
b. Using design matrix X = (I,, Z), find the best linear unbiased estimator g for regression model
Y = X3+ €. Find vector @ such that estimable function @’ = p; — o, and provide the formula
and mean and variance for @’ 5

Ans: By straightforward matrix operations we find

A 1 1
wx— (B~ (i m) oo (A R )
z 1y Z7Z ni ni e n_o+n_1
7o _ (noYo+mYy [ U g Yo
X Y_( o > F=(XTX)'XTV = (Y1 7,

Taking the expectation of 3 we find

E[j

_ Ho
M1 — Ho
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Thus for @ = (0 1)7, we have a3 = py — po. So

1 1
Var[&'TB] = d’ﬁ/ar[ﬁ]&' =o2d"(XTX)"'d = o*(— + —)

no ny
(Note again that this is the estimate and variance for the two sample Z test.)

c. Using design matrix X = (@ Z), find the best linear unbiased estimator § for regression model
Y = X( + € Find vector @ such that estimable function @Z3 = 1 — o, and provide the formula

and mean and variance for a’ (3.

Ans: By straightforward matrix operations we find

=TT =T 3 1
T~ (W' l, wW'Z) (ng O T—l_n_oo
XX—(sz zfz>—(o n1> (X7 X) _(0 L
T/ noY o 3T~ I T ZO
XY_(n171> 8= (X"X) XY_(Y1>

Taking the expectation of 3 we find

o0

El

-()

Thus for @ = (—1 1)7, we have @7 = p1 — po. So

(Note again that this is the estimate and variance for the two sample Z test.)
d. Using design matrix X = (I,, @ Z), find the best linear unbiased estimator g for regression model
Y = X3+ € Find vector @ such that estimable function @’ = p; — o, and provide the formula

and mean and variance for @’ (3.

Ans: In this case, the design matrix is not of full rank, because @ + Z = I,,. We thus have to find a
LSE either by eliminating a linearly dependent column, augmenting the design matrix with a
constraint, or using a generalized inverse. As the last method is commonly effected using one
of the first two, I will only demonstrate those first two methods.

Since any two columns of X are linearly independent, I decide to eliminate the third column.
Thus I can use the results of part (a) to find the estimates 5o =Y and 5y =Yg — Yy, and I
set B2 = 0. We can define the generalized inverse

1 1
XI'x)~ = n_11 1—n_11 X
XIX)" = —ar metar O

0 0 0



Biost 533, Spr 99 Homework #1 Key, Page 3

0= ()
Ho — M1

—1 0)7, we have @78 = 1 — po. So

Taking the expectation of 3 we find

Thus for @ = (0

@'f=Y1-Yo
Ela@"§) = a" B[ = m — po
> > 1 1
Var[a@®f) = @’ Var|fld = o?a’ (XTX)"d = o>

o (—+—)
no n1

An alternative approach to this problem would have been to use an identifiability constraint.

One such constraint that might typically used in this situation is that Bi + B> = 0. We thus
create augmented vectors and matrices

= (Y (1, @ Z
=) v=( 7 )

By straightforward matrix operations we find

151_@ 13;117 13;2? ng + ny no ny
Vv = | w"1, @To+1 @T74+1 | = ng  mno+1 1
1, Fo+1 FTz+1 ni 1 ni+1
n+noni n1—nog—noni ng—ni—noni
4nony 4ngny 4Anony
(VTV)—l ni1—no—noni n+noni noni—n
4nony 4dngny 4Anony
no—n1—moni non1—n ntnong
4nony 4ngny 4nony
— — ?Q"I‘?l
noYo+nYi ~ 2
7 N 2 T —1~x7T77 Yo—Y
v©iv = noY o G=(VIV)"IVIT = | YoXu
n1Y

Yi—-Y,
2

where to find the inverse of the 3 by 3 matrix I used the following result for the inverse of a
symmetric partitioned matrix

A B\ ' (A '4+FE'FT _FE!
BT D) ~ —E-'F7 E-!

where E=D — BTA"!B and F = A~'B (see Seber, p. 390-1). Taking the expectation of 3
we find

~ (o + p1)/2
BBl = | (o —m)/2
(11 — po)/2
Thus fora= (0 —1 1)7, we have @’ = j; — po (note that @ must be in the range space
of XT). So
i'F=Y,-Y,
Ela"f) = a"Blf] = 11 — o
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(Note again that this is the estimate and variance for the two sample Z test.)

2. Let X (dimension n x p) and W (dimension n X r) be design matrices with the same range spaces (so
R[X] = R[W], where R[X] ={y: ¢y =Xa, d € RP} and RIW] ={y: ¥ = Wa, d € R"}). Show
that regression models Y = Xg +&and Y = W+ + € are alternative parameterizations of each other.
Furthermore show/\that if @7 5 is an estimable function, then there exists an estimable fl/l\nCtiOIl ET"y' such

that estimates EL’TB and ET:'y\' are equal for all Y € R™ and all least squares estimators 3 and %
Ans: E and :_y\° are LSE, so we know
XTXE' =xTy
WIW7 = WTY
Because X and W have the same range space, we know there exist matrices A and B (not

necessarily unique if X and W are not full rank) such that W = XA and X = WB. Hence
we find

WIW5 = WTY = ATXTY = ATXTXF = WTX43
XTXF = X"V =B"W'Y = BTWTW7 = X" W5

and from this we find

=1

RS

=,

W (W7 - X
XT(W7 - X3) =0
Now from :7\' = (WTW)_WT? it is clear that :'y\° is in the range space of W7, and similary
3 is in the range space of X7, which by hypothesis is equal to the range space of WT. Thus

we can conclude W:'y\° — Xg =0 and W:'y\° = Xg , and the two regression models are alternative
parameterizations of each other. Furthermore, because W = XA and X = WB,

WIW(F -BF) =0
XTX(A5 - ) =0

and :'y\° = Bg and 5 = A% for some matrices B and A. Hence for estimable function &'T@

b'y = @T A7 is estimable.

3. Suppose n-vector & has E[é] = 0 and Cov[d] = V with rank(V) = n. Let § = (XTX)"XTY be the

o~

ordinary least squares estimator of 3 and BG = (XTV_lX)_XTV_1§7 be the generalized least squares
estimator of 3 in regression model Y = X3 + €.
a. Find the mean and variance of estimators &'Tg and a‘TB'G of estimable function a” 3.

Ans: Using the laws of expectation we have

-

E[a‘TE] =a"(XTX)"XTE[Y] = a"(X"X)"X"Xj3

Now because arp is estimable, we know by Proposition II.A.10 that there exists a vector
b € R" such that @@ = bI'X. Furthermore, from the definition of a generalized inverse
we know XTX(XTX)"XTX = XTX, so X(XTX)"XTX = X. Thus a/'(XTX)"XTX3 =
V' X(XTX)"XTX[3 = bTX3 = al'f.

Using the results for the covariance of a vector product, we have

=,

Var(@ g) = a"(XTX)"X"Var(V)X(XTX)"d@ = o?a" (XTX)"@
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when Var(Y) = 02I,,.
For the general case we have that BG is the OLSE for transformed model Z = Wﬁ +€*, where
Z=V-12Y W =V~1/2X and & ~ (0,I,). And under the results given above, thus in

this transformed problem OLSE 5TEG of estimable function @7 5 has expectation &'Tg as given
above. The variance is found to be

Var(@ fg) =a " (X'V X)) X"V War(Y)VIX(XTVIX)"a
= (XIVIX) XI'vIivvIX(XTViX)Ta

b. Show that a best linear unbiased estimator of estimable function &'Tg is d’Tgc.
Ans: We again consider the transformed problem in which & ~ (0,1,). Then by Proposition

II.A.11 in the class notes, d’TBG is unique for all @ € RP. @‘TB'G is also unbiased as noted
above. Let b7 Z be any other unbiased estimator. So E[b? Z] = 6T W3 = a7 3 and bTW = a”.

Var(b'Z) = b7b and Var(@®fy) = al (WITW)~d@ = b W(WTW)~W7h. So
Var(877) — Var(@ fg) = b7 (1, — W(WTW)~WT)b = 57(I,, — P)}
And (I, — P)(I, — P) = (I, — P) and symmetric, so
Var(b'Y) — Var(EiTEG) =d'd>0
with equality only if d= 0, which corresponds to bTY = "TEG. (Note that this proof proceeds

exactly like the case for a design matrix of full rank, and that we establish the BLUE optimality
in the transformed setting.)

4. Consider again the setting of problem 1 in which Y; ~ (ug,0?) fori=1,...,n9 and Y; ~ (u1,0?) for

i=mng+1,....,n=mng+ ny = 2ny, except observations within each group are correlated. That is, we
have Cov(Y;,Y;) = po? for i,j = 1,...,n0;i # j, Cov(Y;,Y;) = po? for i,j = no+1,...,n;i # j, and
Cov(Y;,Y;) =0fori=1,...,n0;j = no + 1, dots,n. For notational convenience, let @ be an n-vector

such that w; = 1 for 1 <7 < ng and w; = 0 otherwise, and let 2z’ = 1,, — @. Consider linear regression
model Y = X3+ €with X = (@ 7). We are interested in estimating @’ 3 = u; — po.

a. Show that the ordinary least squares estimator 3 is equal to the generalized least squares estimator

3. What is the mean and variance of these estimators?

Ans: The OLSE 5 is found from

T = T = 1
T~ (W W W Z ng 0 T —1 e 0
XX_(zTu? ZTZ>_(O n1> (X' X) _(o =
Ty _ nOZO Z T\l T ZO
XY_(n1Y1> 8 =(X"X) XY_(Y1>

Taking the expectation of 3 we find
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The variance of 3 is found by

~
=,

Var(f) = (XTX) "' XTVar(Y)X(XTX) !

:<% g>02(”°(1”8°‘”p> n1(1+(21—1)p)><% ngl>

ni

1+(no—1)p 0
= 0’2 70
0 1+(ni—1)p

ni

To find the GLSE EG, we first consider the form of V~1. Let R,,, be a m x m matrix with 1’s
on the diagonal ane p elsewhere, and 0 be a conformable matrix full of 0’s. Then

_ 2 Rno 0 -1 _ i R;()l 0
V=0 ( 0 R, and V7= = o' R

where R,,! has the same symmetrical structure as R,,. Let the diagonal elements of R,,! be
equal to 7 and the off diagonal elements be equal to s. Then because R,,R,! = I,, we have
the simultaneous equations

l=r+(m-—1)sp
O=rp+s+(m—2)sp

which can be solved to yield

B 1+ (m—2)p
S L+ (m—=2)p—(m—1)p?
3 p

L+ (m=2)p—(m—1)p?

r

S =

Let 79 and so be the values of » and s when m = ng, and r; and s; be the values of r and s
when m = ny. From this we can then find

_ 1 (no(ro+ (no — 1)so) 0
XTV 1X _ o\"0
o2 ( 0 ni(ry 4 (n1 — 1)s1)
1
(XTV_1X)_1 = g2 ( no(ro+(no—1)so) (1) >
0 nl(r1+(n1—1)sl)

—1v» - 1)5 )?O
XTV-1y — no(ro + (no 0)Y
(nl(m =+ (n1 — 1)51)Y1

Bo=XIVIX)IXTVY = (%)

which is the same as the OLSE, and thus has the same expectation and variance (you can
check that o?(XTV~1X)~! gives the same answer as found above- it does).

b. Provide an estimate of the variance of BG and a‘TB'G assuming that p is known.
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Ans: The variance of BG is given above. In order to estimate p1 — o, we are interested in estimating
al' 3, where @ = (—1 1)7. The variance of the GLSE for that estimable function is thus

Var(@ i) = @ Var(Bg)d = o (1 + (o —p 1+ (m - 1)p>

o ni

c. Provide an estimate of the variance of 3 and a‘TB' under the assumption that the observations are
independent. How do they compare to the answers in b?

Ans: When we assume p = 0, we obtain

Var(&'TE) =0 (i + L)

Note that for positive p, the true variance is greater than that which would be estimated
when we assume p = 0. Thus in this case where the data within groups defined by predictors
are positively correlated, inference based on the assumption of independence would be anti-
conservative.

5. Now consider the setting of problem 4 in which Y; ~ (uo,0?) fori =1,...,n9 and Y; ~ (u1,0?)
fori =ng+1,...,m = ng +n1 = 2ng, except observations are paired across groups. That is, we
have Cou(Y;,Y;) = o2 for i = 1,dots,n, Cov(Y;, Yyoti) = po? for i = 1,...,ng, and Cov(Y;,Y;) = 0
otherwise. For notational convenience, let @ be an n-vector such that w; =1 for 1 <i <ng and w; =0
otherwise, and let Z = T,, — . Consider lincar regression model ¥ = X + € with X = (& Z). We are
interested in estimating a‘TB' =[] — HQ-

a. Show that the ordinary least squares estimator 3 is equal to the generalized least squares estimator

B5. What is the mean and variance of these estimators?

Ans: The OLSE 5 is the same as given in problem 4a, and the expectation is the same as was given

in that answer. The variance of § is found from the results for (X7X)™! with ng = n,

_ 2 _ 2 Ing  plng
V=Var(Y)=0c (PIno I,

~
=,

Var(f) = (XTX) ' X Var(V)X(XTX)"?
L0 ng n L0
—_ no 0_2 0 0P no
0 nop o 0 &+
1
=0 ( P >
no no
To find the GLSE EG, we use the result for inverse of a symmetric partitioned matrix to find

1 —p

V_l o 1 1_p21n0 1_p21n0
T2\ =271 171
1—p2 "0 1—p2 10

o
3
=}
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. From this we can then find

1 ngQ _ nop2 1 P
XTv—lX — — ( 1_ngp }L—p > (XTv—lx)—l —_ 0_2 ( npo nlo >
0% \71=p2  1-p2 o no
L1 [ - Y, > > Y,
X.TV_1Y _ 1—p e 1—p o —_ X.TV_1X. _1X.TV_1Y —_ 10
7 (Rl v, Jo = : v,

which is the same as the OLSE, and thus has the same expectation and variance (you can
check that o?(XTV~1X)~! gives the same answer as found above- it does).

b. Provide an estimate of the variance of BG and @‘TB'G assuming that p is known.

Ans: The variance of BG is given above. In order to estimate p1 — o, we are interested in estimating
al' 3, where @ = (—1 1)7. The variance of the GLSE for that estimable function is thus

= ~ 2(1 —
Var(@ ' Bg) =@ Var(Bg)d = O'QM
no
c. Provide an estimate of the variance of 5 and a‘TB' under the assumption that the observations are
independent. How do they compare to the answers in b?

Ans: When we assume p = 0, we obtain

Var(&'TB) =02 (3>

Note that for positive p, the true variance is less than that which would be estimated when we
assume p = 0. Thus in this case when the correlated observations are sampled at different values
of the covariate, inference based on the assumption of independence would be conservative,
resulting in a substantial loss of statistical power.

d. How does the effect of correlated observations affect an ordinary least squares analysis differ when
the correlated observations are within groups sharing the same predictor values versus when the
correlated observations have different predictor values?

Ans: As noted above, when we consider a cluster of correlated observations of response, if the cor-
relation among the predictors is of the same sign as the correlation among the errors within
that cluster, the true variance tends to be greater than the variance estimated under inde-
pendence, and tests and confidence intervals will be anti-conservative. On the other hand,
if the correlation among the predictors within a cluster is of opposite sign of the correlation
among the errors, then the true variance tends to be smaller than the variance estimated under
independence.

So, for instance, in problem 4 the predictors in a cluster were positively correlated in the sense
that the cluster had all the same values for the predictor. In that problem, when p > 0, the
estimated variance was too small. However, if p < 0 in that problem, the variance estimated
under independence is too large.

In problem 5, the predictors in a cluster were negatively correlated in the sense that repeated
observations within a cluster were for different values of the predictor. In that problem, when
p > 0, the variance estimated under independence was too large. On the other hand, if p < 0
the variance estimated under independence was too small, thereby leading to anti-conservative
testing.



