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1. Consider a linear regression model �Y = X�β +�ε where the first column of the design matrix is filled with
1’s (so we are fitting an intercept). Assume that var(�ε) = σ2In.

a. Suppose E[εi] = θ for i = 1, . . . , n. What is the distribution for the OLS estimator �̂β? In particular,
how does the assumption of nonzero mean for the errors alter the interpretation and distribution
of the slope parameters β1, . . . , βp−1?

Ans: Under the above assumptions, we have that E[�Y |X] = X�β + θ�1n, where �1n is an n-vector
containing all 1’s, and var(�Y |X) = σ2In. To make this whole problem easier, we note that

θ�1n = X�∆ = X


θ
0
...
0


The OLSE �̂β = (XTX)−1XT �Y thus has expectation

E[ �̂β] = (XTX)−1XT E[�Y ]

= (XTX)−1XT (X�β + X�∆)

= �β + �∆

Hence, we find that errors that do not have zero mean do not affect the expectation of
β̂1, . . . , β̂p−1 as the 2nd - pth elements of �∆ are 0. Furthermore, because the variance of a
random variable is unaffected by adding a constant, the variance of the estimates is similarly
unchanged.

The interpretation of the slope parameter esimates is unchanged by such nonzero means for
the error distribution.

b. Let X∗ be a design matrix derived from X by subtracting the corresponding column means from
the elements in columns 2 through p. That is X∗

ij = Xij −∑n
i=1 Xij/n. If we fit the regression

model �Y = X∗�β∗ + �ε, how does the OLS estimator �̂β
∗

relate to �̂β from the original problem. In
particular, how does the interpretation and distribution of of each of the regression parameters
change?

Ans: This problem is easiest in matrix notation using partitioned matrices, though it can also be
done by brute force. Consider the partitioning of X and X∗ each into n by 1 and n by p − 1
matrices

X = (�1n W ) X∗ = (�1n W∗ )

where W∗ = W− 1
n
�1n

�1T
nW has subtracted the means of the column of W from the elements

in each corresponding column. We thus find

XTX =
(

�1T
n

WT

)
(�1n W ) =

(
n �1T

nW
WT�1n WtW

)
and

X∗TX∗ =
(

�1T
n

((In − 1
n
�1n

�1T
n )W)T

)
(�1n (In − 1

n
�1n

�1T
n )W ) =

(
n �0T

n
�0n W∗TW∗

)
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Now the inverse of a partitioned symmetric matrix can be given by(
A B
BT D

)−1

=
(

A−1 + FE−1FT −FE−1

−E−1FT E−1

)
where E = D − BTA−1B and F = A−1B (this is the form given by Seber, page 390). Now
we merely need to compare (XTX)−1XT �Y to (X∗TX∗)−1X∗T �Y . By straightforward matrix
application of the above formula for the inverse and then matrix multiplication we find

(XTX)−1XT =
( 1

n
�1T

n −�1T
nW(WT W − 1

nWT�1n
�1T

nW)−1WT (In − 1
n
�1n

�1T
n )

(WTW − 1
nWT�1n

�1T
nW)−1WT (In − 1

n
�1n

�1T
n )

)
(X∗TX∗)−1X∗T =

( 1
n
�1T

n

(WT W − 1
nWT�1n

�1T
nW)−1WT (In − 1

n
�1n

�1T
n)

)
Note that in the above, the only difference is in the 1 by n upper matrix in the partition. Thus,
while β̂0 will not in general equal β̂∗

0 , we will have β̂j = β̂∗
j for j = 1, . . . , p− 1.

Now var(�̂β) = σ2(XT X)−1 and var(�̂β∗) = σ2(X∗TX∗)−1. Note that because the lower right
matrix in the partition of (XT X)−1

(WT W − 1
n
�1T

nWWT�1n)−1

equals the lower right matrix in the partition of (X∗TX∗)−1

(W∗T W∗)−1,

the covariance matrix for (β̂1 , . . . , β̂p−1) is equal to the covariance matrix for (β̂∗
1 , . . . , β̂∗

p−1).
So the estimated variances will also be the same for the slope estimates for the uncentered and
the centered models.

The interpretation of the slope estimates is unchanged by centering, because the jth slope
parameter continues to model the difference in means between two subjects who differ by one
unit in their values of Xj but are alike with respect to all other modelled covariates.

2. Consider a linear regression model relating response �Y to an intercept and two predictor vectors �W and
�Z (so design matrix X = (�1n

�W �Z) has Xi1 ≡ 1 for i = 1, . . . , n and Xi2 = Wi and Xi3 = Zi and
�β = (β0, β1, β2)T ). Assume E[�ε] = �0 and var(�ε) = σ2In.

a. Show that the correlation between OLS estimates β̂1 and β̂2 is opposite in sign to the sample
correlation between �W and �Z and that the two slope estimates are uncorrelated if the sample
correlation between �W and �Z is zero.

Ans: I will work the first part of this problem in more generality, assuming (p − 1) covariates.
Partition X = (�1n U) similar to problem 1. By problem 1, we can without loss of generality
center the covariates to obtain U∗ = (In − 1

n
�1n

�1T
n ))U. Hence, the covariance between the

jth and kth parameter estimates will the (j, k)th element of σ2(U∗TU∗)−1. Without loss
of generality, assume σ2 = 1. Due to the symmetry of the problem, it will be sufficient to
consider the covariance between β̂1 and β̂j for j = 2, . . . , p − 1. We thus further partition
U∗ = ( �W ∗ V∗) into an n by 1 matrix and an n by (p − 2) matrix. Hence

U∗TU∗ =
(

�W ∗T �W �W ∗TV∗

V∗T �W ∗ V∗TV∗

)
Using the formula for the inverse of a partitioned matrix we find that the upper left matrix in
the partition of (U∗TU∗)−1 is
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var(β̂1) = ( �W ∗T �W ∗)−1

+ ( �W ∗T �W ∗)−1 �W ∗TV∗(V∗TV∗ − V∗T �W ∗( �W ∗T �W ∗)−1 �W ∗TV∗)−1V∗T �W ∗( �W ∗T �W ∗)−1

and the upper right matrix in the partition of (U∗TU∗)−1 is

cov(β̂1 , (β̂2, . . . , β̂p−1)) = −( �W ∗T �W ∗)−1 �W ∗TV∗(V∗TV∗ −V∗T �W ∗( �W ∗T �W ∗)−1 �W ∗T V∗)−1

Now suppose p = 3 and V∗ = �Z∗. Then

�W ∗T �W ∗ = SWW

�W ∗TV∗ = �W ∗T �Z∗ = SWZ

V∗TV∗ = SZZ

Letting rWZ = SWZ/
√

SWW SZZ be the sample correlation between �W and �Z , we thus have

var(β̂1) =
1

SWW

(
1

1 − r2
WZ

)
cov(β̂1 , β̂2) =

−rWZ

(1 − r2
WZ)

√
SWW SZZ

By inspection, the covariance of β̂1 and β̂2 is opposite in sign to the sample correlation rWZ ,
and it will only be zero if �W and �Z are uncorrelated.

b. Suppose we hold SWW = ( �W −E[ �W ])T ( �W −E[ �W ]), SZZ , and σ2 constant, but we may freely vary
SWZ = ( �W − E[ �W ])T (�Z − E[ �Z]). For what value of SWZ do we minimize the variance of β̂1 and
β̂2? What does this suggest about our ability to test for an association between Y and W adjusting
for Z when W and Z are correlated?

Ans: From the results given above, it can be seen that the variance of β̂1 increases as the absolute
value of the sample correlation between �W and �Z increases. Hence, we will have the greatest
power to detect an association between Y and W when the sample correlation between W
and Z is 0. This would be true on average if we sample in such a way that W and Z are
independent (e.g., a completely randomized design), but we can obtain more efficient studies
if we guarantee that W and Z are uncorrelated in our sample through experimental design.

This tendency for the standard error of a slope estimate to be increased by the modelling
of a correlated variable is termed ‘variance inflation’. Note that this effect exists even when
the correlated variable does not predict the response. This in turn argues that adjusting for
truly unimportant variables decreases the statistical power to detect associations between the
response and other predictors.

3. Consider again the linear regression model in Problem 2 in which we will assume the true model is

�Y = β0 + �Wβ1 + �Zβ2 +�ε

but we want to also consider fitting a model

�Y = γ0 + �Wγ1 +�ε∗

.

a. Under what conditions is the OLS estimate β̂1 equal to the OLS estimate γ̂1?
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Ans: Suppose that �1T
n

�W = �1T
n

�Z = 0. (This can be achieved by centering the covariate vectors, and
by problem 1, this does not affect the slope parameter estimates or distributions. Later we
will consider the general case.) Define W = (�1n

�W ) and X = (W �Z). Then

�̂β = (XTX)−1XT �Y

�̂γ = (WTW)−1WT �Y

and we want to find when (0 1)�̂γ = (0 1 0)�̂β. Following the approaches used above with
r = rWZ = SWZ/

√
SWW SZZ we find

(WTW)−1 =
(

1
n 0
0 1

SWW

)

(XTX)−1 =

 1
n 0 0
0 1

SW W (1−r2) − r
(1−r2)

√
SWW SZZ

0 − r
(1−r2)

√
SWW SZZ

1
SZZ(1−r2)


Thus β̂1 = γ̂1 when

�WT �Y

(1 − r2)SWW
− r �ZT �Y

(1 − r2)
√

SWW SZZ

=
�WT �Y

SWW

which in turn is satisfied if r = 0 or if

r =
√

SWW

SZZ

�ZT �Y

�WT �Y

Obviously, �Y is random, and thus the second condition cannot be set by experimental design.
We can set rWZ = 0 by experimental design.

For arbitrary �W and �Z, the above results obtain so long as the centered vectors have correlation
0. Of course, adding constants to vectors does not change their correlation, so for arbitrary �W
and �Z, γ̂1 = β̂1 so long as SWZ/

√
SWW SZZ = 0.

b. Under what conditions is the standard error of β̂1 equal to the standard error of γ̂1.

Ans: Now
var(�̂β) = σ2(XTX)−1, and

var(�̂γ) = τ2(WT W)−1

where σ2 = var(Y |W, Z) and τ2 = var(Y |W ) = σ2 + β2
2var(Z|W ). For the standard errors of

β̂2 and γ̂2 to be equal, we must have

σ2 1
(1 − r2)SWW

= (σ2 + β2
2var(Z|W ))

1
SWW

This will be satisfied if r = 0 and β3 = 0 or if r = 0 and var(Z|W ) = 0. The above equation
can also be satisfied by putting suitable restrictions on var(Z|W ) = r2σ2

(β2
2(1−r2))

for nonzero β2,
but this is difficult to do by experimental design when β2 is unknown.

c. Under what conditions is γ̂1 unbiased for β1?

Ans:
E[�̂γ] = (WTW)−1WT E[�Y ]

= (WTW)−1WTX�β

= (WTW)−1WT (W(β0 β1)T + �Zβ2)

= (WTW)−1WTW(β0 β1)T + (WTW)−1WT �Zβ2)

= (β0 β1)T + (WTW)−1WT �Zβ2)
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Hence, using our above results for the structure of (WTW)−1, γ̂1 is unbiased for β1 if only if
rWZ = 0 or β2 = 0.

d. Under what conditions is γ̂1 BLUE for β̂1?

Ans: By Gauss-Markov theorem, �̂β is BLUE for �β. Hence the only time that γ̂1 will be BLUE is
when γ̂1 = β̂1 under the conditions of part (a.).

e. Suppose in particular that β1 = 0 and β2 �= 0. What is the impact of this situation on the
distribution of γ̂1, and how would γ̂1 compare to β̂1 from the full model? Compare this situation
to the setting in which β2 = 0 and β1 �= 0.

Ans: If β1 = 0, β2 �= 0, and rWZ �= 0, the estimate γ̂1 will be biased towards finding an association
between Y and W when there is truly none after conditioning on Z. β̂1 will tend to be close
to zero, but γ̂1 will tend to be too large or too small depending upon the sign of β2 and the
sign of the correlation between W and Z.

If β1 = 0, β2 �= 0, and rWZ = 0, the estimate γ̂1 will be unbiased for β1. If rWZ = 0 by design,
the estimated standard error of γ̂1 will tend to be too large leading to confidence intervals that
are too wide.

On the other hand, if β1 �= 0 and β2 = 0, this is the situation where the smaller model provides
regression estimates that are BLUE.

4. Consider a linear regression model �Y = X�β +�ε where the first column of the design matrix is filled with
1’s (so we are fitting an intercept). Consider adding an additional predictor �Z to the model where, for
some fixed j, Zi = 1 if i = j and Zi = 0 otherwise. Let X∗ be the augmented matrix in which the
(p + 1)th column is �Z, and consider fitting the regression model �Y = X∗�γ +�ε∗

a. How do the parameter estimates γ̂0, . . . , γ̂p−1 differ from �̂β?

Ans: Without loss of generality, I consider the case of deleting the first case. To find �̂γ I consider
the partitioned matrix X∗ = (X �Z). Then letting �x1 = (�ZTX) be the covariate vector for
the first case, we have

X∗TX∗ =
(

XT X �x1

�xT
1 1

)
and using the formula for the inverse of a partitioned matrix given above, we find

(X∗TX∗)−1 =

(
(XT X)−1 + (XT X)−1�x1�xT

1 (XT X)−1

(1−h11) − (XT X)−1�x1
(1−h11)

−�xT
1 (XT X)−1

(1−h11)
1

(1−h11)

)

where h11 = �xT
1 (XT X)−1�x1 is the first element on the diagonal of the hat matrix. Thus

�̂γ = (X∗TX∗)−1X∗T �Y

=

 �̂β − (XT X)−1�x1(�Y −�xT
1

�̂β)
(1−h11)

(�Y −�xT
1

�̂β)
(1−h11)


where �̂β = (XT X)−1XT �Y .

By inspection, then, adding the covariate �Z to the model has β̂j − γ̂j equal to the jth element

of (XT X)−1�x1(�Y − �xT
1

�̂β)/(1 − h11).

It should be noted that (�xT
1 1)�̂γ = Y1. Thus adding the covariate indicating a single case

results in a model which predicts that case exactly.

b. How do the parameter estimates γ̂0, . . . , γ̂p−1 differ from the estimates obtained by fitting the first
model with the jth case deleted?
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Ans: Note first that if we partition

X =
(

�xT
1

W

)
�Y =

(
Y1
�U

)
(so W contains rows 2 through n of X and �U = (Y2, . . . , Yn)T )), then

XT X = WTW + �x1�x
T
1 , so

WTW = XTX − �x1�x
T
1 , and

XT �Y = �x1Y1 + WT �U.

Now an alternative formula for the inverse of a partitioned symmetric matrix is given by(
A B
BT D

)−1

=
(

G−1 −G−1J
−JTG−1 D−1 + JTG−1J

)
where G = A − BD−1BT and F = BD−1. (I derived this result when I did not have Seber
handy and only vaguely remembered Seber’s form. It is just an interchange of the rows and
columns.) Using this formula and the above relations between XTX and WTW, we find that
(X∗TX∗)−1, X∗T �Y , and �̂γ from part (a) can be written as

(X∗T X∗)−1 =
(

(WT W)−1 −(WTW)−1�x1

−�xT
1 (WT W)−1 1 + �xT

1 (WT W)−1�x1

)
X∗T �Y =

(
WT �U + �x1Y1

Y1

)
and

�̂γ =
(

(WTW)−1WT �U

Y1 − �xT
1 (WTW)−1WT �U

)
Thus we see that (γ̂0, . . . , γ̂p−1) are exactly the OLS estimates that we would have obtained if
the first case had been deleted from the dataset.

This result gives us computationally useful ways to compute the influence of individual cases: We
can compute the change in the parameter estimates using the estimates from the full data case and
the design matrix. We do not really have to fit separate regressions for every case deletion. I note,
however, that we will not have such a result for other forms of regression. Furthermore, computing
the difference in the P values is a little more difficult without actually fitting all the regressions.


