
Biost/Stat 533
Emerson, Spr 99

Homework #4 Key
Jun 5, 1999

1. Suppose Wi is a categorical variable taking on one of the values a1, a2, . . . , ap. Consider a linear regres-
sion model �Y = X�β + �ε in which �βT = (β0, . . . , βp−1) and �W is modeled with dummy variables. That
is, we consider a model where the first column of the design matrix is filled with 1’s (so we are fitting
an intercept), and the jth column of the design matrix is an indicator that Wi = aj for j = 2, . . . , p (so
Xi1 = 1, and for j = 2, . . . , p, Xij = 1 if Wi = aj and Xij = 0 otherwise). Assume that var(�ε) = σ2In.

a. Find expressions for �̂β in terms of the group sample means Y j where Y j =∑n
i=1 Yi1[Wi=aj ]/

∑n
i=1 1[Wi=aj ] for j = 1, . . . , p.

Ans: Notationally, let �X·j = (X1j . . . Xnj)T and �n = (n2 . . . np)T , where nj =
∑n

i=1 1[Wi=aj ]

counts the number of observations having Wi = aj. Then X = (�1n
�X·2 . . . �X·p) and we note

that �1T
n

�X·j = nj, �XT
·j �X·j = nj, and for j �= k �XT

·j �X·k = 0. Hence

XT �Y =


 nY

n2Y 2
...npY p




XTX =
(

n �nT

�n diag(�n)

)

where diag(�n) is a diagonal matrix having �n on the diagonal and zeroes elsewhere. Using the
formula for the inverse of a partitioned matrix as given on page 6 of the key to homework #3
(where A = n B = �nT , and D = diag(�n) so D−1 = diag((1/n2 . . . 1/np)), G = n−∑p

j=2 nj =
n1, and J = �1T

p−1), we therefore find that

(XTX)−1 =
( 1

n1
− 1

n1
�1T

p−1

− 1
n1

�1p−1 diag((1/n2 . . . 1/np)) + 1
n1

�1p−1
�1T

p−1

)

We then obtain OLSE

�̂β = (XT X)−1XT �Y =


 Y 1

Y 2 − Y 1
...Y p − Y 1




b. Show that an asymptotic test of H0 : β1 = β2 = · · · = βp−1 = 0 is equivalent to a one-way analysis
of variance to compare H0 : µ1 = µ2 = · · · = µp, where it is assumed that independent observations
Yi ∼ (µj , σ

2) when Wi = aj.

Ans: We can write the null hypothesis as H0 : A�β = �0, where A = (�0p−1 Ip−1). We then have

A(XT X)−1AT = diag((1/n2 . . . 1/np)) +
1
n1

�1p−1
�1T

p−1

and we can find the inverse to be (I did this by considering the case p = 3, inverting that simple
2 by 2 matrix, guessing the general form by induction, and then checking that the formula did
indeed work)

(A(XTX)−1AT )−1 = diag(�n) − 1
n

�n�nT
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The quadratic form is then

Q =
1
σ2

(A�̂β)T (A(XT X)−1AT )−1(A�̂β)

=
1
σ2

[
(A�̂β)T diag(�n)(A�̂β) − (A�̂β)T 1

n
�n�nT (A�̂β)

]

=
1
σ2


 p∑

j=2

nj(Y j − Y 1)2 − 1
n


 p∑

j=2

nj(Y j − Y 1)




2



=
1
σ2


 p∑

j=1

nj(Y j − Y 1)2 − 1
n


 p∑

j=1

nj(Y j − Y 1)




2



=
1
σ2


 p∑

j=1

njY
2
j − 2nY Y 1 + nY

2
1 −

1
n

(nY − nY 1)2




=
1
σ2


 p∑

j=1

njY
2
j − 2nY Y 1 + nY

2
1 − nY

2
+ 2nY Y 1 − nY

2
1




=
1
σ2


 p∑

j=1

njY
2
j − nY

2




which, after the estimate for σ2 is substituted, is the form of the traditional statistic for one-way
ANOVA.

2. Let independent random vectors (Xi, Yi) for i = 1, . . . , n be distributed according to a bivariate normal
distribution with Xi ∼ (µ, σ2), Yi ∼ (ν, τ2), and corr(Xi, Yi) = ρ. Let �X = (X1, . . . , Xn)T and
�Y = (Y1, . . . , Yn)T .

a. Derive the conditional distribution of Yi|Xi = x and Xi|Yi = y.

Ans: If (
X
Y

)
∼ N2

((
µ
ν

)
,

(
σ2 ρστ
ρστ τ2

))
then the conditional density for Y given X can be found from

pY |X(y|x) =
pX,Y (x, y)

pX(x)

which in this case leads to

Y |X = x ∼ N
(
ν +

ρτ

σ
(x − µ), τ2(1 − ρ2)

)

b. Suppose we fit linear regression model �Y = β0 + β1
�X +�ε. Is asymptotic inference for OLSE of the

regression parameters valid for this model? Justify your answer. For what function of parameters

µ, ν , σ2, τ2, and ρ is OLSE �̂β an unbiased estimator?

Ans: We use the results of part (a) to find the conditional distribution of the Yi’s given the Xi’s.
Since the Yi’s conditional on the Xi’s are independent with equal variance for all i, and since
E[Yi|Xi] = ν + ρτ

σ (Xi − µ), the necessary assumptions for asymptotic inference based on
OLSE are met (and in fact due to normality, even the assumptions necessary for small sample
inference are met). In the regression model, β0 = ν − ρτ

σ µ, and β1 = ρτ
σ . The OLSE β̂0 and β̂1

are therefore consistent for β0 and β1 as given above, respectively.
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c. Suppose we fit linear regression model �X = γ0 + γ1
�Y + �δ. Is asymptotic inference for OLSE of the

regression parameters valid for this model? Justify your answer. For what function of parameters

µ, ν , σ2, τ2, and ρ is OLSE �̂β an unbiased estimator?

Ans: We use the results of part (a) to find the conditional distribution of the Xi’s given the Yi’s.
Since the Xi’s conditional on the Yi’s are independent with equal variance for all i, and since
E[Xi|Yi] = µ+ ρσ

τ
(Yi −ν), the necessary assumptions for asymptotic inference based on OLSE

are met (and in fact due to normality, even the assumptions necessary for small sample inference
are met). In the regression model, γ0 = µ − ρσ

τ ν , and γ1 = ρσ
τ . The OLSE β̂0 and β̂1 are

therefore consistent for γ0 and γ1 as given above, respectively.

d. Under what conditions will y = β̂0 + β̂1x and x = γ̂0 + γ̂1y be the same line?

Ans: Rewriting the second linear equation to solve for y, we have y = −γ̂0/γ̂1 + x/γ̂1. Thus for
the two lines to be coincident, we must have that β̂0 = −γ̂0/γ̂1 and β̂1 = 1/γ̂1. Now in
simple linear regression, β̂1 = SXY /SXX and β̂0 = Y − β̂1X . We would also therefore have
γ̂1 = SXY /SY Y and γ̂0 = X − γ̂1Y . I note that if β̂1 = 1/γ̂1, we necessarily have β̂0 = −γ̂0/γ̂1.
In order for β̂1 = 1/γ̂1, we must have S2

XY /(SXXSY Y ) = 1 which in turn implies that the
sample correlation rXY is either 1 or -1. It should be noted that this result carries over from
the sample space to the parameter space. That is, the lines being estimated by the OLSE in
a consistent manner are coincident only if ρ = 1 or ρ = −1 (in which case we would also have
that rXY = 1 or rXY = −1, respectively, in every sample).

3. Consider an “error in the variables” model in which there is a true relationship between response Y
and predictor W given by Y = β0 + β1W + ε with εi ∼ N (0, σ2) totally independent. Suppose that
W is unobserved, and we instead have Z, an imprecise measurement of W which follows the relation
Z = α0 +α1W + δ, with δi ∼ N (0, τ2) totally independent of each other and the ε’s. We further assume
that Wi, δi, and εi are jointly normally distributed and totally independent. We then fit a regression
model E[Y ] = γ0 + γ1Z, and use this model to make inference about an association between Y and W .

a. Under what conditions is OLSE γ̂1 unbiased for β1?

Ans: We have that

�Ui =


Wi

εi

δi


 ∼ N3





 µ

0
0


 ,


v2 0 0

0 0 σ2 0
0 0 τ2







and (
Yi

Zi

)
=

(
β0

α0

)
+

(
β1 1 0
α1 0 1

)
�Ui

yielding (
Y
Z

)
∼ N2

((
β0 + β1µ
α0 + α1µ

)
,

(
β2

1v2 + σ2 α1β1v
2

α1β1v
2 α2

1v
2 + τ2

))
We thus obtain conditional distribution

E[Yi|Zi] = β0 + β1µ +
α1β1v

2

α2
1v

2 + τ2
(Zi − α0 − α1µ)

var(Yi|Zi) =
α2

1v
2σ2 + β2

1v2τ2 + σ2τ2

α2
1v

2 + τ2

From this, we see that γ̂1 is an unbiased estimate of

E[γ̂1] =
α1β1v

2

α2
1v

2 + τ2

which is equal to β1 if α1v
2 = α2

1v
2 + τ2. This latter condition is satisfied when α1 = 1 and

τ2 = 0, among other less interesting possibilities. It should be noted that E[γ̂1] will be of the
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same sign as β1 so long as α1 > 0. Furthermore, in the most interesting case in which α1 = 1
approximately (so our surrogate predictor variable is approximately the same scale as the true
predictor), any measurement error will tend to attenuate the slope estimate by bringing it
closer to 0.

More generally, we can consider W = (�1n
�W ) and Z = (�1n

�Z). Then

E[�̂γ] = (ZT Z)−1ZT E[�Y ]

= (ZT Z)−1ZT W�β

Thus γ̂1 is unbiased for β̂1 precisely when

(0 1)(ZTZ)−1ZTW = (0 1).

By straightforward manipulation of these 2 by 2 matrices, we find this condition reduces to
SZZ = SWZ . Now

1
n

SWZ =
1
n

n∑
i=1

ZiWi − ZW

=
1
n

n∑
i=1

(α0 + α1Wi + δi)Wi − (α0 + α1W + δ)W

SWZ = α1SWW + SWδ

1
n

SZZ =
1
n

n∑
i=1

Z2
i − (Z)2

=
1
n

n∑
i=1

(α0 + α1Wi + δi)2 − (α0 + α1W + δ)2

SZZ = α2
1SWW + Sδδ + 2α1SWδ

Hence, the conditions to guarantee that γ̂2 to be unbiased for β2 are again that α2 = 1 and
τ2 = 0.

b. How does the standard error of γ̂1 compare to the standard error of β̂1 (if we had W )? What does
this suggest about our ability to test for associations in such a model? How much do we lose by
having errors in the predictors?

Ans: Using the results given above under the assumption of normally distributed W ’s, we would
find that

var(�̂γ) = (ZT Z)−1 α2
1v

2σ2 + β2
1v2τ2 + σ2τ2

α2
1v

2 + τ2

var(�̂β) = (WTW)−1σ2

These then give

var(γ̂1) =
1

SZZ

α2
1v

2σ2 + β2
1v2τ2 + σ2τ2

α2
1v

2 + τ2

var(β̂1) =
1

SWW
σ2

From the results of (a), it can be seen that SWW can be larger or smaller than SZZ . In
the most interesting case where α1 is approximately 1 (so our surrogate predictor variable is
approximately the same scale as the true predictor) and the sample correlation between Wis
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and δis are approximately zero, then SZZ=̇SWW +nτ2. To consider the loss of power associated
with errors in the predictors in this setting, we can consider the ratios

β2
1

V ar(β̂1)
=̇

nv2β2
1

σ2

(E[γ̂1])2

V ar(γ̂1)
=̇

nv2β2
1

σ2

v2σ2

v2σ2 + β2
1v2τ2 + σ2τ2

Because the second such ratio is smaller than the first, there will be a decrease in the statistical
power to detect nonzero β1 when using Zi instead of Wi.

When the bias and variability are considered jointly in this manner, it should be clear that
there can be marked attenuation of the association when using predictors measured with error.
To the extent that estimates of α2, τ2, and v2 can be obtained, better estimates of β2 can be
derived from γ̂2.


