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1. Consider a simple linear regression model �Y = γ0 + γ1
�X +�ε with �ε ∼ (0, σ2In).

a. We are interested in a two-sided level α test of the null hypothesis H0 : γ1 = c0, and we would like to
have power β to detect the alternative hypothesis H1 : γ1 = c1. Using the asymptotic distribution
for γ̂1, derive a sample size formula for the case where the Xi’s will be sampled from a distribution
with mean µX and variance VX . Show that this sample size formula reduces to the usual formula
for the two sample t test when the Xi’s are dichotomous variables.

Ans: We can derive a sample size formula based on the asymptotic marginal distribution of γ̂1

γ̂1 ∼ N
(

γ1,
σ2

SXX

)
Using the fact that SXX/(n − 1) estimates var(X), we have

Z =

√
(n − 1)var(X)(γ̂1 − c0)

σ
∼ N (δ, 1)

with δ =
√

(n − 1)VX(γ1 − c0)/σ. Under H0 : γ1 = c0 Z has a standard normal distribution.
Thus we would reject the null hypothesis whenever |Z| > z1−α2 , where zp is the pth percentile
of the standard normal distribution.

To compute the power, we note that

PrH1(Z > z1−α2) = PrH1(Z − δ > z1−α2 − δ) = 1 − Φ(z1−α2 − δ)

where Φ(·) is the cumulative distribution function for the standard normal.

If we want power β when γ1 = c1, then

Φ−1(1 − β) = −zβ = z1−α/2 − δ

−zβ = z1−α/2 −
√

(n − 1)VX(c1 − c0)/σ

and solving for n

n = 1 +
(z1−α/2 + zβ)2σ2

VX(c1 − c0)2

Note that when X is a binary 0-1 variable with equal sample sizes, VX is just 1/4. In this case
n/2 is the sample size for a single group and the above formula reduces to

n

2
= 1 +

(z1−α/2 + zβ)22σ2

(c1 − c0)2

Usually, we do not consider the the aspect that we are using the sample variance of our
predictors, and thus the leading 1 in the formula drops out, and we obtain the standard
sample size formula.

For c0 = 0, an alternative approach can be based on the fact that the test that H0 : γ1 = 0
is exactly equivalent to the test of H0 : ρ = 0, where ρ is the correlation between X and Y
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(technically we require X and Y to be bivariate normal random variables). It can be shown
that the correlation ρ between X and Y should be approximately

ρ = γ1

√
var(X)

γ2
1var(X) + σ2

so we can easily translate the problem into finding the sample size having adequate power to
test rho. Thus ρ1 = c1

√
VX/(c2

1VX + σ2) corresponds to the design alternative H1 : γ1 = c1

for given VX and σ2.

In order to find a sample size formula, we need to know the distribution of our test statistic
under the null and alternative. The statistic based on r above is not very good for nonzero ρ, so
we use the distribution of the Fisher transform, and consider a statistic Z =

√
n−3
2

ln
(

1+r
1−r

)
∼

N (δ, 1) where δ =
√

n − 3 ln((1 + ρ)/(1− ρ))/2. Note that under H0 : ρ = 0, Z has a standard
normal distribution. Thus we would reject the null hypothesis whenever |Z| > z1−α2 , where
zp is the pth percentile of the standard normal distribution.

To compute the power, we note that

PrH1(Z > z1−α2) = PrH1(Z − δ > z1−α2 − δ) = 1 − Φ(z1−α2 − δ)

where Φ(·) is the cumulative distribution function for the standard normal.

If we want power P when γ1 = c1, then

Φ−1(1 − P ) = −zP = z1−α/2 − δ

−zP = z1−α/2 −
√

n − 3
2

ln
(

1 + ρ1

1 − ρ1

)
Solving for n, we find

n = 3 +
4(z1−α/2 + zP )2

ln2
(

1+ρ1
1−ρ1

)
We can compare the two equations as a function of the sample size and the distribution of
the predictors. I note that neither sample size formula uses the t distribution for the test
statistic, so both might be expected to be a little low. The following table presents the sample
size estimated by each equation along with the estimated power of those sample sizes from
simulation studies. In all cases, I used c1 = 2, α = .05, and VX = 5. “Correlation” refers to
the second formula, and “Slope” refers to the first. For each method, I consider cases when the
predictors are normally distributed, uniformly distributed, a binary variable (50% per group
on average), or exponentially distributed. I vary σ2 and P , and for each case, I present the
sample size predicted by the formula (n) and the simulated power estimate corresponding to
that sample size (“Sim Pwr”).

From this table you can see that the sample sizes predicted by the “Correlation” formula tend to be
5-6 subjects higher than the “Slope” formula. When small sample sizes are predicted, the “Slope”
formula tends to be too optimistic. When the distribution of the predictors is exponential, the
“Slope” formula is particularly bad in small samples. As the sample sizes have not changed as I
have changed the distribution of the predictors, this merely suggests that the power-sample size
relationship is rather steep with exponentially distributed predictors.
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Correlation Slope
X Distn σ2 P n Sim Pwr n Sim Pwr

Normal 25 0.50 9 0.569 6 0.326
Normal 25 0.80 15 0.826 11 0.664
Normal 25 0.95 23 0.954 17 0.890
Normal 100 0.50 23 0.498 20 0.455
Normal 100 0.80 45 0.819 40 0.774
Normal 100 0.95 72 0.954 66 0.936
Normal 200 0.50 43 0.502 39 0.464
Normal 200 0.80 84 0.798 79 0.790
Normal 200 0.95 137 0.954 131 0.940

Uniform 25 0.50 9 0.556 6 0.340
Uniform 25 0.80 15 0.842 11 0.685
Uniform 25 0.95 23 0.966 17 0.891
Uniform 100 0.50 23 0.514 20 0.454
Uniform 100 0.80 45 0.820 40 0.766
Uniform 100 0.95 72 0.954 66 0.936
Uniform 200 0.50 43 0.514 39 0.476
Uniform 200 0.80 84 0.808 79 0.789
Uniform 200 0.95 137 0.944 131 0.945
Binary 25 0.50 9 0.576 6 0.431
Binary 25 0.80 15 0.868 11 0.702
Binary 25 0.95 23 0.978 17 0.916
Binary 100 0.50 23 0.516 20 0.463
Binary 100 0.80 45 0.829 40 0.768
Binary 100 0.95 72 0.958 66 0.942
Binary 200 0.50 43 0.518 39 0.491
Binary 200 0.80 84 0.814 79 0.790
Binary 200 0.95 137 0.955 131 0.949

Exponential 25 0.50 9 0.500 6 0.292
Exponential 25 0.80 15 0.746 11 0.590
Exponential 25 0.95 23 0.910 17 0.788
Exponential 100 0.50 23 0.505 20 0.422
Exponential 100 0.80 45 0.757 40 0.732
Exponential 100 0.95 72 0.928 66 0.903
Exponential 200 0.50 43 0.514 39 0.467
Exponential 200 0.80 84 0.780 79 0.766
Exponential 200 0.95 137 0.930 131 0.930

b. We are interested in estimating γ1 with a two-sided 100(1− α)% confidence interval such that the
width of the confidence interval is ∆. Using the asymptotic distribution for γ̂1, derive a sample size
formula for the case where the Xi’s will be sampled from a distribution with mean µX and variance
VX . Show that this formula corresponds to the same formula as derived in part (a) when ∆ = c1−c0

and β = 1−α/2. (Thus, when designing a two-sided level α test having power β = 1−α/2 to detect
the alternative, a 100(1 − α)% confidence interval will with probability 1 contain at most one of
the null or alternative hypotheses. In this sense, the experiment will with 100(1 − α)% confidence
discriminate between the null and the alternative.)

Ans: The width of a confidence interval is ∆ = 2z1−α/2ŝe(γ̂1). As above, the standard error can be
approximated by σ/

√
(n − 1)VX and solving for n we obtain

n = 1 +
(2z1−α/2)2σ2

VX∆2

When ∆ = c1 − c0 and β = 1 − α/2, this is the same formula as was given above.
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2. Consider a linear regression model �Y = β0 + β1
�X + β2

�Z + �ε with �ε ∼ (0, σ2In). We are interested in
using simulation to explore the differences between fitting the full model as given above and fitting a
reduced model �Y = γ0 + γ1

�X + �δ under the following design situations:

A. Replications of an experimental design with the same design matrix each time and in which
the sample correlation between �X and �Z is zero.

B. Replications of an experimental design in which the design matrix can vary across replications,
but in each case the sample correlation between �X and �Z is zero.

C. Replications of a completely randomized design in which the design matrix varies across repli-
cations and �X and �Z are sampled independently of each other.

D. Replications of an observational study in which the design matrix varies across replications
and �X and �Z are sampled from a distribution in which corr(Xi, Zi) = ρ.

In each of the above situations, we are interested in examining the mean and standard deviation of the
least squares estimates β̂1 and γ̂1, as well as the mean and standard deviation of the estimated standard
errors ŝe(β̂1) and ŝe(γ̂1) across the simulated replications. Ultimately, we wish to compare the degree
to which the estimated standard errors from each model accurately predict the true standard deviation
of the least squares estimates.

For the purposes of the simulation, we will choose β0 = 0, εi ∼ N (0, 1), ρ = .7, and n = 200.
Furthermore, for standardization of results we want to sample �X and �Z such that X = Z = 0 and∑

X2
i =

∑
Z2

i = n. For settings A and B, we will also require that
∑

XiZi = 0 in each design matrix.

Simulate 100 replications of each setting for the four cases of

1. β1 = β2 = 0

2. β1 = 0 and β2 = 1

3. β1 = 1 and β2 = 0

4. β1 = β2 = 1

For each of the 16 simulations (A1-A4,B1-B4,C1-C4,D1-D4), comment on any observed bias of the least
squares estimates β̂1 and γ̂1 , the agreement between the observed standard deviations of those estimates
and the average estimated standard errors for those estimates, and estimate the true coverage probability
for 95% confidence intervals based on the least squares estimates and their estimated standard errors,
using the observed standard deviation of the least squares estimates across the replications as their true
standard deviation. Be certain to explain how you estimated that coverage probability.

Ans: Example simulation results are contained in a separate file, hw5key.rsl.


