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Biost 514: Applied Biostatistics I 
Emerson, Fall 2009 

 
Homework #5 Key 
November 9, 2009 

 
 
Questions for Biost 514 only: 
 
It is sometimes said that all of statistics is founded on the Central Limit Theorem and a Taylor’s 
Expansion. The Delta Method is the most common way that Taylor’s Expansion is used in 
deriving asymptotic distribution of statistics. In this homework, you will derive Greenwood’s 
formula for the standard error of the Kaplan-Meier estimator. 
 
Censored survival data: 
 
Suppose random variable T measures time to some event and that we are interested in estimating 
the survival distribution S(t)= Pr (T > t) = 1 – FT(t). 
 
Suppose further that we cannot always directly observe T. Instead, there is some censoring 
variable C ~ G(c) independent of T, and we can only observe the smaller of T and C: Define 

Y= min(T,C) 
 = 1[Y=T] 

 
Under noninformative censoring, we can estimate S(t) from the pairs (Y, ) using the Kaplan-
Meier estimates. 
 
Kaplan-Meier estimator: 
 
Suppose we have potentially censored observations (Y1,δ1), (Y2, δ 2), …, (Yn, δ n) defined as above. 
 
Let 0 < 1 < 2 < … < D be the D distinct times at which at least one failure was observed. Then 
for each k define the number at risk Nk and the number of events dk as 
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We want to estimate S(t) = Pr(T >t).  This can be effected by noting that for any ordered set of 
times 0= t0 < t1 < t2 < …tk, we can compute S(tk) as 
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Then, because an estimate of Pr(T >i  | T > i-1 ) can be computed from 1 – di / Ni, the Kaplan-
Meier estimator is given by 
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In deriving Greenwood’s formula, as well as other methods of computing CI for estimated 
survival probabilities, we will find it useful to make use of the delta method: 
 
Prop (delta method) : Suppose g is a differentiable function at   and na  as n , then 

  ZZa dnn   

implies 
      ZggZga dnn  '  

where  

   


 gg



'  

 
Proof: The proof of this proposition just makes use of a first order Taylor expansion. 
 

5. Derive Greenwood’s formula (the asymptotic variance in part c) and other appropriate 
methods for defining confidence intervals for the survival distribution. 

a. Under the assumption that the size Nk of the risk set at each time i is large, find 
an approximate (asymptotic) distribution for the estimated hazards, where the 
hazard λ(t) and its estimator are defined by 
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Express the asymptotic distribution in the form 

      .,0ˆ VNttn d  

 
Ans: dk represents the number of events at time k among the Nk subjects at risk. As each of 
the subjects are presumed to have the same hazard, then dk has a binomial distribution with 
parameters n = Nk and p =  λk = λ(k). The estimated hazard is thus just a sample mean of 
i.i.d., Bernoulli random variables having mean λk  and variance λk (1 - λk ). Hence, by the 
Levy central limit theorem 
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b. Use the delta method to find an asymptotic distribution for  

        .,01logˆ1log *VNttn d   

Ans: Let g(x) = log(1 – x). Then g’(x) = – 1 / (1 – x), and by the delta method 
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c. Argue heuristically for the asymptotic distribution for 

        .,0logˆlog **VNtStSn d  

Ans: Now 
 

     .1logˆlog1ˆ
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Furthermore, the asymptotic results in part b suggest the approximate distribution 
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If we knew that the individual terms were totally independent, then we would be home free, 
because the sum of independent normals is normal, and we should be able to argue that if 
each of the independent terms that are asymptotically normal, then their sum will also be 
asymptotically normal under some reasonable conditions. But in the typical survival 
analysis setting, the same individual contributes to many different risk sets. However, under 
the assumption of noninformative censoring, each risk set has to look like a random sample 
from a population of subjects in the at-risk population. And as the sample sizes get large, 
the individual terms are asymptotically uncorrelated, and we have  
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(More rigorously, we would define the probability of being at risk at timek as the 
probability of neither failing nor being censored: Pr(T > k , C > k) = πk  and note that Nk / n 
should be consistent for πk , and we could rigorously derive that 
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d. Use the delta method to find an asymptotic distribution for  

      .,0ˆ ***VNtStSn d  

Ans: Let g(x) = exp(x). Then g’(x) = exp(x), and by the delta method 
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To be able to use this inferentially, we would need to estimate the standard error in the 
approximate distribution 

      .
1

)(),(~ˆ
:

2











 tk kk

k

k
n

tStSNtS
 


  

By Slutsky’s theorem, we are allowed to use a consistent estimate of the standard error. So 
making the appropriate substitutions for S(t), πk , and λk , we would end up basing our 
inference on  
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e. Show that confidence intervals derived using the asymptotic distributions in part 
d (or even part c) could have limits outside the interval (0,1). Show that this 
problem is avoided if the confidence intervals are defined first for log(-log(S(t))), 
and derive the method whereby this could be done. 

Ans: Using the results of part d, we would obtain approximate 100(1-α)% CI as 
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Suppose that n = 1,000 and the first event is observed at time 1 prior to any censoring. Then 
the estimated survival is 0.999 and the estimated standard error is .999 ·√(1/999000) = 0.001, 
and the 95% CI for S(1) would be .997 to 1.001. Similarly, we can obtain a lower bound of a 
CI less than 0 on this additive scale which could conceivably result in any real number. 
 
Similarly, if we use the results of part c, we would obtain the upper bound of an 
approximate 100(1-α)% CI as 
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Supposing again that n = 1,000 and the first event is observed at time 1 prior to any 
censoring. Then the upper bound for the 95% CI for S(1) 1.001. In this case, we need not 
worry about obtaining a lower bound less than 0, because as the CI for log(S(t)) ranges from 
negative infinity to infinity, the exponentiation of that CI to be a CI for S(t) will range from 
0 to infinity. But that includes values over 1. 
 
However, if we apply the delta method with g(x) = log(- x) to the results of part c, we obtain 
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and we can use an estimated standard error and base CI on the approximate distribution 
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A CI for log(-log(S(t)) will range between negative infinity and infinity. When we 
exponentiate that, we will get a number between 0 and infinity. The additive inverse of that 
first exponentiation will therefore be negative, and exponentiating that last result will be 
between 0 and 1. 
 
 


