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Lecture Outline

• Comparing Independent Proportions
– Large Samples (Censored)

• Using Kaplan-Meier Estimates

• Comparing Hazard Functions
• Logrank Test
• Wilcoxon Test for Censored Data

• Comparing Quantiles
• Parametric Accelerated Failure Time Models

3

Right Censored Data

4

Right Censored Data

• Recall from Lecture 6: Censored variables
– A special type of missing data (the exact 

value is not always known)
• Right censoring: for some observations it is only 

known that the true value exceeds some threshold 
• Left censoring: for some observations it is only 

known that the true value is below some threshold
• Interval censoring: for some observations it is only 

known that the true value is between some 
thresholds
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Examples

– PSA data set
• Subjects were followed with serial PSAs
• Interested in time to relapse
• Some still in remission at time of analysis
• (Ignoring these subjects is ignoring successes)

– University salary data set
• Interest is in sex discrimination
• Interested in time to promotion from associate 
• Some subjects have not yet been promoted
• (Ignoring these subjects may be ignoring 

discrimination) 6

Descriptive Statistics

• Sample mean, sample median (and other 
quantiles), sample standard deviation and 
variance are not appropriate

• Instead, descriptive statistics must be 
computed from Kaplan-Meier estimates

• Only exception: You could use binomial 
proportions to estimate survival to the first 
censoring time

– E.g., PSA data: All subjects followed at least 24 months

7

Noninformative Censoring

• Recall: Our estimation methods only 
appropriate if censoring is not informative 
about subjects who were either more or 
less likely to have an event in the 
immediate future
– Censored subjects must look like a random 

sample of those at risk at time of censoring
– (Later we shall say that they are a random 

sample from all subjects at risk having similar 
modeled covariates) 8

Comparing Independent 
Proportions

Large Samples with Right 
Censored Data
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Kaplan-Meier Estimates

• Estimate S(t) = Pr ( T0 > c) for arbitrary c
– Nonparametric

• Works for all distributions
• (Also works for uncensored data)

– Consistent for true value in infinite samples
– Can derive estimates of quantiles
– Can only estimate mean if estimated survival 

curve goes to 0
• But can define “restricted mean” up to some time

10

Approximate Distribution

• If interested in  = S(c)= Pr (T0 > c) in 
presence of right censoring
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Stata: Kaplan-Meier Commands

• Syntax for “setting survival data”
– “stset endtime eventind, 
t0(entrytime)”

• endtime: name of the variable measuring the time 
at the end of the interval

• eventind : name of an indicator (0 or 1) variable 
indicating event status at the end of the interval

• entrytime: name of the variable specifying the time 
at the start of the interval

– (does not need to be supplied)

– “stset, clear” resets the data set 12

Stata: Kaplan-Meier Commands

• Syntax for getting estimates, plots
– Plotting survival curves

•“sts graph”
•“sts graph, atrisk”

•“sts graph, cens(s)”

– Listing survival estimates
•“sts list”

– Saving survival estimates
•“sts gen newvar = s”
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Two Group Comparisons

• To compare survival probabilities, we 
would compute SE for each group 
individually, then use methods for 
combining estimates
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Two Group Inference

• As with any (approximately) normally 
distributed estimator, CI and P values are 
computed using
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Example: PSA Data

• Men with prostate cancer
– Hormonal treatment
– Followed for signs of progression

• Interested in estimating probability of 
remaining in remission for three years
– Testing hypothesis that three year survival 

differs between bone scan score less than 3 
or bone scan score equals 3

16

Example: Preparing Data

• Reading in data (note string variable)
. infile … obstime str8 inrem using psa.txt

• Creating indicator of relapse
. g relapse = 0
. replace relapse = 1 if inrem==“no”

• “Setting” survival variables
. stset obstime relapse
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Dichotomizing Bone Scan Score

• Method 1 (must consider missing data)
. g bss3= 0
. replace bss3=1 if bss==3
. replace bss3=. if bss==.

• Method 2 (recode handles missing data)
. g bss3= bss

. recode bss3 1/2=0 3=1

18

Stata: KM Listing
.  sts list, by(bss3) at(12 24 36 48)
Beg.               Surv Std.
Time Total Fail    Fctn Error  [95% Conf Int]
bss3=0 
12    18   1   0.9444 0.0540   0.6664 0.9920
24    14   3   0.7778 0.0980   0.5110 0.9102
36    12   1   0.7130 0.1092   0.4398 0.8699
48     6   3   0.4801 0.1356   0.2101 0.7082

bss3=1 
12    22  10   0.6667 0.0861   0.4692 0.8047
24    15   6   0.4667 0.0911   0.2839 0.6304
36     9   5   0.2963 0.0841   0.1464 0.4630
48     2   4   0.1058 0.0659   0.0209 0.2713

19

Stata: Difference and SE

• Three year survival probabilities
• Bone scan score < 3: 0.7130 (SE 0.1092)
• Bone scan score = 3: 0.2963 (SE 0.0841)

• Estimated diff in 3 year survival probability
. display 0.7130 - 0.2963

.4167

• Standard error of estimated difference
. display sqrt( 0.1092^2 + 0.0841^2 )

.13783124

20

Stata: 95% CI and P value

• 95% confidence interval: 0.147 to 0.687
. display invnorm(.975)
1.959964
. display .4167 - invnorm(.975) * 0.13783124
.14655573
. display .4167 + invnorm(.975) * 0.13783124
.68684427

• Two-sided P value : P = 0.0025
– (note use of negative)

. display 2 * normprob( - .4167/.13783124)

.00250065
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Interpretation

– The Kaplan-Meier estimate of difference in 
survival is that men with a bone scan score 
less than 3 have an absolute improved 3 year 
survival of 41.7% relative to bss=3

– With 95% confidence, such an observation is 
not consistent with a true absolute 
improvement less than 14.7% or greater than 
68.7%

– Based on the P value of 0.0025, we reject the 
null hypothesis of no association between 
bone scan score and 3 year survival prob

22

Comparing Hazard Functions

Logrank Test

23

Scientific Questions

• With time to event data, we are generally 
interested in probability that an event will 
occur in a specified time
– Right censored data presented problems, 

because the measurement of events was over 
varying amounts of time

• Effect modification by time?
• Confounding by time?
• Increased precision by accounting for time?

24

General Strategy

• We want to use methods that adjust for 
the time of observation
– Kaplan-Meier estimates at a fixed time
– Logrank and modified Wilcoxon statistics by 

averaging effects over time



Applied Biostatistics I, AUT 2009 November 23, 2009

7

25

Hazard Function

• With censored data, we often compare 
probability distns using hazard functions
– Hazard = Instantaneous risk of an event

• Among subjects at risk of an event, what is the 
probability of having an event in the next instant

– Advantage of using hazard with censored 
data

• Only need to consider subjects currently at risk
• Only need to consider whether they have an event 

right then
26

Hazard Function

• Estimates of the hazard at each time look 
somewhat like a binomial proportion
– We do not often estimate the hazard function 

over time
– However, we do compare hazard functions

• Usually we estimate a hazard ratio: relative risk of 
an event

• We want to average the estimates of the hazard 
ratio over all times

27

Stratified Analyses

• Recall that we are often interested in 
comparing groups within strata
– Confounding:

• Comparisons within strata are all similar, but failure 
to stratify results in a comparison that is misleading 
due to bias

– There are nuances here as we go from analyses of 
means to analyses of nonlinear summary measures 
(e.g., odds- more later)

– Interactions:
• Comparisons within strata result in different 

estimates
28

Adjusting for Covariates

• We can remove confounding by 
“adjusting” for the confounder using a 
stratified test statistic
– “Adjustment” for a covariate means making 

comparisons between subjects who have 
similar levels of that covariate

• E.g., in FEV data, compare smoking children to 
nonsmokers of same age, height

• Average the differences seen in age, height strata
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Role of Effect Modification

• Adjustment for a covariate does not 
remove interactions
– Interactions means that the question has 

different answers in different strata
• Adjustment for a covariate will merely 

average the effect across strata
– Usually weighted by the sample size in each 

stratum

30

Stratified Estimates

• Obtained by combining estimates from 
each (independent) stratum
– Generally, best to average the estimates 

(sometimes weighted) rather than Z scores
– SEs for the stratified estimates are obtained 

using properties of independent random 
variables

• Standard errors are the sum of squared standard 
errors  from the independent strata

31

Example

• Effect of hepatomegaly on survival after 
adjustment for sex?
– Summarize response by 5 year survival
– Hepatomegaly effect by sex: For each sex, 

compute difference in survival across 
hepatomegaly groups

– Adjusted measure of effect: Compute the 
average difference between hepatomegaly
effects

• Usually a weighted average 32

SE for Stratified Estimates
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Mantel-Haenszel Statistic

• Generally regarded as the best choice of 
methods for comparing binary data across 
strata
– Based on the odds rather than the proportion

• It is rare that we might expect the difference in 
proportions to be constant across strata

– Other methods can be based on the 
asymptotic distribution of the log odds

• (More on these methods next quarter)
34

Logrank Test

• The Mantel-Haenszel test is also the basis 
for a very popular method of comparing 
censored survival data across populations: 
The logrank statistic
– The data are stratified by time of event

• Often only a single event is observed in each 
stratum

• Stratified estimates of the odds ratio are obtained

35

Noninformative Censoring

• Most often the same subjects are used in 
several different strata
– Noninformative censoring argues that the 

estimates are independent across strata 
asymptotically

36

Tests Equality of Hazards

• Equal hazard functions implies equal 
distributions

• The P value for this test is interpretable as a test 
that the survival distributions are similar for the two 
groups

– This test is more powerful when the true 
alternative is “proportional hazards”

• Proportional hazards = constant risk ratio over time
• Proportional hazards regression will provide 

estimates of the risk ratio
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Logrank Test: Stata Commands

• The logrank test can be obtained from 
Stata using the “sts test” command (after 
defining survival variables using “stset”
– “sts test groupvar, logrank”

• groupvar indicates the groups to be compared
• logrank test is default
• P value based on a chi square statistic

– Hence a two-sided P value
– (Obtaining a one-sided P value is deferred until we 

discuss proportional hazards regression next quarter)
38

Example: PSA Survival by bss
. sts test bss3
Log-rank test for equality of survivor functions

|   Events         Events
bss3  |  observed       expected
------+-------------------------
0     |         9          17.18
1     |        25          16.82
------+-------------------------
Total |        34          34.00

chi2(1) =       8.30
Pr>chi2 =     0.0040

39

Example: Interpretation

• Based on the two-sided P value of 0.004, 
we reject the null hypothesis of equal 
relapse free survival probabilities between 
the bone scan score groups
– (Because the expected events are less than 

observed in the bss=3 group, we can 
presume that the higher bss is associated 
with worse relapse free survival)

40

Hazard Ratio Estimates

• Logrank test does not give estimates
– However, it is closely related to “proportional 

hazards regression” (“Cox regression”)
• Provides estimates of the (average) hazard ratio 

over time

• Hazard ratio
– Groups with higher hazards have higher event 

rates
• Hazard ratio greater than 1 = Worse “survival”
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Proportional Hazard Regression

• HR estimates approximately normal in 
large samples

• Stata commands
– “stcox groupvar, robust”

• “robust” eliminates need for proportional hazards
• Gives hazard ratio, 95% CI

– CI is computed on log hazard ratio scale

• P values
– “Wald test” (based on approximately normal estimate)
– “Likelihood ratio test”
– (“Score test” would be the logrank test)

42

Example: PSA Survival by bss
. stcox bss3, robust
No. of subjects = 48     Number of obs =     48
No. of failures = 34     Time at risk  =   1408

LR chi2(1)    =   8.35
Log likelihood  = -106.9 Prob > chi2   = 0.0038

Robust
_  t | HazRat StdErr z  P>|z|    [95% CI]
bss3 |   2.96   1.11 2.89  0.004  1.42 6.16

43

Example: Interpretation

• We estimate that at any given time the risk 
of relapse in men with bss=3 tends to be 
2.96 times that of men with lower bss

• 95% CI suggests these results typical if 
true risk of relapse with bss=3 is 1.42  to 
6.16 times that in men with lower bss

• Based on P value of 0.004 we would reject 
null hypothesis of no association between 
relapse and bss 44

Comparing Hazard Functions

Wilcoxon Form of Logrank Test
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Modification of Wilcoxon Test

• Recall that the Wilcoxon test compares 
distributions based on Pr (Y > X)
– We need to define what we mean by Y > X in 

presence of censoring
• Y > X if

– uncensored Y > uncensored X
– censored Y > uncensored X

• Regard as unknown (and omit from analysis)
– censored Y < uncensored X
– Y and X both censored

46

Wilcoxon Test Distribution

• The modified Wilcoxon statistic can be 
shown to be asymptotically normally 
distributed
– The standard errors for the modified Wilcoxon

test under the null hypothesis can be 
computed from permutation distributions

• Hence, a test of equality of the entire distribution

47

Other Interpretations

– The modified Wilcoxon statistic can also be 
viewed as a weighted logrank statistic

– A weighted average of difference in hazards
– Places greater weight on differences in the 

survival curve that appear “early”
• Other ways to weight logrank statistics 

also exist
– Logrank test is best if hazard ratio is constant 

over time
48

Stata Commands

• The WIlcoxon test for censored data can 
be obtained from Stata using the “sts test”
command (after defining survival variables 
using “stset”
– “sts test groupvar, wilcoxon”

• groupvar indicates the groups to be compared
• P value based on chi square statistic

– Hence a two-sided P value
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Comparing Quantiles

Parametric Models
for Censored Data

50

Parametric Models for 
Censored Data
• There are times that inference for 

censored data is based on parametric 
models
– Accelerated failure time models

• Assume a constant ratio between groups for all 
quantiles of survivor distribtution

• E.g., dogs live 7 years for each year of human life

51

Parametric Models for 
Censored Data
• Commonly used parametric models

– Exponential:
• Constant hazard independent of past

– Weibull: 
• Theoretical derivation: First failure in a series of 

components (weakest link in a chain)
• Log hazard is linear
• Exponential is special case
• Only accelerated failure time model that is also 

proportional hazards
52

Parametric Models for 
Censored Data
• Commonly used parametric models (cont.)

– Gamma: 
• Theoretical derivation: Final failure in parallel 

components
• Exponential is special case

– Lognormal
– Many other generalizations
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Caveats

Choice of Summary Measures

54

Parametric Models

• All of the parametric models will be 
sensitive to violation of the distributional 
assumptions
– Because these models assume constant ratio 

of all quantiles, we do not have robustness to 
other distributions in any particular model 
(including lognormal)

– (We will discuss these models with regression 
next quarter)

55

Semiparametric Models

• We do know how to use the proportional 
hazards model, even when the hazard 
ratio is not constant
– However, you need to be careful– it may not 

estimate anything you care about

56

Hypothetical Example: Setting

• Consider survival with a particular 
treatment used in renal dialysis patients
– Extract data from registry of dialysis patients

• To ensure quality, only use data after 1995
– Incident cases in 1995: Follow-up 1995 – 2002 (8 years)
– Prevalent cases in 1995: Data from 1995 - 2002

» Incident in 1994: Information about 2nd – 9th year
» Incident in 1993: Information about 3rd – 10th year
» …
» Incident in 1988: Information about 8th – 15th year
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Hypothetical Example: Analysis

• Choice of summary measure
– Survival at fixed point in time
– Median, other quantiles
– Mean (or restricted mean)
– Hazard ratio (or weighted average of hazard 

ratio over time)
• Choice of methods

– Parametric, semiparametric, nonparametric
58

Hypothetical Example: KM 
Curves
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Kaplan-Meier Curves for Simulated Data (n=5623)
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Who Wants To Be A 
Millionaire?
Proportional hazards analysis estimates a 

Treatment : Control hazard ratio of
A:      2.07   (logrank P = .0018)
B:      1.13   (logrank P = .0018)
C:      0.87   (logrank P = .0018)
D:      0.48   (logrank P = .0018)

• Lifelines: 
– 50-50? Ask the audience? Call a friend? 60

Who Wants To Be A 
Millionaire?
Proportional hazards analysis estimates a 

Treatment : Control hazard ratio of

B:      1.13   (logrank P = .0018)
C:      0.87   (logrank P = .0018)

• Lifelines: 
– 50-50? Ask the audience? Call a friend?




