

Sampling within families

- Sampling within schools, hospitals
- Repeated measurements on individuals taken at a single time
- Longitudinal data: repeated measurements taken on individuals over time

Dependent Data Within Clusters

3

- Three settings in which longitudinal studies are performed
 - Convenience of existing study population
 - Efficiency of using subjects as own comparison
 - Scientific questions about effects that occur
 - over time, or
 - within subjects

Efficiency

5

7

- Questions could be answered with cross-sectional study
- Primary comparison within subjects may have less variability
 - Allow detection of smaller effects
 - E.g., Adjusting for baseline measurements
 - E.g., Cross-over study of a new treatment

Example

- Percent glycosylated hemoglobin is used to monitor long term control in diabetes
 - Hemoglobin A1c
- · Consider studies of two insulin delivery strategies
 - Independent groups
 - Cross-over design

14

16

Within Subject Effects

- · Trends in specific individuals might not look like trends in population means
- Response over time may be restricted to subgroups of subjects
- · Response over time may be transient

Longitudinal Scientific Questions

1.5

Time (vears

2.0

2.5

3.0

- · Scientific questions about effects that occur within subjects
- Studies to detect time trends or covariate effects in individual response
 - E.g., distribution of rates (slopes) of progression of retinopathy in population over time
 - E.g., effect of varying risk factors within individuals

Choice of Measures of Outcome

- In order of importance
 - Scientific relevance
 - Including state of current knowledge
 - Plausibility of difference across groups
 - Statistical precision for analysis

Longitudinal Outcome Measures

- In longitudinal studies, each individual may have multiple measurements over time
- Definition of individual response thus can be based on multiple measurements
 - Response at a fixed time
 - Responses at multiple fixed times
 - Average response over time (area under curve)
 - Rate of change in response (slope)
 - Time to attaining some level of response

19

Measures of Outcome

- "Marginal" or population effects
 - Difference or ratio of group means, geometric means, medians, proportion or odds above threshold, hazards
 - Pr (Y > X)
- "Within subject" effects
 - Mean, median difference
 - Mean, geometric mean, median ratio
 - Within subject odds ratio
 - Pr (Y > X)

21

23

Choice of Longitudinal Outcome

- Should reflect scientific relevance, plausibility of effect, precision
 - Final level of response may be more important than earlier effects
 - (But in the long run, we are all dead)
 - Summarizing response at multiple time points reflects population rather than individuals
 - Average response over time sensitive to transient effects
 - Differences in time to event may be clinically meaningless

Statistical Issues

- Repeated measurements on subjects require special analysis techniques
- May have erroneous conclusion if fail to account for correlated observations
 - Point estimates may be biased for population parameters
 - · Too much emphasis placed on some subjects
 - Confidence intervals will not be accurate representation of our true confidence
 - P values will be wrong

Statistical Approaches

- Three basic approaches to analyzing correlated data
 - Reduce measurements on each cluster to a single observation; analyze across clusters
 - Estimate correlation within clusters and adjust standard errors for population based models
 - GEE, marginal models
 - "Robust" variance estimates
 - Adjust estimates for "random effects"
 - "Mixed effects models": both fixed and random

- Reduce data for each individual to a single measurement
 - E.g., response at end of study, average response, rate of change
- Analyses can then be based on standard methods for independent data
- But:
 - Does not allow time-varying covariates
 - May not be most efficient statistically

25

27

Example: Beta-carotene Data

- Randomized clinical trial of beta-carotene supplementation on plasma levels of beta-carotene and vitamin E
 - Subjects randomized to 5 dose groups
 - Measurements at baseline, after 3 and 9 months of treatment, and 3 months after stopping treatment
 - Scientific question: How do plasma beta-carotene levels change over time within dose groups?
 - (effect modification between dose and time)

26

Example: Beta-carotene Data

- Reduce data to a single measurement on each subject
 - Difference between follow-up and baseline
 - Consider average of differences
 - No change corresponds to a difference of 0
 - Ratio between follow-up and baseline
 - Consider average of ratios
 - No change corresponds to a ratio of 1

Example: SEP data Somatosensory evoked potential measurements on healthy

- Measurements of nerve conduction time
 - Four separate peaks for each leg of each subject
- Reduce data to a single measurement
 - Consider only one peak on one leg
 - Which one?

adults

- Average measurements across peaks, legs
 - · But will only generalize to similar averages
- (Differences between peaks?)

Comparing Geometric Means

- · Paired t test on log transformed data
 - Compute differences for each pair
 - One sample t test that mean difference is 0
 - Back transform to consider geometric mean of ratios
 - Also ratio of geometric means

Sign Test

- A very simple alternative test to the paired t test (which compares means) is to test whether the median of the differences is zero
- If the median of the differences is zero, we would expect as many differences to be above zero as below zero
 - The differences that are exactly zero do not contribute much information about which measurement tends to be higher

31

Sign Test (Elevator Statistics)

• Proportion positive among nonzero differences

$$X_i \stackrel{iid}{\sim} (\mu, \sigma^2) \quad Y_i \stackrel{iid}{\sim} (\nu, \tau^2) \quad D_i = X_i - Y_i \stackrel{iid}{\sim} (\mu - \nu, \omega^2)$$

 $P = \text{number of } D_i \text{'s} > 0$ $N = \text{number of } D_i \text{'s} < 0$

If the median difference is 0, the number of positive differences is binomially distributed : $H_0: P \sim B(P+N, 0.5)$

35

Sign Test: Stata Commands Stata has a command to perform the sign test "signtest var1 = var2" Provides one-sided and two-sided P values Does not provide any meaningful estimates or confidence intervals (The sign test can also be performed by creating the differences, changing the zeroes to missing, and then using

"bitest")

Sign Test: Stata Example	
One-sided tests:	
Ho: mdnn of carot3 - carot0 = 0 vs.	
Ha: median of carot3 - carot0 > 0	
<pre>Pr(#pos >= 1) = Binomial(n=7, x>=1, p=0.5)=</pre>	0.9922
Ho: median of carot3 - carot0 = 0 vs.	
Ha: median of carot3 - carot0 < 0	
Pr(#neg >= 6) = Binomial(n=7, x>=6, p=0.5)=	0.0625
Two-sided test:	
Ho: median of carot3 - carot0 = 0 vs.	
Ha: median of carot3 - carot0 ~= 0	
Pr(#pos >= 6 or #neg >= 6) =	0.1250
	38

Interpretation

• We can not with 95% confidence reject the null hypothesis that the median change in plasma beta-carotene levels after 9 months of treatment with placebo was 0

(Wilcoxon) Signed Rank Test

- The sign test is simple to perform, but it ignores a lot of information
- Intuitively, you would expect that there is some information in the magnitude of the differences as well as the sign
- For instance, there may be nearly as many negative differences as positive differences, but the positive differences tend to be far larger (in absolute value) than the negative differences

39

(Wilcoxon) Signed Rank Test

- The Wilcoxon signed rank test attempts to use the information about the magnitude of the differences
- The null hypothesis of the Wilcoxon signed rank test is that
 - the number of positive and negative differences should tend to be equal, and
 - there should be no tendency for the positive differences to be further from (or closer to) zero than the negative differences

41

- Under the null hypothesis of equality of distributions, the sampling distribution for that sum should be the same as randomly choosing n/2 numbers from the integers 1 to n
 - · Adjustment for ties and zeroes
 - (Computers can figure this out for us)

E	xample of Signed Ranks	
X Y	$\{9, 7, 4, 2, 37, 9, 7, 4\}$ $\{3, 8, 4, 5, 7, 5, 9, 5\}$	
Diff	$\{6, -1, 0, -3, 30, 4, -2, -1\}$	
Ranks	$\{7, 2.5, 1, 5, 8, 6, 4, 2.5\}$	
Sum of Po	sitive Ranks : 21	
		43

Interpretation

- In any case, it is clear that a significant signed rank test can only be interpreted as a difference in distributions
- The standard error of the test statistic is based on a permutation distribution, and thus
 - is only testing equality of distributions with the appropriate type I error,
 - but because it is not a consistent test of arbitrary differences between distributions
 - the differences must be something that the signed rank test can detect

45

Stata Commands Stata has a command to perform the signed rank test "signrank var1 = var2" Provides one-sided and two-sided P values

Does not provide any meaningful estimates or confidence intervals

46

Interpretation We can with 95% confidence reject the null hypothesis that there was no systematic trend toward increasing or decreasing plasma beta-carotene levels after 9 months of treatment with placebo (Note that we were able to reject the null with the signed rank, but not the sign test.)

bite	.+i 2'	Stata:	Exact Mo	Nemar's	
N Obs	s k	Exp k	Assumed p	Observed p	
 27	7	13.5	0.50000	0.25926	
Pr(k>=	7)		= 0.9970	(one-sided test)	
Pr(k<=	7)		= 0.0096	(one-sided test)	
Pr(k<=	7 or	k>= 20)	= 0.0192	(two-sided)	
					58

Standardized Z statistic or (more commonly) a chi squared statistic

Under the null we would have binomial distribution

$$b \sim B(b+c, 0.5)$$

$$Z = \frac{b}{b+c} - 0.5}{\sqrt{0.25/(b+c)}} \stackrel{H_0}{\sim} N(0,1) \qquad \chi^2 = Z^2 = \frac{(b-c)^2}{(b+c)}$$

Sta	ta Commands: Example	
Prevalence of	edema vs ascites in liver data	
Proportion with	factor	
Controls .077	70 [95% CI]	
difference .041		
ratio 1.546	57 1.0954 2.1698	
rel. diff045	51 .0106 .0797	
odds ratio 2.857	71 1.1605 7.9971 (exact)	
	62	2

Со	mpare	Paire	ed t Te	st		
ttest edema=ascit	ces					
Paired t test		Number	of obs	=	312	
Variable Mean	St Err	t	P> t	[95%	CI]	
edema .1186	.0183	6.469	0.0000	.0825	.1547	
ascites .0769	.0151	5.091	0.0000	.0472	.1067	
diff .0417	.0165	2.523	0.0121	.0092	.0742	

Comments

- It is useful to highlight the difference between the questions answered by the chi square test and McNemar's test
- · Consider test of edema and ascites
 - McNemar's test
 - Are ascites and edema equally prevalent?
 - Chi square test
 - Does the prevalence of ascites differ between subjects with and without edema?

Sign Test vs McNemar's Test

- McNemar's test is just the sign test performed on binary data
- The sign test is a more general description of the procedure, and thus I prefer using that name even when using binary data
- Hence, I introduced the word "McNemar" only because you will sometimes see it referred to in the literature
 - I wish the word "McNemar" would disappear from the literature (my brain is full)

65