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Lecture Outline
• Dependent Data Within Clusters
• Matched Continuous Data

– Paired t Test (means, geometric means)
– Sign Test (median difference)
– (Wilcoxon) Signed Rank Test

• Comparing Proportions: Matched Samples
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Dependent Data
Within Clusters

4

Dependent Data
• There are times when data can not be presumed to be totally 

independent
– Sampling within families
– Sampling within schools, hospitals
– Repeated measurements on individuals taken at a single time
– Longitudinal data: repeated measurements taken on individuals 

over time
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Motivation for Longitudinal Data
• Three settings in which longitudinal studies are performed

– Convenience of existing study population
– Efficiency of using subjects as own comparison
– Scientific questions about effects that occur

• over time, or
• within subjects
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Convenience
• Questions are truly cross-sectional

• Multiple measurements made on each individual is easier 
than gathering new subjects
– Natural variation within individuals provides additional 

information

• E.g., Serum osmolality from Na, Glc, BUN
– Interest is relationships between concurrent measurements
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Efficiency
• Questions could be answered with cross-sectional study

• Primary comparison within subjects may have less variability
– Allow detection of smaller effects
– E.g., Adjusting for baseline measurements
– E.g., Cross-over study of a new treatment
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Example
• Percent glycosylated hemoglobin is used to monitor long term 

control in diabetes
– Hemoglobin A1c

• Consider studies of two insulin delivery strategies
– Independent groups
– Cross-over design
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Graph: Independent Samples
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Inference: Independent Groups
• Large between-subject variability hampers our ability to detect 

differences
– Between group SE is square root of sum of squared within group 

SEs
– Within group SEs are proportional to within group standard 

deviation divided by the square root of n

 
22

Y

Y

X

X

nn
YXse 



11

Graph: Cross-over Study
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Inference: Cross-over Study
• High correlation between measurements taken on the same 

individual increases precision
– The “random effect” of patient ID can be thought of as a 

precision variable
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Longitudinal Questions
• Scientific questions about effects that occur over time

• Studies to detect population time trends in response
– E.g., rate (slope) of progression of retinopathy in population of 

diabetics over time
– E.g., time to development of albuminuria

14

Example: “Marginal Effects”
• Time trends in group mean HbA1C 

– Note trends in mean and variability

15

Within Subject Effects
• Trends in specific individuals might not look like trends in 

population means

• Response over time may be restricted to subgroups of 
subjects

• Response over time may be transient
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Longitudinal Scientific Questions
• Scientific questions about effects that occur within subjects

• Studies to detect time trends or covariate effects in individual
response
– E.g., distribution of rates (slopes) of progression of retinopathy in 

population over time
– E.g., effect of varying risk factors within individuals
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Effect in Subgroup
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Transient Effects

19

Choice of Measures of Outcome
• In order of importance

– Scientific relevance
• Including state of current knowledge

– Plausibility of difference across groups
– Statistical precision for analysis

20

Longitudinal Outcome Measures
• In longitudinal studies, each individual may have multiple 

measurements over time

• Definition of individual response thus can be based on 
multiple measurements
– Response at a fixed time
– Responses at multiple fixed times
– Average response over time (area under curve)
– Rate of change in response (slope)
– Time to attaining some level of response
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Measures of Outcome
• “Marginal” or population effects

• Difference or ratio of group means, geometric means, 
medians, proportion or odds above threshold, hazards

• Pr (Y > X)

• “Within subject” effects
• Mean, median difference
• Mean, geometric mean, median ratio
• Within subject odds ratio
• Pr (Y > X) 
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Choice of Longitudinal Outcome 
• Should reflect scientific relevance, plausibility of effect, 

precision
– Final level of response may be more important than earlier 

effects
• (But in the long run, we are all dead)

– Summarizing response at multiple time points reflects population
rather than individuals

– Average response over time sensitive to transient effects
– Differences in time to event may be clinically meaningless
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Statistical Issues
• Repeated measurements on subjects require special analysis 

techniques

• May have erroneous conclusion if fail to account for correlated 
observations 
– Point estimates may be biased for population parameters

• Too much emphasis placed on some subjects
– Confidence intervals will not be accurate representation of our 

true confidence
– P values will be wrong

24

Statistical Approaches
• Three basic approaches to analyzing correlated data

– Reduce measurements on each cluster to a single observation; 
analyze across clusters

– Estimate correlation within clusters and adjust standard errors 
for population based models

• GEE, marginal models
• “Robust” variance estimates

– Adjust estimates for “random effects”
• “Mixed effects models”: both fixed and random
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Easiest Approach
• Reduce data for each individual to a single measurement

– E.g., response at end of study, average response, rate of change

• Analyses can then be based on standard methods for 
independent data

• But:
– Does not allow time-varying covariates
– May not be most efficient statistically
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Example: Beta-carotene Data
• Randomized clinical trial of beta-carotene supplementation on 

plasma levels of beta-carotene and vitamin E
– Subjects randomized to 5 dose groups
– Measurements at baseline, after 3 and 9 months of treatment, 

and 3 months after stopping treatment
– Scientific question: How do plasma beta-carotene levels change 

over time within dose groups?
• (effect modification between dose and time)
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Example: Beta-carotene Data
• Reduce data to a single measurement on each subject

– Difference between follow-up and baseline
• Consider average of differences
• No change corresponds to a difference of 0

– Ratio between follow-up and baseline
• Consider average of ratios
• No change corresponds to a ratio of 1
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Example: SEP data
• Somatosensory evoked potential measurements on healthy 

adults

• Measurements of nerve conduction time
– Four separate peaks for each leg of each subject

• Reduce data to a single measurement
– Consider only one peak on one leg

• Which one?
– Average measurements across peaks, legs

• But will only generalize to similar averages
– (Differences between peaks?)
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Matched Continuous Data

30

Comparing Means
• Paired t test

– Compute differences for each pair
– One sample t test that mean difference is 0

• Note that mean difference is difference of means
– Same answer for population (“marginal”) and within subject 

questions (providing they both make sense)
• May be inherent confounding, effect modification
• E.g., age vs time vs birth year cohort effects
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Comparing Geometric Means
• Paired t test on log transformed data

– Compute differences for each pair
– One sample t test that mean difference is 0
– Back transform to consider geometric mean of ratios

• Also ratio of geometric means

32

Sign Test
• A very simple alternative test to the paired t test (which 

compares means) is to test whether the median of the 
differences is zero

• If the median of the differences is zero, we would expect as 
many differences to be above zero as below zero
– The differences that are exactly zero do not contribute much 

information about which measurement tends to be higher
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Median Difference
• Compute differences of observations

• Consider whether differences tend to be negative or positive

34

Median Difference Properties
• Median difference is not difference in medians

– Ex: X = (1, 3, 10); Y = (2, 5, 10)
• mdn(Y) – mdn(X) = 5 – 3 = 2
• Difference: D = X – Y = (1, 2, 0); mdn(D) = 1

• The median difference is not transitive
– Ex: X = (1, 2, 3); Y= (2, 3, 1); Z = (3, 0, 2)

• mdn (Y – X) = 1 > 0 (so “Y larger than X”)
• mdn (Z – Y) = 1 > 0 (so “Z larger than Y”)
• mdn (X – Z) = 1 > 0 (so “X larger than Z”)
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Sign Test (Elevator Statistics)
• Proportion positive among nonzero differences
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Sign Test: Stata Commands
• Stata has a command to perform the sign test

– “signtest var1 = var2”

• Provides one-sided and two-sided P values
• Does not provide any meaningful estimates or confidence 

intervals

• (The sign test can also be performed by creating the 
differences, changing the zeroes to missing, and then using 
“bitest”)



Applied Biostatistics I, AUT 2010 November 29, 2010

Part 1:10

37

Sign Test: Stata Example
• Example: Change in plasma beta-carotene in placebo group

. signtest carot3=carot0 if dose==0                      

Sign test                                                

sign |    observed    expected                       

---------+------------------------

positive |           1         3.5                       

negative |           6         3.5                       

zero |           0           0                       

---------+------------------------

all |           7           7                       
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Sign Test: Stata Example
One-sided tests:                                         

Ho: mdnn of carot3 - carot0  = 0 vs. 

Ha: median of carot3 - carot0  > 0       

Pr(#pos >= 1) = Binomial(n=7, x>=1, p=0.5)=  0.9922      

Ho: median of carot3 - carot0  = 0 vs. 

Ha: median of carot3 - carot0  < 0       

Pr(#neg >= 6) = Binomial(n=7, x>=6, p=0.5)=  0.0625      

Two-sided test:                                          

Ho: median of carot3 - carot0  = 0 vs. 

Ha: median of carot3 - carot0  ~= 0      

Pr(#pos >= 6 or #neg >= 6)                =  0.1250

39

Interpretation
• We can not with 95% confidence reject the null hypothesis 

that the median change in  plasma beta-carotene levels after 
9 months of treatment with placebo was 0
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(Wilcoxon) Signed Rank Test
• The sign test is simple to perform, but it ignores a lot of 

information

• Intuitively, you would expect that there is some information in 
the magnitude of the differences as well as the sign

• For instance, there may be nearly as many negative 
differences as positive differences, but the positive differences 
tend to be far larger (in absolute value) than the negative 
differences
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(Wilcoxon) Signed Rank Test
• The Wilcoxon signed rank test attempts to use the information 

about the magnitude of the differences

• The null hypothesis of the Wilcoxon signed rank test is that
– the number of positive and negative differences should tend to 

be equal, and
– there should be no tendency for the positive differences to be 

further from (or closer to) zero than the negative differences
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(Wilcoxon) Signed Rank Test
• Basic approach of the signed rank test

– Compute the differences and rank the absolute value of the 
differences

– Sum up the ranks of the positive differences
– Under the null hypothesis of equality of distributions, the 

sampling distribution for that sum should be the same as 
randomly choosing n/2 numbers from the integers 1 to n

• Adjustment for ties and zeroes
• (Computers can figure this out for us)
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Example of Signed Ranks
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Summary Measure
• It is not immediately clear (or easily explained) what aspect of

the distributions the signed rank test is comparing
– Can be significant because 

• Number of positive differences is unusually high
• Mean positive difference is high

– It provides some sort of a balance between the two
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Interpretation
• In any case, it is clear that a significant signed rank test can

only be interpreted as a difference in distributions

• The standard error of the test statistic is based on a 
permutation distribution, and thus
– is only testing equality of distributions with the appropriate type I 

error,
– but because it is not a consistent test of arbitrary differences

between distributions
• the differences must be something that the signed rank test 

can detect
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Stata Commands
• Stata has a command to perform the signed rank test

– “signrank var1 = var2”

• Provides one-sided and two-sided P values
• Does not provide any meaningful estimates or confidence 

intervals
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Stata Example
• Example: Change in plasma beta-carotene in placebo group

. signrank carot3=carot0 if dose==0                            

Wilcoxon signed-rank test                                      

sign |      obs sum ranks    expected                    

---------+---------------------------------

positive |        1           1          14                    

negative |        6          27          14                    

zero |        0           0           0                    

---------+---------------------------------

all |        7          28          28

(some purely technical output omitted)                         

Ho: carot3 = carot0    z =  -2.197 Prob > |z| =   0.0280       
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Interpretation
• We can with 95% confidence reject the null hypothesis that 

there was no systematic trend toward increasing or 
decreasing plasma beta-carotene levels after 9 months of 
treatment with placebo
– (Note that we were able to reject the null with the signed rank,

but not the sign test.)
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Comparing Proportions:
Matched Samples
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Matched Binary Data
• In some studies, we make comparisons of proportions across 

samples which are not independent
– E.g., Cross-over studies

• Relief of headaches from aspirin vs Tylenol
• Each subject receives each treatment (in random order)

– E.g., Ophthalmology studies
• Cure of conjunctivitis: new treatment vs placebo
• Each subject receives each treatment (randomize which eye 

receives new treatment)
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Presentation of Data
• We tend to alter the format of contingency table to reflect the 

matched data
– Instead of response by group, we display concordance of 

response in each group
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Estimate
• Usual estimate of difference of proportions
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Analysis of Data
• The analysis of the matched data can proceed along two lines

– Least frequently used
• Compare proportion with response in each group taking 

matching into account
• Analogous to paired t test (which would be a valid test in 

large samples)

– Most often used: McNemar’s test
• Focus on the “discordant pairs” only
• Evaluate whether discordant pairs are evenly distributed 

between ( +, - ) and ( -, +)
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McNemar’s Test: Rationale
• If response were equal in the two groups, discordant pairs 

should be equally likely to be in either order

• Condition on the number of discordant pairs
– Intuitively, the number of discordant pairs does not contribute 

much information as to which group does better

• Under the null hypothesis, the discordant pairs should be 
equally likely to be in either the “b” or the “c” cell of the 
contingency table
– Use the one sample test of a binomial proportion
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McNemar’s Test
• One sample binomial test
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Stata: Exact McNemar’s
• Example: Prevalence of edema vs ascites in liver data

– Are ascites and edema equally prevalent?
• Stata does not perform McNemar’s using exact distributions, 

but we can get it to perform the test quite easily
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Stata: Exact McNemar’s
table edema ascites

----------+-----------

|  ascites

edema |    0     1                                   

----------+-----------

0 |  268     7                                   

1 |   20    17                                   

----------+-----------

58

Stata: Exact McNemar’s
. bitesti 27 7 0.5                                       

N   Obs k   Exp k   Assumed p   Observed p               

-------------------------------------------

27      7    13.5    0.50000      0.25926                

Pr(k>= 7)           = 0.9970     (one-sided test)        

Pr(k<= 7)           = 0.0096     (one-sided test)        

Pr(k<= 7 or k>= 20) = 0.0192     (two-sided)             
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McNemar’s Test
• Test statistic can be based on asymptotic distribution

– Standardized Z statistic or (more commonly) a chi squared 
statistic
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Stata: Large Sample
• Stata uses asymptotic theory

– “mcc casevar ctrlvar”

• mcc = matched case-control
• Labels are by “Cases” and “Controls”
• Provides two-sided  P-values
• Provides confidence interval for difference in proportions
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Stata Commands: Example
• Prevalence of edema vs ascites in liver data

mcc edema ascites

Controls                                

Cases     |Exposed  Unexposed  |   Total                 

----------+--------------------+---------

Exposed |     17         20  |      37                 

Unexposed |      7        268  |     275                 

----------+--------------------+---------

Total |     24        288  |     312                 

McNemar's chi2(1)=  6.26  Pr>chi2= 0.0124                
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Stata Commands: Example
• Prevalence of edema vs ascites in liver data

Proportion with factor                                         

Cases       .1186                                              

Controls    .0770     [95% CI]

--------- --------------------

difference  .0417   .0061   .0772      

ratio      1.5467  1.0954  2.1698                           

rel. diff.  .0451   .0106   .0797                           

odds ratio 2.8571  1.1605  7.9971 (exact)  
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Compare Paired t Test
ttest edema=ascites

Paired t test           Number of obs =      312  

------------------------------------------------

Variable | Mean  St Err  t     P>|t|   [95% CI]

---------+--------------------------------------

edema | .1186  .0183 6.469  0.0000 .0825  .1547  

ascites | .0769  .0151 5.091  0.0000 .0472  .1067  

---------+---------------------------------------

diff | .0417  .0165 2.523  0.0121 .0092  .0742
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Compare Paired t Test
Degrees of freedom: 311                                  

Ho: mean diff = 0                           

Ha: diff < 0    Ha: diff ~= 0      Ha: diff > 0          

t =  2.523      t =  2.523         t =  2.523            

P < t = 0.9939  P > |t| = 0.0121   P > t = 0.0061  
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Comments
• It is useful to highlight the difference between the questions 

answered by the chi square test and McNemar’s test

• Consider test of edema and ascites
– McNemar’s test

• Are ascites and edema equally prevalent?

– Chi square test
• Does the prevalence of ascites differ between subjects with 

and without edema?
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Sign Test vs McNemar’s Test
• McNemar’s test  is just the sign test performed on binary data

• The sign test is a more general description of the procedure, 
and thus I prefer using that name even when using binary 
data

• Hence, I introduced the word “McNemar” only because you 
will sometimes see it referred to in the literature
– I wish the word “McNemar” would disappear from the literature 

(my brain is full)


