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Lecture Outline
• General Simple Regression Model
• Simple Logistic Regression
• Simple Proportional Hazards Regression
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General Regression
Model

4

Types of Variables
• Binary data

– E.g., sex, death

• Nominal data: unordered, categorical data
– E.g., race, marital status

• Ordinal categorical data
– E.g., stage of disease

• Quantitative data
– E.g., age, blood pressure

• Right censored data
– E.g., time to death (when not everyone has died)
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Summary Measures
• The measures commonly used to summarize and compare 

distributions vary according to the types of data
– Means: binary; quantitative
– Medians: ordered; quantitative; censored 
– Proportions: binary; nominal
– Odds: binary; nominal
– Hazards: censored

• hazard = instantaneous rate of failure
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Regression Models
• According to the parameter compared across groups

– Means             Linear regression
– Geom Means  Linear regression on logs
– Odds               Logistic regression
– Rates              Poisson regression
– Hazards          Proportional Hazards regr
– Quantiles  Parametric survival regr
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General Regression
• General notation for variables and parameter

• The parameter might be the mean, geometric mean, odds, 
rate, instantaneous risk of an event (hazard), etc.
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Simple Regression
• General notation for simple regression model

• The link function is usually either none (means) or log (geom
mean, odds, hazard)
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Borrowing Information
• Use other groups to make estimates in groups with sparse 

data

• Intuitively: 67  and 69 year olds would provide some relevant 
information about 68 year olds 

• Assuming straight line relationship tells us how to adjust data 
from other (even more distant) age groups
– If we do not know about the exact functional relationship, we 

might want to borrow information only close to each group 
• (Next quarter: splines)
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Defining “Contrasts”
• Define a comparison across groups to use when answering 

scientific question
– If straight line relationship in parameter, slope is difference in 

parameter between groups differing by 1 year in X

– If nonlinear relationship in parameter, slope is average difference 
in parameter between groups differing by 1 year in X

• Statistical jargon: a “contrast” across the groups
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Comparison of Methods
• The major difference between regression models is 

interpretation of the parameters
– Summary: Mean, geometric mean, odds, hazards
– Comparison of groups: Difference, ratio

• Issues related to inclusion of covariates remain the same
– Address the scientific question

• Predictor of interest; Effect modifiers
– Address confounding
– Increase precision

12

Simple Logistic
Regression

Inference About the Odds
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Logistic Regression
• Binary response variable

• Allows continuous (or multiple) grouping variables
– But is OK with binary grouping variable also

• Compares odds of response across groups
– “Odds ratio”
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Binary Response
• When using regression with binary response variables, we 

typically model the (log) odds using logistic regression

• Conceptually, there should be no problem modeling the 
proportion (which is the mean of the distribution)

• However, there are several technical reasons why we do not 
use linear regression very often with binary response
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Why not Linear Regression?
• Many misconceptions about the advantages and 

disadvantages of analyzing the odds

• Reasons that I consider valid
– Scientific basis

• Use of odds ratios in case-control studies
• Plausibility of linear trends and no effect modifiers

– Statistical basis
• Mean variance relationship (if not using robust SE)
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Science: Case-Control Studies
• Scientific interest: 

– Distribution of “effect” across groups defined by “cause”

• Common sampling schemes
– Cohort study: Sample by exposure

• Estimate distribution of “effect” in exposure groups
– Case-control study: Sample by outcomes

• Estimate distribution of exposure in outcome groups
– E.g., proportion (or odds) of smokers among people with 

or without cancer



Applied Biostatistics I, AUT 2010 December 6, 2010

Part 1:5

17

Science: Case-Control Studies
• Estimable odds ratios for each sampling scheme

– Cohort study
• Odds of cancer among smokers : odds of cancer among 

nonsmokers
– Case-control study

• Odds of smoking among cancer : odds of smoking among 
noncancer

• Mathematically, the two odds ratios are the same
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Science: Case-Control Studies
• The odds ratio is easily interpreted when trying to investigate 

rare events
– Odds = prob / (1 – prob)
– Rare event: (1 – prob) is approximately 1

• Odds is approximately the probability
• Odds ratio is approximately the risk ratio

– Risk ratios are easily understood

• Case-control studies typically used when events are rare
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Science: Linearity
• Proportions have to be between 0 and 1

• It is thus unlikely that a straight line relationship would exist 
between a proportion and any predictor
– UNLESS the predictor itself is bounded
– OTHERWISE there eventually must be a threshold above which 

the probability does not increase (or only increases a little)
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Science: Effect Modification
• The restriction on ranges for probabilities also make it likely 

that effect modification will often be present with proportions

• Ex: 2 Yr Relapse rates by NadirPSA>4, BSS
– If bone scan score < 3: A difference of 0.60

• 40% of men with nadir PSA < 4 relapse in 24 months
• 100% of men with nadir PSA > 4 relapse in 24 months

– If bone scan score > 3:
• 71% of men with nadir PSA < 4 relapse in 24 months
• Thus impossible for men with nadir PSA > 4 to have an  

absolute difference of 0.60 higher
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Why use the odds?
• The odds of an event are between 0 and infinity

– Recall odds = prob / (1 – prob)
• (Even better: log (odds) are between negative infinity and 

positive infinity)

– Thus, there is a greater chance that linear relationships might 
hold without effect modification

22

Statistics: Mean-Variance
• Classical linear regression requires equal variances in each 

predictor group
– With binary data, the variance within a group depends on the 

mean
• For binary Y

– E(Y) = p
– Var (Y) = p(1 – p)

– (With robust regression techniques, this problem not a limitation)

23

Simple Logistic Regression
• Modeling odds of binary response Y on predictor X

 

 

110

10

0

10

oddslog1
       oddslog

                     oddslog0

1
loglogit           Model

1Pr        on        Distributi



























xxX
xxX

X

X
p

pp

pY

i

i

i

i
i

i
i

ii

24

Interpretation as Odds
• Exponentiation of regression parameters
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Estimating Proportions
• Proportion = odds / (1 + odds)
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Simple Logistic Regression
• Interpretation of the model

– Odds when predictor is 0
• Found by exponentiation of the intercept from the logistic 

regression: exp(0)

– Odds ratio between groups differing in the value of the predictor 
by 1 unit

• Found by exponentiation of the slope from the logistic 
regression: exp(1)
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Stata
• “logit respvar predvar, [robust]”

– Provides regression parameter estimates and inference on the 
log odds scale

• Intercept, slope with SE, CI, P values

• “logistic respvar predvar, [robust]”

– Provides regression parameter estimates and inference on the 
odds ratio scale

• Only slope with SE, CI, P values

28

Example
• Prevalence of stroke (cerebrovascular accident- CVA) by age 

in subset of Cardiovascular Health Study
– Response variable is CVA

• Binary variable: 0= no history of prior stroke, 1= prior history
of stroke

– Predictor variable is Age
• Continuous predictor
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CVA (jittered) vs Age

Age (years)

P
rio

r H
is

to
ry

 o
f S

tro
ke

 (1
= 

Y
es

, 0
= 

N
o)

70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age (years)

P
rio

r H
is

to
ry

 o
f S

tro
ke

 (1
= 

Y
es

, 0
= 

N
o)

70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

30

Lowess Smooth of CVA vs Age
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Characterization of Plot
• Clearly the scatterplot (even with superimposed smooth) is 

pretty useless with a binary response

– (Note that we are estimating proportions– not odds– with this 
plot, so we can not even judge linearity for logistic regression)

32

Example: Regression Model
• Answer question by assessing linear trends in log odds of 

stroke by age
– Estimate best fitting line to log odds of CVA within age groups

• An association will exist if the slope (1) is nonzero
– In that case, the odds (and probability) of CVA will be different 

across different age groups

  AgeAgeCVAodds  10log 
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Parameter Estimates
. logit cva age

(iteration info deleted)

Number of obs =        735

LR chi2(1)      =       2.45

Prob > chi2     =     0.1175

Log likelihood  = -240.98969

Pseudo R2       =     0.0051

cva |  Coef StdErr z    P>|z|   [95% Conf Int]

age | .0336  .0210   1.59   0.111   -.0077  .0748

_cons | -4.69  1.591  -2.95   0.003   -7.810 -1.572

34

Interpretation of Stata Output
• Regression model for CVA on age

– Intercept is labeled by  “_cons”
• Estimated intercept: -4.69

– Slope is labeled by variable name: “age”
• Estimated slope: 0.0336

– Estimated linear relationship:
• log odds relapse by nadir given by

iAgeCVA  0336.069.4 odds log   

35

Interpretation of Intercept

• Estimated log odds CVA for newborns is -4.69
– Odds of CVA for newborns is e-4.69 = 0.0092
– Probability of CVA for newborns

• Use prob = odds / (1+odds):  .0092 / 1+.0092= .0091

• Pretty ridiculous to try to estimate
– We never sampled anyone less than 67
– In this problem, the intercept is just a tool in fitting the model

iAgeCVA  0336.069.4 odds log   
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Interpretation of Slope

• Estimated difference in log odds CVA for two groups differing 
by one year in age is 0.0336, with older group tending to 
higher log odds
– Odds Ratio: e0.0336= 1.034
– For 5 year age difference: e5x0.0336= 1.0345 = 1.183

• (If a straight line relationship is not true, we interpret the slope 
as an average difference in log odds CVA per one year 
difference in age)

iAgeCVA  0336.069.4 odds log   
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Stata: “logit” versus “logistic”
• Given that we are rarely interested in the intercept, we might 

as well use the “logistic” command
– It will provide inference for the odds ratio

• We don’t have to exponentiate the slope estimate

38

Odds Ratios using “logistic”
.logistic cva age

Logistic regression   Number of obs =        735

LR chi2(1)      =       2.45

Prob > chi2     =     0.1175

Log likelihood  = -240.98969

Pseudo R2       =     0.0051

cva |Odds Ratio StdErr z    P>|z|  [95% Conf Int]

age |   1.034   .0218  1.59  0.111   .992    1.078
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Comments on Interpretation
• I express this as a difference between group odds rather than 

a change with aging
– We did not do a longitudinal study

• To the extent that the true group log odds have a linear 
relationship, this interpretation applies exactly
– If the true relationship is nonlinear

• The slope estimates the “first order trend” for the sampled 
age distribution

• We should not regard the estimates of individual group 
probabilities / odds as accurate

40

Signal and Noise
• Note that the Signal and Noise idea does not apply so well 

here
– We do not tend to quantify an “error distribution” with logistic 

regression
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Statistical Validity of Inference
• Inference (CI, P vals) about associations requires three 

general  assumptions

– Assumptions about approximate normal distribution for 
parameter estimates

– Assumptions about independence of observations

– Assumptions about variance of observations within groups

42

Normally Distributed Estimates
• Assumptions about approximate normal distribution for 

parameter estimates

• Classically or Robust SE: 
– Large sample sizes

• Definition of “large” depends on underlying probability (odds)
• Recall rule of thumb for chi-squared test based on expected 

number of events 

43

Independence / Dependence
• Assumptions about independence of observations for linear 

regression

• Classically: 
– All observations are independent

• Robust standard error estimates: 
– Allow correlated observations within identified clusters

44

Within Group Variance
• Assumptions about variance of response within groups for 

logistic regression

• Classically: 
– Mean variance relationship for binary data

• Classical logistic regression estimates SE using model based 
estimates

• Hence in order to satisfy this requirement, linearity of log 
odds across groups must hold

• Robust standard error estimates: 
– Allow unequal variances across groups
– (Do not need the linearity of log odds)
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Statistical Validity of Inference
• Inference (CI, P values) about odds of response in specific 

groups requires a further assumption
– Assumption about adequacy of linear model

46

Linearity of Model
• Assumption about adequacy of linear model for prediction of 

group odds of response with logistic regression

• Classically OR robust standard error estimates: 
– The log odds response in groups is linear in the modeled 

predictor
• (We can model transformations of the measured predictor)
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Statistical Validity of Inference
• Inference (prediction intervals, P values) about individual 

observations requires no further assumptions because we 
have binary data
– If we know the mean (proportion), we know everything

48

Implications for Inference
• Regression based inference about associations is far more 

robust than estimation of group odds of response
– A hierarchy of null hypotheses

• Strong (and intermediate) null: Total independence of Y and 
X

– A binary distribution only depends on the mean 
(proportion, odds)

• Weak null: No linear trend in mean of Y across X groups
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Under Strong Null
• If the response and predictor of interest were totally 

independent:
– Probability of response, and hence the odds and log odds, would 

be the same in all groups
• A flat line would describe the log odds response across 

groups (and a linear model is correct)
– Slope would be zero

• Within group variance would be correctly estimated by the 
model

• In large sample sizes, the regression parameters are 
normally distributed

50

Under Weak Null
• Linear trend in means across predictor groups would lie on a 

flat line
– Slope of best fitting line would be zero

– Within group variance could vary from that predicted by model

– In large sample sizes, the regression parameters are normally 
distributed

• Definition of “large” will also depend upon how much the 
error distributions differ across groups relative to the number 
sampled in each group

51

Classical Logistic Regression
• Inference about slope tests strong null

– Tests make inference assuming the null
• The data can appear nonlinear in log odds

– Merely evidence strong null is not true

– Limitations
• We cannot be confident that there is a trend in the log odds 

across groups
– Valid inference about trend demands correct model

• We cannot be confident of estimates of group probabilities 
(odds)

– Valid estimates of group means demands correct model

52

Robust Standard Errors
• Inference about slope tests weak null

– Data can appear nonlinear in log odds
• Robust SE estimates true variability

– Does not use model based estimates of SE
• Nonlinearity decreases precision, but inference still valid 

about first order (linear) trends

– Only if linear relationship holds can we
• Estimate group response probabilities (odds)
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Choice of Inference
• Which inference is correct?

• Classical logistic regression and robust standard error 
estimates differ in the strength of necessary assumptions
– As a rule, if all the assumptions of classical logistic regression 

hold, it will be more precise
• (Hence, we will have greatest precision to detect 

associations if the linear model is correct)

– The robust standard error estimates are, however, valid for 
detection of associations even in those instances

54

Implications for Inference
• Inference about associations is far more trustworthy than 

estimation of group means or individual predictions
– Nonzero slope suggests an association between response and 

predictor
• Inference about linear trends in log odds if use robust SE

55

Interpreting “Positive” Results
• If slope is statistically significant different from 0 using robust 

SE
– Observed data is atypical of a setting with no linear trend in odds 

of response across groups

– Data suggests evidence of a trend toward larger (smaller) odds 
in groups having larger values of the predictor

– (To the extent the data appears linear, estimates of the group 
odds will be reliable)
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Interpreting “Negative” Studies
• “Differential diagnosis” of reasons for not rejecting null 

hypothesis of zero slope
• There may be no association

• [There may be an association but not in the parameter 
considered (i.e, the odds of response)]

• There may be an association, but the best fitting line has a 
zero slope (a curvilinear association in the parameter)

• There may be a first order trend in the log odds, but we 
lacked statistical precision to be confident that it truly exists 
(type II error)
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Logistic Regression Inference
• The regression output provides

– Estimates
• Intercept: estimated log odds CVA when age = 0
• Slope: estimated difference in log odds CVA for two groups 

differing by one year in age

– Standard errors

– Confidence intervals

– P values testing for
• Intercept= zero (odds= 1; prob= 0.5) (who cares?)
• Slope= zero (test for linear trend in log odds)

58

Odds Ratios using “logistic”
.logistic cva age

Logistic regression   Number of obs =        735

LR chi2(1)      =       2.52

Prob > chi2     =     0.1127

Log likelihood  = -240.98969

Pseudo R2       =     0.0051

cva |Odds Ratio StdErr z    P>|z|  [95% Conf Int]

age |   1.034   .0219  1.59  0.113   .992    1.078
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Standard Error of Odds Ratio
• Logistic regression uses the log odds scale

– Exponentiate estimates and CI to get inference on odds ratio

• Stata “logistic” provides estimates on odds ratio scale
– Standard error is from “delta method”
– CI is from exponentiating log odds CI

60

Delta Method Based SE
• In regression models encountered in this class, we can find 

SE of exponentiated slope parameters
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Example: Interpretation
“From logistic regression analysis, we estimate that for each year 

difference in age, the odds of stroke is  3.4% higher in the older 
group, though this estimate is not statistically significant (P = .113). 
A 95% CI suggests that this observation is not unusual if a group 
that is one year older might have odds of stroke that was anywhere 
from 0.8% lower or 7.8% higher than the younger group.”

62

Logistic Regression and 2 Test
• Logistic regression with a binary predictor (two groups) 

corresponds to familiar chi squared test

• Three possible statistics from logistic regression
– Wald: The test based on the estimate and SE
– Score: Corresponds to chi squared test, but not given in Stata

output
– Likelihood ratio test: Can be obtained using post-regression 

commands in Stata (next quarter)

63

Simple Proportional
Hazards Regression

Inference About Hazards

64

Right Censored Data
• A special type of missing data: the exact value is not always 

known
– Some measurements are known exactly
– Some measurements are only known to exceed some specified 

value (perhaps different for each subject)

• Typically represented by two variables
– An observation time: Time to event or censoring, whichever 

came first
– An indicator of event: Tells us which were observed events
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Statistical Methods
• In the presence of censored data, the “usual” descriptive 

statistics are not appropriate
– Sample mean, sample median, simple proportions, sample 

standard deviation should not be used
– Proper descriptives should be based on Kaplan-Meier estimates

• Similarly, special inferential procedures are needed with 
censored data

66

Notation

 
 

 



 





otherwise0
 if1

D           :indicatorsEvent         

,min      :Timesn Observatio        
:data Observed

C,,,        :Times Censoring        

,,,   :event  to timesTrue        
:Unobserved

0

0

21

00
2

0
1

ii
i

iii

n

n

TT

CTT

CC

TTT





67

Survival Regression
• There are two fundamental models used to describe the way 

that some factor might affect time to event
– Accelerated failure time
– Proportional Hazards

68

Accelerated Failure Time Model
• Assume that a factor causes some subjects to spend their 

lifetime too fast

• The basic idea: For every year in a reference group’s lives, 
the other group “ages” k years
– E.g.: 1 human year = 7 dog years

• Ratios of quantiles of survival distributions are constant 
across two group
– E.g., report median ratios

• AFT models include the parametric exponential, Weibull, and 
lognormal models
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Proportional Hazards Model
• Considers the instantaneous rate of failure at each time 

among those subjects who have not failed

• Proportional hazards assumes that the ratio of these 
instantaneous failure rates is constant in time between two 
groups

• Proportional hazards (Cox) regression treats the survival 
distribution within a group semiparametrically
– A semi-parametric model: The hazard ratio is the parameter, 

there is no intercept

70

AFT vs PH
• Survival analysis: Who does Death prefer?

• Given a collection of people in a sample:
– Accelerated failure time models consider how often Death takes 

somebody
• If people that Death prefers are available, he/she will come 

more often

– Proportional hazards models just compare which people Death 
chooses relative to their frequency in the population

• Why is it that Death tends to choose the very old despite the 
fact that they are less than 1% of the population available

71

Proportional Hazards Model
• Ignores the time that events occur

• Looks at odds of choosing subjects relative to prevalence in 
the population
– Can be derived as estimating the odds ratio of an event at each 

time that an event occurs
– Proportional hazards model averages the odds ratio across all 

observed event times
– If the odds ratio is constant over time between two groups, such

an average results in a precise estimate of the hazard ratio

72

Borrowing Information
• Use other groups to make estimates in groups with sparse 

data
– Borrows information across predictor groups 

• E.g., 67  and 69 year olds would provide some relevant 
information about 68 year olds 

– Borrows information over time
• Relative risk of an event at each time is presumed to be the 

same under Proportional Hazards
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Simple PH Regression Model
• “Baseline” hazard function is unspecified

• Similar to an intercept
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Model on Hazard scale
• Exponentiating parameters
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Interpretation of the Model
• No intercept

– Generally do not look at baseline hazard
– But can be estimated

• Slope parameter
– Hazard ratio between groups differing in the value of the 

predictor by 1 unit
• Found by exponentiation of the slope from the proportional 

hazards regression: exp(1)
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Relationship to Survival
• Hazard function determines survival function
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Stata
• “stcox obsvar eventvar, [robust]”

– Provides regression parameter estimates and inference on the 
hazard ratio scale

• Only slope with SE, CI, P values

78

Example
• Prognostic value of nadir PSA relative to time in remission

– PSA data set: 50 men who received hormonal treatment for 
advanced prostate cancer

– Followed at least 24 months for clinical progression, but exact 
time of follow-up varies

– Nadir PSA: lowest level of serum prostate specific antigen 
achieved post treatment

79

Scatterplots
• Scatterplots of censored data are not scientifically meaningful

• It is thus better not to generate them unless you do something 
to indicate the censored data
– We can label censored data, but we have to remember the true 

value may be anywhere larger than that

80

Obstime vs Nadir (by inrem)
• scatter obstime nadir, mlabel(inrem)
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Characterization of Scatterplot
• Outliers

– ??

• First order trends
– Certainly downward slope: No censoring at high nadirs

• Second order trends
– Must be curvilinear (but how much)

• Variability within groups
– Highest with greater length of observation

82

Estimation of Regression Model
. stset obstime relapse

. stcox nadir

Cox regression -- Breslow method for ties

No. of subj =     50       No. of obs =        50

No. fail     =     36

Time at risk =   1423

LR chi2(1)  =     11.35

Log lklhood = -113.3       Prob > chi2 =    0.0008

_   t | HzRat StdErr z    P>|z|    [95% Conf Int]

nadir | 1.016  .0038  4.10   0.000   1.008    1.023

83

Interpretation of Stata Output
• Scientific interpretation of the slope

• Estimated hazard ratio for two groups differing by 1 in nadir 
PSA is found by exponentiation slope (Stata only reports the 
hazard ratio):                   
– Group one unit higher has instantaneous event rate 1.015 times 

higher (1.5% higher)
– Group 10 units higher has instantaneous event rate 1.01510 = 

1.162 times higher (16.2% higher)

nadir 015.1ratio Hazard   

84

Statistical Validity of Inference
• Inference (CI, P vals) about associations requires three 

general  assumptions
– Assumptions about approximate normal distribution for 

parameter estimates
– Assumptions about independence of observations
– Assumptions about variance of observations within groups
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Normally Distributed Estimates
• Assumptions about approximate normal distribution for 

parameter estimates

• Classically or Robust SE: 
– Large sample sizes

• Definition of “large” depends on underlying probability 
distribution

86

Independence / Dependence
• Assumptions about independence of observations for linear 

regression

• Classically: 
– All observations are independent

• Robust standard error estimates: 
– Allow correlated observations within identified clusters

87

Within Group Variance
• Assumptions about variance of response within groups for 

proportional hazards regression

• Classically: 
– Mean variance relationship for binary data

• Proportional hazards considers odds of event at every time
• Need proportional hazards and linearity of predictor

• Robust standard error estimates: 
– Allow unequal variances across groups
– (Do not need proportional hazards or linearity)

88

Linearity of Model
• Assumption about adequacy of linear model for prediction of 

group odds of response with logistic regression
– The log hazard ratio across groups is linear in the modeled 

predictor
• (We can model transformations of the measured predictor)
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Prediction
• We rarely make inference about within group survival 

probabilities using the proportional hazards model

• We sometimes use estimated survival curves descriptively
– Use estimates of baseline survival function
– Exponentiate the baseline survival to find survival curve for 

specific covariates
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Relationship to Survival
• Hazard function determines survival function
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Implications for Inference
• A hierarchy of null hypotheses

– Strong (and intermediate) null: Total independence of time to 
event and X

• The proportional hazards model holds because the same 
distribution in every X group

– Weak null: No linear trend in hazard ratio across X groups

92

Classical PH Regression
• Inference about slope tests strong null

– Tests make inference assuming the null
• The data can appear nonproportional hazards or nonlinear in 

log hazard ratio
– Merely evidence strong null is not true

– Limitations
• We cannot be confident that there is a trend in the hazard 

ratio across groups
– Valid inference about trend demands correct model
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Robust Standard Errors
• Inference about slope tests weak null

– Data can appear nonproportional hazards or nonlinear in hazard 
ratio across groups

• Robust SE estimates true variability
– Does not use model based estimates of SE

• Nonlinearity decreases precision, but inference still valid 
about first order (linear) trends

94

Choice of Inference
• Which inference is correct?

– Classical PH regression and robust standard error estimates 
differ in the strength of necessary assumptions

• As a rule, if all the assumptions of classical PH regression 
hold, it will be more precise

– (Hence, we will have greatest precision to detect 
associations if the linear model is correct)

• The robust standard error estimates are, however, valid for 
detection of associations even in those instances

95

Interpreting “Positive” Results
• If slope is statistically significant different from 0 using robust 

SE
– Observed data is atypical of a setting with no linear trend in 

hazard ratio across groups
– Data suggests evidence of a trend toward larger (smaller) 

hazards in groups having larger values of the predictor
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Interpreting “Negative” Studies
• “Differential diagnosis” of reasons for not rejecting null 

hypothesis of zero slope
– There may be no association

– There may be an association but not in the parameter 
considered (i.e, the odds of response)

– There may be an association, but the best fitting line has a zero 
slope (a curvilinear association in the parameter)

– There may be a first order trend in the log hazard ratio, but we
lacked statistical precision to be confident that it truly exists (type 
II error)
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Estimation of Regression Model
. stset obstime relapse, robust

. stcox nadir

Cox regression -- Breslow method for ties

No. of subj =     50       No. of obs =        50

No. fail     =     36

Time at risk =   1423

LR chi2(1)  =     16.79

Log lklhood = -113.3       Prob > chi2 =    0.0000

_   t | HzRat StdErr z    P>|z|    [95% Conf Int]

nadir | 1.016  .0038  4.10   0.000   1.008    1.023
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Example: Interpretation
“From proportional hazards regression analysis, we estimate that for 

each 1 ng/ml unit difference in nadir PSA, the risk of relapse is  
1.6% higher in the group with the higher nadir. This estimate is
highly statistically significant (P < .001). A 95% CI suggests that this 
observation is not unusual if a group that has a 1 ng/ml higher nadir 
might have risk of relapse that was anywhere from 0.8% higher to
2.3% higher than the group with the lower nadir.”
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Log Transformed NadirPSA
• Based on prior experience

– A constant difference in PSA would not be expected to confer 
same increase in risk

• Comparing 4 ng/ml to 10 ng/ml is not the same as comparing 
104 ng/ml to 110 ng/ml

– A multiplicative effect on risk might be better
• Same increase in risk for each doubling of nadir
• Use log transformed nadir PSA
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Estimation of Regression Model
. generate lnadir = log(nadir)

. stcox lnadir, robust

Cox regression -- Breslow method for ties

No. of subj =     50       No. of obs =        50

No. fail     =     36

Time at risk =   1423

LR chi2(1)  =     34.04

Log lklhood = -107.3       Prob > chi2 =    0.0000

_   t | HzRat StdErr z    P>|z|   [95% Conf Int]

lnadir | 1.54   .113   5.83   0.000    1.33    1.77
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Interpretation of Parameters
• Hazard ratio is 1.54 for an e-fold difference in nadir PSA

– e = 2.7183

• I can more easily understand doubling, tripling, 5-fold, 10-fold 
increases
– For doubling: HR : 1.54log(2) = 1.35
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PH Regression and Logrank Test
• Proportional hazards regression with a binary predictor (two 

groups) corresponds to the logrank test
– Three possible statistics from proportional hazards regression

• Wald: The test based on the estimate and SE
• Score: Corresponds to logrank test, but not given in Stata

output
• Likelihood ratio test: Can be obtained using post-regression 

commands in Stata (next quarter)


