

Biost 518

Applied Biostatistics II

.....
Scott S. Emerson, M.D., Ph.D.
Professor of Biostatistics
University of Washington

Lecture 6: Multiple Regression: Overview of Uses

January 30, 2006

1

© 2002, 2003, 2005 Scott S. Emerson, M.D., Ph.D.

Adjustment for Confounders, Precision Variables

.....

3

Lecture Outline

.....

- Adjustment for confounders / precision
- Effect modification
- Modeling complex “dose response”
- Testing for linearity

2

Adjustment for Covariates

.....

- We “adjust” for other covariates
 - Define groups according to
 - Predictor of interest, and
 - Other covariates
 - Compare the distribution of response across groups which
 - differ with respect to the Predictor of Interest, but
 - are the same with respect to the other covariates
 - “holding other variables constant”

4

Unadjusted vs Adjusted Models

- Adjustment for covariates changes the scientific question
 - Unadjusted models
 - Slope compares parameters across groups differing by 1 unit in the modeled predictor
 - Groups may also differ with respect to other variables
 - Adjusted models
 - Slope compares parameters across groups differing by 1 unit in the modeled predictor but similar with respect to other modeled covariates

5

Interpretation of Slopes

- Difference in interpretation of slopes

Unadjusted Model : $g[\theta | X_i] = \beta_0 + \beta_1 \times X_i$

- β_1 = Compares θ for groups differing by 1 unit in X
 - (The distribution of W might differ across groups being compared)

Adjusted Model : $g[\theta | X_i, W_i] = \gamma_0 + \gamma_1 \times X_i + \gamma_2 \times W_i$

- γ_1 = Compares θ for groups differing by 1 unit in X , but agreeing in their values of W

6

Comparing models

Unadjusted $g[\theta | X_i, W_i] = \beta_0 + \beta_1 \times X_i$

Adjusted $g[\theta | X_i, W_i] = \gamma_0 + \gamma_1 \times X_i + \gamma_2 \times W_i$

When is $\gamma_1 = \beta_1$?

When is $\hat{\gamma}_1 = \hat{\beta}_1$?

When is $se(\hat{\gamma}_1) = se(\hat{\beta}_1)$?

When is $s\hat{e}(\hat{\gamma}_1) = s\hat{e}(\hat{\beta}_1)$?

7

Linear Regression

- Difference in interpretation of slopes

Unadjusted Model : $E[Y_i | X_i] = \beta_0 + \beta_1 \times X_i$

- β_1 = Diff in mean Y for groups differing by 1 unit in X
 - (The distribution of W might differ across groups being compared)

Adjusted Model : $E[Y_i | X_i, W_i] = \gamma_0 + \gamma_1 \times X_i + \gamma_2 \times W_i$

- γ_1 = Diff in mean Y for groups differing by 1 unit in X , but agreeing in their values of W

8

Relationships: True Slopes

- The slope of the unadjusted model will tend to be

$$\beta_1 = \gamma_1 + \rho_{XW} \frac{\sigma_w}{\sigma_x} \gamma_2$$

- Hence, true adjusted and unadjusted slopes for X are estimating the same quantity only if
 - $\rho_{XW} = 0$ (X and W are truly uncorrelated), OR
 - $\gamma_2 = 0$ (no association between W and Y after adjusting for X)

9

Relationships: Estimated Slopes

- The estimated slope of the unadjusted model will be

$$\hat{\beta}_1 = \hat{\gamma}_1 \left(1 + \hat{\gamma}_2 r_{XW} \left[\frac{s_w}{s_x (r_{YX} - r_{YW} r_{XW})} \right] \right)$$

- Hence, estimated adjusted and unadjusted slopes for X are equal only if
 - $r_{XW} = 0$ (X and W are uncorrelated in the sample, which can be arranged by experimental design), OR
 - $\hat{\gamma}_2 = 0$ (which cannot be predetermined, because Y is random)

10

Relationships: True SE

Unadjusted Model $[se(\hat{\beta}_1)]^2 = \frac{Var(Y|X)}{nVar(X)}$

Adjusted Model $[se(\hat{\gamma}_1)]^2 = \frac{Var(Y|X,W)}{nVar(X)(1-r_{XW}^2)}$

$$Var(Y|X) = \gamma_2^2 Var(W|X) + Var(Y|X,W)$$

$$\sigma_{Y|X}^2 = \gamma_2^2 \sigma_{W|X}^2 + \sigma_{Y|X,W}^2$$

11

Relationships: True SE

Unadjusted Model $[se(\hat{\beta}_1)]^2 = \frac{Var(Y|X)}{nVar(X)}$

Adjusted Model $[se(\hat{\gamma}_1)]^2 = \frac{Var(Y|X,W)}{nVar(X)(1-r_{XW}^2)}$

$$Var(Y|X) = \gamma_2^2 Var(W|X) + Var(Y|X,W)$$

Thus, $se(\hat{\beta}_1) = se(\hat{\gamma}_1)$ if

$$r_{XW} = 0$$

AND

$$\gamma_2 = 0 \quad \text{OR} \quad Var(W|X) = 0$$

12

Relationships: Estimated SE

Unadjusted Model $[s\hat{e}(\hat{\beta}_1)]^2 = \frac{SSE(Y|X)/(n-2)}{(n-1)s_X^2}$

Adjusted Model $[s\hat{e}(\hat{\gamma}_1)]^2 = \frac{SSE(Y|X,W)/(n-3)}{(n-1)s_X^2(1-r_{XW}^2)}$

$$SSE(Y|X) = \sum (Y_i - \hat{\beta}_0 - \hat{\beta}_1 \times X_i)^2$$

$$SSE(Y|X,W) = \sum (Y_i - \hat{\gamma}_0 - \hat{\gamma}_1 \times X_i - \hat{\gamma}_2 \times W_i)^2$$

13

Relationships: Estimated SE

Unadjusted Model $[s\hat{e}(\hat{\beta}_1)]^2 = \frac{SSE(Y|X)/(n-2)}{(n-1)s_X^2}$

Adjusted Model $[s\hat{e}(\hat{\gamma}_1)]^2 = \frac{SSE(Y|X,W)/(n-3)}{(n-1)s_X^2(1-r_{XW}^2)}$

Thus, $s\hat{e}(\hat{\beta}_1) = s\hat{e}(\hat{\gamma}_1)$ if
 $r_{XW} = 0$

AND

$$SSE(Y|X)/(n-2) = SSE(Y|X,W)/(n-3)$$

14

Residual Squared Error

$$SSE(Y|X) = \sum (Y_i - \hat{\beta}_0 - \hat{\beta}_1 \times X_i)^2$$

$$SSE(Y|X,W) = \sum (Y_i - \hat{\gamma}_0 - \hat{\gamma}_1 \times X_i - \hat{\gamma}_2 \times W_i)^2$$

When calculated on the same data :

$$SSE(Y|X) \geq SSE(Y|X,W)$$

15

Relationships: Estimated SE

$$SSE(Y|X) = \sum (Y_i - \hat{\beta}_0 - \hat{\beta}_1 \times X_i)^2$$

$$SSE(Y|X,W) = \sum (Y_i - \hat{\gamma}_0 - \hat{\gamma}_1 \times X_i - \hat{\gamma}_2 \times W_i)^2$$

Now $\hat{\beta}_1 = \hat{\gamma}_1$ if

$\hat{\gamma}_2 = 0$, in which case $SSE(Y|X) = SSE(Y|X,W)$

OR

$r_{XW} = 0$, and $SSE(Y|X) > SSE(Y|X,W)$ if $\hat{\gamma}_2 \neq 0$

16

Special Cases

- Behavior of unadjusted and adjusted models according to whether
 - X and W are uncorrelated
 - W is associated with Y after adjustment for X

	$r_{XW} = 0$	$r_{XW} \neq 0$
$\gamma_2 \neq 0$	Precision	Confounding
$\gamma_2 = 0$	Irrelevant	Var Inflation

17

Precision Variables

- E.g., independence in population, or completely randomized experiment

$$\rho_{XW} = 0 \quad \gamma_2 \neq 0$$

	<u>True Value</u>	<u>Estimates</u>
Slopes	$\beta_1 = \gamma_1$	$\hat{\beta}_1 \approx \hat{\gamma}_1$
Std Errs	$se(\hat{\beta}_1) = se(\hat{\gamma}_1)$	$s\hat{e}(\hat{\beta}_1) > s\hat{e}(\hat{\gamma}_1)$

18

Stratified Randomization

- Stratified randomization in a designed experiment

$$r_{XW} = 0 \quad \gamma_2 \neq 0$$

	<u>True Value</u>	<u>Estimates</u>
Slopes	$\beta_1 = \gamma_1$	$\hat{\beta}_1 = \hat{\gamma}_1$
Std Errs	$se(\hat{\beta}_1) = se(\hat{\gamma}_1)$	$s\hat{e}(\hat{\beta}_1) > s\hat{e}(\hat{\gamma}_1)$

19

Confounding

- Causally associated with response and associated with POI in sample

	<u>True Value</u>	<u>Estimates</u>
Slopes	$\beta_1 = \gamma_1 + \rho_{XW} \frac{\sigma_X}{\sigma_W} \gamma_2$	$\hat{\beta}_1 = \hat{\gamma}_1 \left(1 + \hat{\gamma}_2 r_{XW} \left[\frac{s_W}{s_X (r_{YX} - r_{YW} r_{XW})} \right] \right)$
Std Errs	$se(\hat{\beta}_1) \begin{cases} > \\ = \\ < \end{cases} se(\hat{\gamma}_1)$	$s\hat{e}(\hat{\beta}_1) \begin{cases} > \\ = \\ < \end{cases} s\hat{e}(\hat{\gamma}_1)$

20

Variance Inflation

- Associated with POI in sample, but not associated with response

$$r_{xw} \neq 0 \quad \gamma_2 = 0$$

True Value

Slopes	$\beta_1 = \gamma_1$	$\hat{\beta}_1 = \hat{\gamma}_1 \left(1 + \hat{\gamma}_2 r_{xw} \left[\frac{s_w}{s_x(r_{yx} - r_{yw}r_{xw})} \right] \right)$
Std Errs	$se(\hat{\beta}_1) < se(\hat{\gamma}_1)$	$s\hat{e}(\hat{\beta}_1) < s\hat{e}(\hat{\gamma}_1)$

21

Irrelevant Variables

- Uncorrelated with POI in sample, and not associated with response

$$r_{xw} = 0 \quad \gamma_2 = 0$$

True Value

Slopes	$\beta_1 = \gamma_1$	$\hat{\beta}_1 = \hat{\gamma}_1$
Std Errs	$se(\hat{\beta}_1) = se(\hat{\gamma}_1)$	$s\hat{e}(\hat{\beta}_1) < s\hat{e}(\hat{\gamma}_1)$

22

Stata: Multiple Regression

- In Stata, we use the same commands as were used for simple regression
 - We just list more variable names
 - Interpretation of CI, P values for coefficient estimates now relate to new scientific interpretation of intercept and slopes
 - Test of entire regression model also provided
 - A test that all slopes are equal to 0

23

Ex: FEV and Smoking

```
. regress logfev smoker if age>=9, robust
```

Number of obs =	439
F(1, 437) =	10.45
Prob > F =	0.0013
R-squared =	0.0212
Root MSE =	.24765

Robust	
logfev Coef. St Err t P> t [95% CI]	
smoker .102 .0317 3.23 0.001 .040 .165	
_cons 1.058 .0129 81.82 0.000 1.033 1.084	

24

Unadjusted Interpretation

- Intercept

- Geometric mean of FEV in nonsmokers is 2.88 l/sec
 - The scientific relevance is questionable here, because we do not really know the population our sample represents
 - Comparing smokers to nonsmokers is more useful than looking at either group by itself
 - (Calculations: $e^{1.058} = 2.881$)
 - (The P value is of no importance whatsoever, it is testing that the log geometric mean is 0 or that the geometric mean is 1. Why would we care?)

– (Because *smoker* is a binary variable, the estimate corresponds to the sample geometric mean)

25

Unadjusted Interpretation

- Smoking effect

- Geometric mean of FEV is 10.8% higher in smokers than in nonsmokers (95% CI: 4.1% to 17.9% higher)
 - These results are atypical of what we might expect with no true difference between groups: $P = 0.001$
 - (Calculations: $e^{0.102} = 1.108$; $e^{0.040} = 1.041$; $e^{0.165} = 1.179$)
 - (Note that $\exp(x)$ is approx $1+x$ for x close to 0)
- (Because *smoker* is a binary (0-1) variable, this analysis is nearly identical to a two sample t test allowing for unequal variances)

26

Ex: Adjusted for Age

```
. regress logfev smoker age if age>=9, robust
```

Number of obs = 439					
F(2, 437) = 82.28					
Prob > F = 0.0000					
R-squared = 0.3012					
Root MSE = .20949					
I Robust					
logfev	Coef.	St Err	t	P> t	[95% CI]
smoker	-.051	.0344	-1.49	0.136	-.119 .016
age	.064	.0051	12.37	0.000	.053 .074
_cons	0.352	.0575	6.12	0.000	.239 .465

27

Age Adjusted Interpretation

- Intercept

– Geometric mean of FEV in newborn nonsmokers is 1.42 l/sec

- Intercept corresponds to the log geometric mean in a group having all predictors equal to 0
- There is no scientific relevance is here, because we are extrapolating outside our data
- (Calculations: $e^{0.352} = 1.422$)

28

Age Adjusted Interpretation

- Age effect

- Geometric mean of FEV is 6.6% higher for each year difference in age between two groups with similar smoking status (95% CI: 5.5% to 7.6% higher for each year difference in age)

- These results are highly atypical of what we might expect with no true difference in the geometric mean FEV between age groups having similar smoking status: $P < 0.0005$

29

Age Adjusted Interpretation

- Smoking effect

- Geometric mean of FEV is 5.0% lower in smokers than in nonsmokers of the same age (95% CI: 12.2% lower to 1.6% higher)

- These results are not atypical of what we might expect with no true difference between groups of the same age: $P = 0.136$
 - Lack of statistical significance is also evident because the confidence interval contains 1 (as a ratio) or 0 (as a percent difference)
 - (Calculations: $e^{-0.051} = 0.950$; $e^{-0.119} = 0.888$; $e^{0.016} = 1.016$)
 - (Note that $\exp(x)$ is approx $1+x$ for x close to 0)

30

Age Adjusted Comments

- Comparing unadjusted and age adjusted analyses

- Marked difference in effect of smoking suggests that there was indeed confounding

- Age is a relatively strong predictor of FEV
 - Age is associated with smoking in the sample
 - Mean (SD) of age in analyzed smokers: 11.1 (2.04)
 - Mean (SD) of age in analyzed nonsmokers: 13.5 (2.34)

- Effect of age adjustment on precision

- Lower Root MSE (.209 vs .248) would tend to increase precision of estimate of smoking effect
 - Association between smoking and age tends to lower precision
 - Net effect: Less precision (adj SE 0.034 vs unadj SE 0.031)

31

Ex: Adjusted for Age, Height

```
. regress logfev smoker age loght if age>=9, robust
```

Number of obs = 439						
F(3, 437) = 284.22						
Prob > F = 0.0000						
R-squared = 0.6703						
Root MSE = .14407						
	Robust					
logfev	Coef.	St Err	t	P> t	[95% CI]	
smoker	-.054	.0241	-2.22	0.027	-.101	-.006
age	.022	.0035	6.18	0.000	.015	.028
loght	2.870	.1280	22.42	0.000	2.618	3.121
_cons	-11.095	.5153	-21.53	0.000	-12.107	-10.082

32

Age, Ht Adjusted Interpretation

- Intercept
 - Geometric mean of FEV in newborn nonsmokers who are 1 inch high is 0.000015 l/sec
 - Intercept corresponds to the log geometric mean in a group having all predictors equal to 0
 - Nonsmokers
 - Age 0 (newborn)
 - Log height 0 (height 1 inch)
 - There is no scientific relevance is here, because there are no such people in our sample OR the population

33

Age, Ht Adjusted Interpretation

- Age effect
 - Geometric mean of FEV is 2.2% higher for each year difference in age between two groups with similar height and smoking status (95% CI: 1.5% to 2.9% higher for each year difference in age)
 - These results are highly atypical of what we might expect with no true difference in the geometric mean FEV between age groups having similar height and smoking status: $P < 0.0005$
 - Note that there is clear evidence that height confounded the age effect estimated in the analysis which modeled only smoking and age
 - But there is a clear independent effect of age on FEV

34

Age, Ht Adjusted Interpretation

- Height effect
 - Geometric mean of FEV is 31.5% higher for each 10% difference in height between two groups with similar ages and smoking status (95% CI: 28.3% to 34.6% higher for each 10% difference in height)
 - These results are highly atypical of what we might expect with no true difference in the geometric mean FEV between height groups having similar age and smoking status: $P < 0.0005$
 - (Calculations: $1.1^{2.867} = 1.315$)
 - Note that the regression coefficient of 2.870 (95% CI 2.618 to 3.121) is consistent with the scientifically derived value of 3.0

35

Age, Ht Adjusted Interpretation

- Smoking effect
 - Geometric mean of FEV is 5.2% lower in smokers than in nonsmokers of the same age and height (95% CI: 9.6% to 0.6% lower)
 - These results are atypical of what we might expect with no true difference between groups of the same age and height: $P = 0.027$
 - (Calculations: $e^{-0.054} = .948$; $e^{-0.101} = .904$; $e^{-0.006} = .994$)
 - Note the wording “same age and height” even though I adjusted using a log transformation of height.
 - Equal log heights lead to equal heights

36

Age, Ht Adjusted Comments

- Comparing age and age-height adjusted analyses
 - No difference in effect of smoking suggests there was no more confounding after age adjustment
 - Effect of height adjustment on precision
 - Lower Root MSE (.144 vs .209) would tend to increase precision of estimate of smoking effect
 - Little association between smoking and height after adjustment for age will not tend to lower precision
 - Net effect: Higher precision (adj SE 0.024 vs unadj SE 0.034)

37

Effect Modification

38

Effect Modifier

- The association between Response and POI differs in strata defined by effect modifier
 - Statistical term: “Interaction”
 - Depends on the measurement of effect
 - Summary measure
 - Mean, geometric mean, median, proportion, odds, hazard, etc.
 - Comparison across groups
 - Difference, ratio

39

Analysis of Effect Modification

- When the scientific question involves effect modification, analyses must be within each stratum separately
 - If we want to estimate degree of effect modification or test for its existence:
 - A regression model will typically include
 - Predictor of interest
 - Effect modifier
 - A covariate modeling the interaction (usually product)

40

Model for Effect Modification

- Typical model for effect modification
 - Include “main effects” (can be bad not to)
 - X (or predictors that involve only X)
 - W (or predictors that involve only W)
 - Include “interactions”
 - Predictor(s) derived from both X and W

$$g[\theta | X_i, W_i] = \beta_0 + \beta_X \times X_i + \beta_W \times W_i + \beta_{XW} \times (XW)_i$$
$$= \beta_0 + \beta_X \times X_i + \beta_W \times W_i + \beta_{XW} \times X_i \times W_i$$

41

Intercept

$$g[\theta | X_i, W_i] = \beta_0 + \beta_X \times X_i + \beta_W \times W_i + \beta_{XW} \times X_i \times W_i$$

- Interpretation of intercept straightforward
 - β_0 corresponds to $X= 0, W= 0$
 - May not be scientifically meaningful

43

Interpretation of Parameters

$$g[\theta | X_i, W_i] = \beta_0 + \beta_X \times X_i + \beta_W \times W_i + \beta_{XW} \times X_i \times W_i$$

- Usual approach a bit more difficult
 - We can try using the idea of “comparison of θ across groups differing by 1 unit in corresponding predictor but agreeing in other modeled predictors”
 - However, terms involving two scientific variables makes this approach difficult

42

Slopes for Main Effects

$$g[\theta | X_i, W_i] = \beta_0 + \beta_X \times X_i + \beta_W \times W_i + \beta_{XW} \times X_i \times W_i$$

- Interpretation of main effects
 - β_X corresponds to 1 unit difference in X holding W and $(X \times W)$ constant
 - So 1 unit difference in X when $W= 0$
 - May not be scientifically meaningful
 - β_W corresponds to 1 unit difference in W holding X and $(X \times W)$ constant
 - So 1 unit difference in W when $X= 0$
 - May not be scientifically meaningful

44

Slope for interaction

$$g[\theta | X_i, W_i] = \beta_0 + \beta_X \times X_i + \beta_W \times W_i + \beta_{XW} \times X_i \times W_i$$

- Interpretation of interaction difficult

- β_{XW} corresponds to 1 unit difference in $(X \times W)$ holding X and W constant
 - Impossible, so we need another way to interpret this slope parameter

45

Consider Scientific Predictors

$$\begin{aligned} g[\theta | X_i, w] &= \beta_0 + \beta_X \times X_i + \beta_W \times w + \beta_{XW} \times X_i \times w \\ &= (\beta_0 + \beta_W \times w) + (\beta_X + \beta_{XW} \times w) \times X_i \end{aligned}$$

In stratum with $W = w$

Intercept : $(\beta_0 + \beta_W \times w)$ corresponds to $X_i = 0$

Slope : $(\beta_X + \beta_{XW} \times w)$ compares groups differing by 1 unit in X

β_{XW} is difference in X slope per 1 unit difference in W

46

Consider Scientific Predictors

$$\begin{aligned} g[\theta | x, W_i] &= \beta_0 + \beta_X \times x + \beta_W \times W_i + \beta_{XW} \times x \times W_i \\ &= (\beta_0 + \beta_X \times x) + (\beta_W + \beta_{XW} \times x) \times W_i \end{aligned}$$

In stratum with $X = x$

Intercept : $(\beta_0 + \beta_X \times x)$ corresponds to $W_i = 0$

Slope : $(\beta_W + \beta_{XW} \times x)$ compares groups differing by 1 unit in W

β_{XW} is difference in W slope per 1 unit difference in X

47

Symmetry of Effect Modification

- Note that if X modifies the association between Y and W , then W modifies the association between Y and X

– Aside: Confounding need not be symmetric

- W can confound the association between Y and X , but X not confound the association between Y and W
 - W and X associated in the sample
 - Y and X not associated after adjusting for W
 - Y and W associated after adjusting for X

48

Inference for Effect Modification

$$g[\theta | X_i, W_i] = \beta_0 + \beta_X \times X_i + \beta_W \times W_i + \beta_{XW} \times X_i \times W_i$$

- No effect modification if $\beta_{XW} = 0$
 - Hence, inference about existence of effect modification tests that $\beta_{XW} = 0$
 - We can perform such inference using standard regression output for the corresponding slope parameter

49

Inference for Main Effect Slope

$$g[\theta | X_i, W_i] = \beta_0 + \beta_X \times X_i + \beta_W \times W_i + \beta_{XW} \times X_i \times W_i$$

- Interpretation of $\beta_X = 0$
 - Same intercept in all strata defined by W
 - Generally a very uninteresting question
 - We rarely make inference on main effect slopes by themselves

50

Inference About Effect of X

$$g[\theta | X_i, W_i] = \beta_0 + \beta_X \times X_i + \beta_W \times W_i + \beta_{XW} \times X_i \times W_i$$

- Response parameter not associated with X if $\beta_X = 0$ AND $\beta_{XW} = 0$
 - We will need to construct special tests that both parameters are simultaneously 0
 - The t tests given in regression output consider only one slope parameter at a time

51

Stata: Testing Multiple Slopes

- Stata has easy method for performing test that multiple parameters are simultaneously 0
 - Perform any regression command
 - Then use “`test var1 var2 ...`”
 - Provides P value of the hypothesis test based on most recently executed regression command of any type of regression

52

Ex: Salary by Sex and Admin

- Does sex modify the association between mean salary and administrative duties
 - With two binary variables, modeling interaction by product is the obvious choice

$$E[Sal | Fem, Adm] = \beta_0 + \beta_A \times Adm_i + \beta_F \times Fem_i + \beta_{AF} \times Adm_i \times Fem_i$$

53

Ex: Descriptive Statistics

- Note that with two binary variables, the regression parameters agree exactly with the corresponding group sample means

```
. table admin female if year==95, co(mean salary)
```

	female	
admin	Male	Female
Nonadmin	6506.607	5280.373
Admin	8457.985	6769.844

55

Ex: Stata output

```
. g admfem= admin * female
. regress salary admin female admfem if year==95,
  Linear regression           Number of obs = 1597
                                         F( 3, 1593) = 125.26
                                         Prob > F = 0.0000
                                         R-squared = 0.1615
                                         Root MSE = 1866.9
```

	Robust				
salary	Coef.	StdErr	t	P> t	[95% CI]
admin	1951.378	176	11.06	0.000	1605 2297
female	-1226.234	95	-12.86	0.000	-1413 -1039
admfem	-461.9072	342	-1.35	0.177	-1132 208
_cons	6506.607	62	105.25	0.000	6385 6627

54

Ex: Inference About Eff Mod

- Does sex modify association between mean salary and administrative duties?

- Estimate that the “administrative supplement” averages \$462 less for women than men
 - 95% CI: \$1132 less to \$208 more
 - Not statistically significant: P = 0.177

	Robust				
salary	Coef.	StdErr	t	P> t	[95% CI]
admin	1951.378	176	11.06	0.000	1605 2297
female	-1226.234	95	-12.86	0.000	-1413 -1039
admfem	-461.9072	342	-1.35	0.177	-1132 208
_cons	6506.607	62	105.25	0.000	6385 6627

56

Ex: Inference About Sex Assoc

- Is sex associated with mean salary?

- Need to test that slope parameters for `female` and `admfem` are simultaneously 0

```
. test female admfem
```

```
( 1)  female = 0
```

```
( 2)  admfem = 0
```

```
F(  2,  1593) =  95.90
```

```
Prob > F = 0.0000
```

57

Ex: Inference for Admin Assoc

- Are administrative duties associated with mean salary?

- Need to test that slope parameters for `admin` and `admfem` are simultaneously 0

```
. test admin admfem
```

```
( 1)  admin = 0
```

```
( 2)  admfem = 0
```

```
F(  2,  1593) =  74.15
```

```
Prob > F = 0.0000
```

58

Continuous Predictors

- Modeling interactions with continuous predictors is conceptually more complicated
 - Is a multiplicative interaction at all a reasonable model for the data?
 - Nonetheless, this is the most common way we detect interactions
 - I would caution against using the model as predictions without carefully examining the data
 - But this can be difficult, too

59

Example: SEP “Normal Ranges”

- We want to find normal ranges for somatosensory evoked potential (SEP)
 - As a first step, we want to consider important predictors of nerve conduction times
 - If any variables such as sex, age, height, race, etc. are important predictors of nerve conduction times, then it would make most sense to obtain normal ranges within such groups

60

Example: SEP “Normal Ranges”

- Scientifically, we might expect that height, age, and sex are related to the nerve conduction time
 - Nerve length should matter, and height is a surrogate for nerve length
 - Age might affect nerve conduction times: People slow down with age
 - Sex: Men are SO fragile

61

Example: SEP “Normal Ranges”

- Prior to looking at the data, we can also consider the possibility that interactions between these variables might be important
 - Height - age interaction?
 - Do we expect the difference in conduction times between 6 foot tall and 5 foot tall 20 year olds to be the same as the difference in conduction times between 6 foot tall and 5 foot tall 80 year olds?

62

Example: SEP “Normal Ranges”

- We might suspect such an interaction due to the fact that height may not be as good a surrogate for nerve length in older people
 - With age, some people tend to shrink due to osteoporosis and compression of intervertebral discs
 - It is not clear that nerve length would be altered in such a process

63

Example: SEP “Normal Ranges”

- Thus, in young people, differences in height probably are a better measure of nerve length than in old people
 - Tall old people probably have been tall always
 - Short old people will include some who were much taller when they were young

64

Example: SEP “Normal Ranges”

- We can also consider the possibility of three way interactions between height, age, and sex
 - Osteoporosis affects women far more than men
 - Hence, we might expect the height - age interaction to be greatest in women and not so important in men

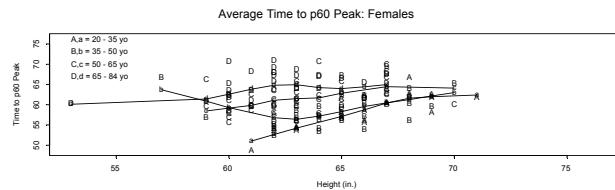
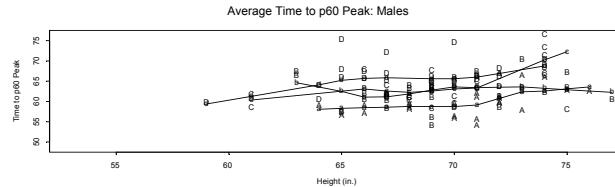
65

Example: SEP “Normal Ranges”

- A two way interaction between height and age that is different between men and women defines a three way interaction between height, age, and sex

66

Stratified Scatterplots



67

Example: SEP “Normal Ranges”

- Defining a regression model with interactions
 - We must create variables to model the three way interaction term

68

Example: SEP “Normal Ranges”

- Furthermore, it is a VERY GOOD idea to include all “main effects” and “lower order interactions” in the model as well
 - “main effects”: the individual variables which contribute to the interaction
 - “lower order terms”: all interactions that involve some combination of the variables which contribute to the interaction

69

Example: SEP “Normal Ranges”

- Most often, we lack sufficient information to be able to guess what the true form of an interaction might be
 - The most popular approach is thus to consider multiplicative interactions
 - Create a new variable by merely multiplying the two (or more) interacting predictors

70

Example: SEP “Normal Ranges”

- Thus for this problem we could create variables
 - HA = Height * Age
 - HM = Height * Male
 - AM = Age * Male
 - HAM = Height * Age * Male

71

Example: SEP “Normal Ranges”

- Interpretation of the model parameters
 - In the presence of higher order terms (powers, interactions) interpretation of parameters is not easy
 - We can no longer use “the change associated with a 1 unit difference in predictor holding other variables constant”
 - It is generally impossible to hold other variables constant when changing a covariate involved in an interaction
 - If not impossible, it is often uninteresting

72

Example: SEP “Normal Ranges”

Interpretation of the model in terms of the SEP height relationship within age-sex strata

73

Example: SEP “Normal Ranges”

- From the above, we see the importance of including the main effects and lower order terms
 - E.g., leaving out the height - sex interaction is tantamount to claiming that the p60 - height relationship among newborns is the same for the two sexes
 - (It might be, but the chance that our lines would predict the truth is very slight-- we are trying to approximate relationships in other age ranges)

75

Example: SEP “Normal Ranges”

$$E(p60 | Ht, Age, Male) = \beta_0 + \beta_H Ht + \beta_A Age + \beta_M Male + \beta_{HA} HA + \beta_{HM} HM + \beta_{AM} AM + \beta_{HAM} HAM$$

p60 - Height relationship for Age = a :

Sex	Intercept	Slope
F	$(\beta_0 + \beta_A a)$	$(\beta_1 + \beta_{HA} a)$
M	$(\beta_0 + \beta_M + (\beta_A + \beta_{AM}) a)$	$(\beta_H + \beta_{HM} + (\beta_{HA} + \beta_{HAM}) a)$

74

Example: Regression Output

. regress p60 height age male HA HM AM HAM

	p60	Coef	SE	t	P> t	[95% CI]
height	1	1.38	.363	3.81	0.000	.666 2.09
age	1	1.13	.425	2.66	0.008	.292 1.97
male	1	75.0	32.3	2.32	0.021	11.3 138
HA	1	-.015	.007	-2.26	0.025	-.028 -.0019
HM	1	-1.12	.483	-2.34	0.020	-2.08 -.176
AM	1	-1.16	.582	-2.00	0.047	-2.31 -.0170
HAM	1	.0175	.009	2.00	0.047	.0002 .0347
_cons	1	-36.4	23.5	-1.55	0.122	-82.7 9.82

76

Aside: Subgroup Analysis

- If I restrict analysis to females, estimates are the same in this “saturated” model
 - (Restricting by age or height would differ due to “borrowing information across groups”)
- Inference can differ due to the estimate of the residual standard error

```
. regress p60 height age HA if male==0
      p60 |  Coef    SE     t  P>|t|  [95% CI]
height |  1.38  .361  3.82 0.000   .665  2.10
      age |  1.13  .424  2.67 0.009   .292  1.97
      HA | -.015  .007 -2.27 0.025  -.028 -.002
      _cons | -36.4 23.4 -1.56 0.122 -82.7  9.86
```

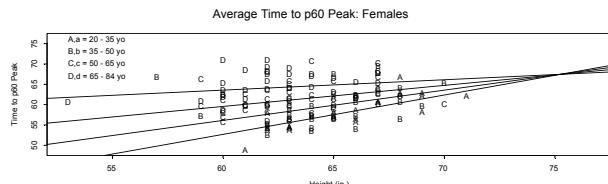
77

Interpreting Estimates

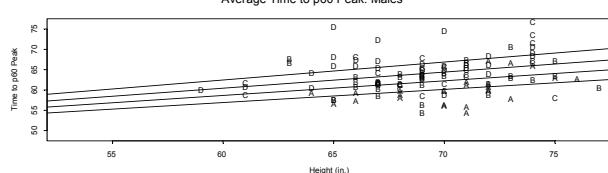
- Figuring out what all these estimates mean is nearly impossible
 - I find it easiest to graph the predicted values

78

Lines Predicted By Model



79



Example: SEP “Normal Ranges”

- From the inference, we find a statistically significant three way interaction
 - P= .0471
- This would argue that I should make predictions based on a model including the 3-way interaction
 - But...

80

Influence of Individual Cases

- I always worry that interactions might be significant only because of a single “outlier”
 - If that were the case, I might choose not to include the interaction (but I always include the case)
 - Looking ahead: I can “diagnose” such a problem by assessing the influence of each case

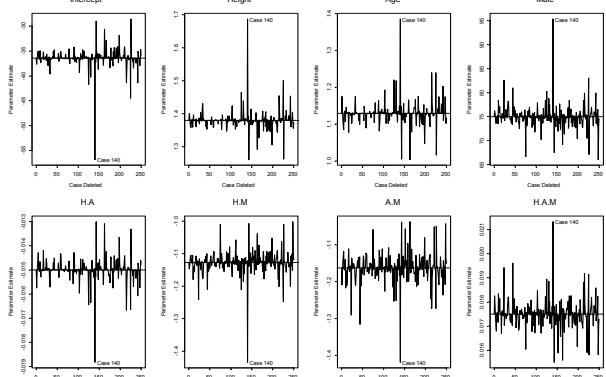
81

Example: SEP “Normal Ranges”

- I am now interested in ensuring that the evidence for an interaction is not based solely on a single person’s observation
 - Hence, I consider 250 different regressions in which I leave out each case in turn
 - I plot the slope estimates and P values for each variable as a function of which case I left out
 - Case 0 corresponds to using the full data set

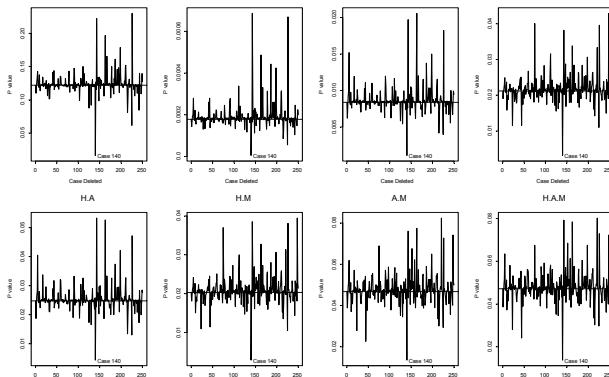
82

Influence on Estimates



83

Influence on P values



84

Example: SEP “Normal Ranges”

- Contrary to what I was afraid of, the only influential case actually lessened the evidence of an interaction
 - When Case 140 is removed from the data, the evidence for an interaction is a larger estimate and a lower P value
 - We can examine the scatterplot to see why Case 140 might be so influential

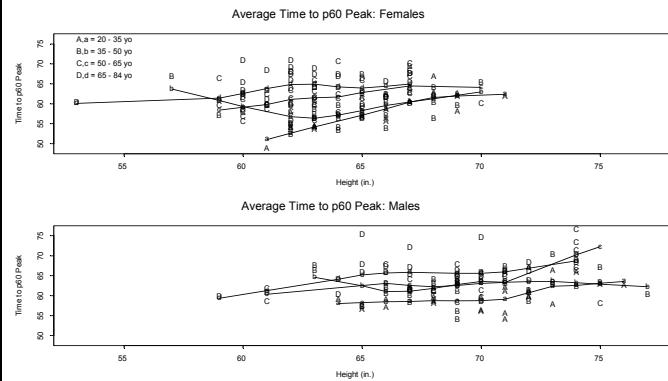
85

Example: SEP “Normal Ranges”

- So now what do I do with Case 140
 - From the influence diagnostics, I now feel comfortable with the fact that the data really do suggest a three way interaction

87

Stratified Scatterplots



86

Example: SEP “Normal Ranges”

- Personally, I do NOT remove the case from the dataset when making my prediction intervals
 - I do not know why Case 140 is so unusual
 - It is possible that people like her are actually more prevalent in the population than my sample would suggest
 - My best guess is that she represents 0.4% of the population, so leave her in

88

Modeling Complex “Dose-Response”

89

Transformations of Predictors

- We transform predictors to provide more flexible description of complex associations between the response and some scientific measure
 - Threshold effects
 - Exponentially increasing effects
 - U-shaped functions
 - S-shaped functions
 - etc.

91

Linear Predictors

- The most commonly used regression models use “linear predictors”
 - “Linear” refers to linear in the parameters
 - The modeled predictors can be transformations of the scientific measurements

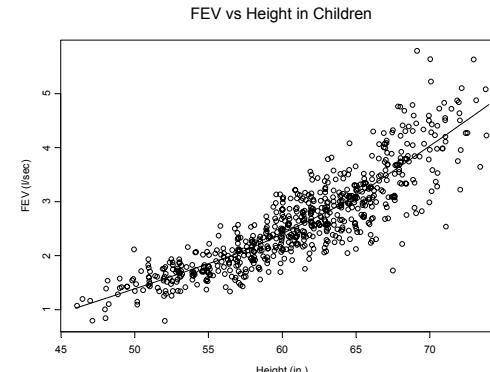
- Examples

$$g[\theta | X_i, W_i] = \beta_0 + \beta_{\log X} \times \log(X_i)$$

$$g[\theta | X_i, W_i] = \beta_0 + \beta_X \times X_i + \beta_{X^2} \times X_i^2$$

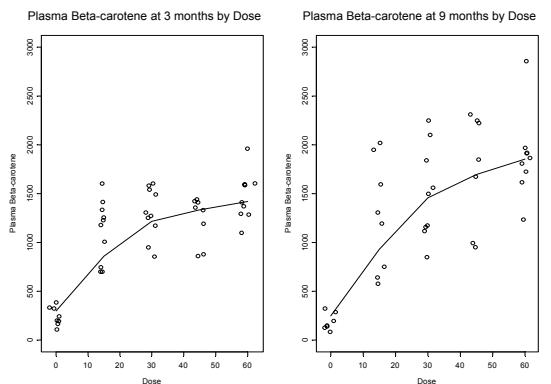
90

Ex: Cubic Relationship



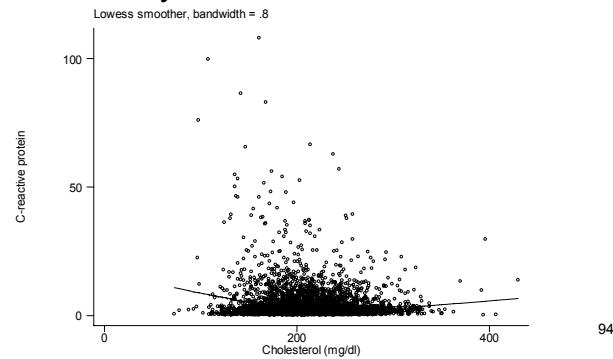
92

Ex: Threshold Effect of Dose?



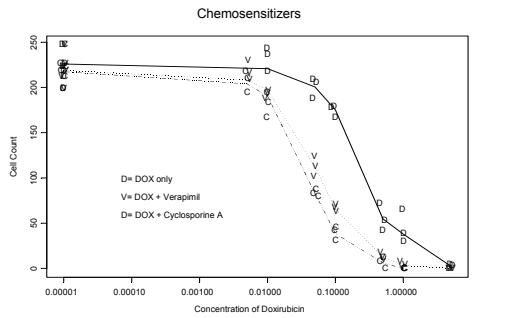
Ex: U-shaped Trend?

- Inflammatory marker vs cholesterol



Ex: S-shaped trend

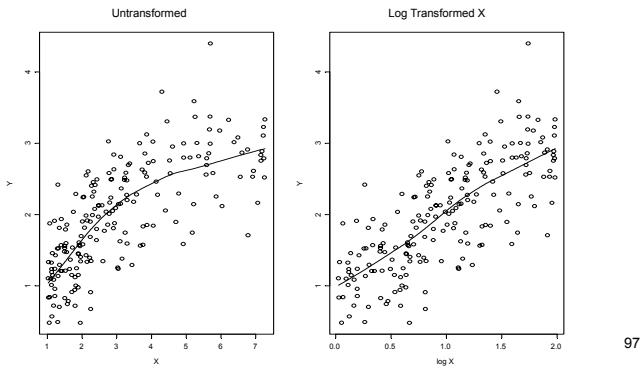
- *In vitro* cytotoxic effect of Doxorubicin with chemosensitizers



“1:1 Transformations”

- Sometimes we transform 1 scientific measurement into 1 modeled predictor
 - Ex: log transformation will sometimes address apparent “threshold effects”
 - Ex: cubing height produces more linear association with FEV

Log Transformations



"1:Many Transformations"

- Sometimes we transform 1 scientific measurement into several modeled predictor
 - Ex: "polynomial regression"
 - Ex: "dummy variables" ("factored variables")
 - Ex: "piecewise linear"
 - Ex: "splines"

98

Polynomial Regression

- Fit linear term plus higher order terms (squared, cubic, ...)
 - Can fit arbitrarily complex functions
 - An n -th order polynomial can fit $n+1$ points exactly
 - Generally very difficult to interpret parameters
 - I usually graph function when I want an interpretation
 - Special uses
 - 2nd order (quadratic) model to look for U-shaped trend
 - Test for linearity by testing that all higher order terms have parameters equal to zero

99

Ex: FEV – Height Assoc Linear?

- We can try to assess whether any association between mean FEV and height follows a straight line association
 - I fit a 3rd order (cubic) polynomial due to the known scientific relationship between volume and height

100

Ex: FEV – Height Assoc Linear?

```
.....  
. g htsqr= height^2  
. g htcub = height^3  
. regress fev height htsqr htcub, robust  
Linear regression  
Number of obs = 654  
Prob > F = 0.0000  
R-squared = 0.7742  
Root MSE = .41299  
| Robust  
fev | Coef SE t P>|t| [95% C I]  
height | .0306 .635 0.05 0.962 -1.22 1.28  
htsqr | -.0015 .0108 -0.14 0.888 -.0227 .0196  
htcub | .00003 .00006 0.43 0.671 -.00009 .0001  
_cons | .457 12.4 0.04 0.971 -23.8 24.76 101
```

Ex: FEV – Height Assoc Linear?

- Note that the P values for each term were not significant
 - But these are addressing irrelevant questions:
 - After adjusting for 2nd and 3rd order relationships, is the linear term important?
 - After adjusting for linear and 3rd order relationships, is the squared term important?
 - After adjusting for linear and 2nd order relationships, is the cubed term important
 - We need to test 2nd and 3rd order terms simultaneously

102

Ex: FEV – Height Assoc Linear?

```
.....  
. test htsqr htcub  
  
( 1) htsqr = 0  
( 2) htcub = 0  
  
F( 2, 650) = 30.45  
Prob > F = 0.0000
```

103

Ex: FEV – Height Assoc Linear?

- We find clear evidence that the trend in mean FEV versus height is nonlinear
 - (Had we seen P > 0.05, we could not be sure it was linear– it could have been nonlinear in a way that a cubic polynomial could not detect)

104

Ex: log FEV – Ht Assoc Linear?

- We can try to assess whether any association between mean log FEV and height follows a straight line association
 - I again fit a 3rd order (cubic) polynomial, but don't really have a good reason to do this rather than some other polynomial

105

Ex: log FEV – Ht Assoc Linear?

- Note that again that the P values for each term were not significant
 - But these are addressing irrelevant questions:
 - We need to test 2nd and 3rd order terms simultaneously

107

Ex: log FEV – Ht Assoc Linear?

```
. g logfev = log(fev)
. regress logfev height htsqr htcub, robust
Linear regression           Number of obs =      654
                                         F(  3,   650) =    730.53
                                         Prob > F      =  0.0000
                                         R-squared     =  0.7958
                                         Root MSE      =  .15094
                                         |   Robust
logfev |   Coef    SE     t   P>|t|   [95% C.I.]
height |  .0707  .24835  0.28  0.776  -.417    .558
htsqr | -.0002  .00410 -0.04  0.964  -.0082   .008
htcub | 3e-07  .00002  0.01  0.989 -.00004  .00004
_cons | -2.79  4.985  -0.56  0.576 -12.6   6.997  106
```

Ex: log FEV – Ht Assoc Linear?

```
. test htsqr htcub
( 1)  htsqr = 0
( 2)  htcub = 0
                                         F(  2,   650) =      0.29
                                         Prob > F =  0.7464
```

108

Ex: log FEV – Ht Assoc Linear?

- We do not find clear evidence that the trend in mean FEV versus height is nonlinear
 - This does not prove linearity, because it could have been nonlinear in a way that a cubic polynomial could not detect
 - (But I would think that the cubic would have picked up most patterns of nonlinearity likely to occur in this setting)

109

Ex: log FEV – Ht Assoc Linear?

- We have not addressed the question of whether log FEV is associated with height
 - This question could have been addressed in the cubic model by
 - Testing all three height-derived variables simultaneously
 - OR (because only height-derived variables are included in the model) looking at the overall F test
 - Alternatively, fit a model with only the height
 - But generally bad to go fishing for models

110

Ex: log FEV – Ht Assoc?

```
. regress logfev height, robust
Linear regression                               Number of obs =      654
                                                F(  1,    652) = 2155.08
                                                Prob > F      = 0.0000
                                                R-squared     = 0.7956
                                                Root MSE      = .15078
|
Robust
logfev |      Coef.      Std. Err.          t      P>|t|
[95% Conf. Interval]
height |  .0521  .0011  46.42 0.000   .0499     .0543
_cons | -2.27  .0686 -33.13 0.000  -2.406   -2.137
```

111

Dummy Variables

- Indicator variables for all but one group
 - This is the only appropriate way to model nominal (unordered) variables
 - E.g., for marital status
 - Indicator variables for
 - » married (married = 1, everything else = 0)
 - » widowed (widowed = 1, everything else = 0)
 - » divorced (divorced = 1, everything else = 0)
 - » (single would then be the intercept)
 - Often used for other settings as well
 - Equivalent to “Analysis of Variance (ANOVA)”¹²

Ex: Mean Salary by Field

- Field is a nominal variable, so we must use dummy variables
 - I decide to use “Other” as a reference group, so generate new indicator variables for Fine Arts and Professional fields

```
. g arts= 0
. replace arts=1 if field==1
(2840 real changes made)
. g prof= 0
. replace prof=1 if field==3
(3809 real changes made)
```

113

Ex: Mean Salary by Field

```
. regress salary arts prof if year==95, robust
Linear regression
Number of obs = 1597
F( 2, 1594) = 120.85
Prob > F = 0.0000
R-squared = 0.1021
Root MSE = 1931.2

```

	Robust				
salary	Coef	SE	t	P> t	[95% CI]
arts	-1014	105	-9.67	0.000	-1219 -808
prof	1225	134	9.16	0.000	963 1487
_cons	6292	61.1	103.03	0.000	6172 6411

114

Ex: Interpretation of Intercept

- Based on coding used
 - Intercept corresponds to mean salary for faculty in “Other” fields
 - These faculty will have arts==0 and prof==0
 - Estimated mean salary is \$6,292 / month
 - 95% CI: \$6,172 to \$6,411 / month
 - Highly statistically different from \$0 / month

115

Ex: Interpretation of Slopes

- Based on coding used
 - Slope for “arts” is difference in mean salary between “Fine Arts” and “Other” fields
 - Fine arts faculty will have arts==1 and prof==0; “Other” fields will have arts==0 and prof==0
 - Estimated difference in mean monthly salary is \$1,014 lower for fine arts
 - 95% CI: \$808 to \$1,219 / month lower
 - Highly statistically different from \$0

116

Ex: Interpretation of Slopes

- Based on coding used
 - Slope for “prof” is difference in mean salary between “Professional” and “Other” fields
 - Professional faculty will have arts==0 and prof==1; “Other” fields will have arts==0 and prof==0
 - Estimated difference in mean monthly salary is \$1,225 higher for professional
 - 95% CI: \$963 to \$1,487 / month higher
 - Highly statistically different from \$0

117

Ex: Descriptive Statistics

- Because we modeled the three groups with two predictors plus intercept, the estimates agree exactly with sample means

```
. table field if year==95, co(mean salary)
```

field	mean(salary)
Arts	5278.082
Other	6291.638
Prof	7516.67

118

Ex: Hypothesis Test

- To test for different mean salaries by field
 - We have modeled field with two variables
 - Both slopes would have to be zero for there to be no association between field and mean salary
 - Simultaneous test of the two slopes
 - We can use the Stata “test” command

```
. test arts prof
```

```
      F(  2,  1594) =  120.85
      Prob > F =      0.0000
```

- OR because only field variables are in the model, we can use the overall F test

119

Stata: Dummy Variables

- Stata has a facility to automatically create dummy variables
 - Prefix regression commands with “xi: ...”
 - Prefix variables to be modeled as dummy variables with “i.varname”
 - (Stata will drop the lowest category)

120

Stata: Dummy Variables

```
. xi: regress salary i.field if year==95, robust
i.field _Ifield_1-3(ntrllly coded; _Ifield_1 omitted)
Linear regression
Number of obs = 1597
F( 2, 1594) = 120.85
Prob > F = 0.0000
R-squared = 0.1021
Root MSE = 1931.2

```

	Robust				
salary	Coef	SE	t	P> t	[95% C I]
_Ifield_2	1014	105	9.67	0.000	808 1219
_Ifield_3	2239	146	15.30	0.000	1952 2526
_cons	5278	85.2	61.94	0.000	5111 5445

121

Ex: Correspondence

- This regression model is the exact same as the one in which I modeled “arts” and “prof”
 - Merely “parameterized” (coded) differently
- Two models are equivalent if they lead to the exact same estimated parameters
 - Inference about corresponding parameters will be the same no matter how it is parameterized

122

Continuous Variables

- We can also use dummy variables to represent continuous variables
 - Continuous variables measured at discrete levels
 - E.g., dose in an interventional experiment
 - Continuous variables divided into categories

123

Relative Advantages

- Dummy variables fits groups exactly
 - If no other predictors in the model, parameter estimates correspond exactly with descriptive statistics
- With continuous variables, dummy variables assume a “step function” is true
- Modeling with dummy variables ignores order of predictor of interest

124

Choice of Model for Analysis

- Compare power of linear continuous versus ANOVA as a function
 - of trend in means and
 - standard errors within groups

125

Linear Continuous Models

- Borrows information across groups
 - Accurate, efficient if model is correct
- If model incorrect, mixes “random” and “systematic” error
- Can gain power from ordering of groups in order to detect a trend
 - But, no matter how low the standard error is, if there is no trend in the mean, there is no statistical significance

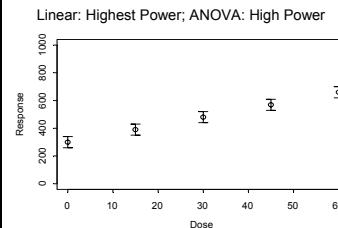
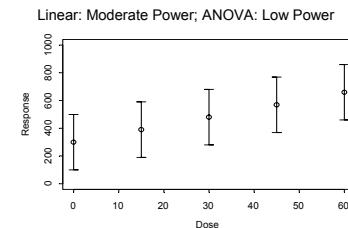
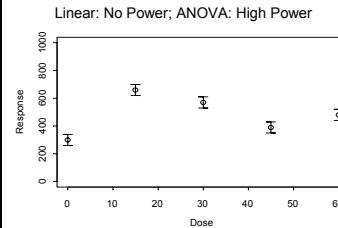
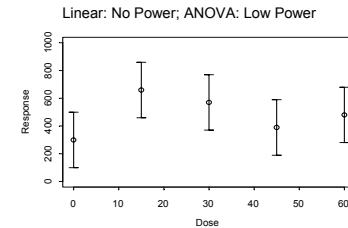
127

ANOVA (dummy variables)

- Fits group means exactly
- Does not mix “random error” with “systematic error”:
- Ignores the ordering of the groups, so it gains no power from trends
 - The same level of significance is obtained no matter what permutation of dose groups is considered

126

Hypothetical Settings



Other Options

- We can model continuous variables with other flexible models
 - Combinations of linear trends and indicator variables
 - Splines