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Lecture Outline

» Adjustment for confounders / precision
 Effect modification

* Modeling complex “dose response”
» Testing for linearity

Adjustment for Confounders,
Precision Variables

Adjustment for Covariates

» We “adjust” for other covariates

— Define groups according to
* Predictor of interest, and
* Other covariates
— Compare the distribution of response across
groups which
« differ with respect to the Predictor of Interest, but

» are the same with respect to the other covariates
— “holding other variables constant”




Unadjusted vs Adjusted Models Interpretation of Slopes

» Adjustment for covariates changes the + Difference in interpretation of slopes
scientific question Unadjusted Model : g[é’ |Xl.]: B+ P x X,

— Unadjusted models

+ Slope compares parameters across groups
differing by 1 unit in the modeled predictor

— B, = Compares 6 for groups differing by 1 unit in X
* (The distribution of W might differ across groups being

d
— Groups may also differ with respect to other variables . compared)
— Adjusted models Adjusted Model : g[‘g |Xi’VVi]: Vot x X, +y,xW,
 Slope compares parameters across groups — vy, = Compares 6 for groups differing by 1 unit in X,
differing by 1 unit in the modeled predictor but but agreeing in their values of W
similar with respect to other modeled covariates
5 6
Comparing models Linear Regression
Unadjusted g[é? X W]: B,+ B xX + Difference in interpretation of slopes
i*"Vi 0 1 i
Adjusted g[@ |Xi’VVi:|: Vot 7 XX, + 7, x W, Unadjusted Model : E[Yi |Xl-]: Bo+ B x X,
When is — ﬂ ) — B4 = Diff in mean Y for groups differing by 1 unit in X
71 1 + (The distribution of W might differ across groups being
When is }?1 = ﬂl? compared)
When ic w7 )= se(B )7 Adjusted Model : E[Y; [X,,W,]= 7o+ 71 x X, + 7, xW,
7 R ' — Y4 = Diffin mean Y for groups differing by 1 unit in X,
When is Sé(j?l ) = Sé( 1)? but agreeing in their values of W
7 8




Relationships: True Slopes
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* The slope of the unadjusted model will tend to
be

O
Bi=r+pPw r 72
O

X

* Hence, true adjusted and unadjusted slopes for
X are estimating the same quantity only if
— pxw =0 (X and W are truly uncorrelated), OR

—7,=0 (no association between W and Y after
adjusting for X)

Relationships: Estimated Slopes
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* The estimated slope of the unadjusted model
will be

A A A S
181:7/1[1"'72’”)01{ " }J
SX(VYX _rYWVXW)

* Hence, estimated adjusted and unadjusted
slopes for X are equal only if
— ryw =0 (Xand W are uncorrelated in the sample,
which can be arranged by experimental design), OR

- /, = () (which cannot be predetermined, because Y
is random)
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Relationships: True SE
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Unadjusted Model [se( Al )]2 :a; a(j (L)(()

)
var(v|X, W)
)

Adjusted Model [se(7)]" = nVar(X (1 re )

Var(Y | X )= y2Var(W | X )+Var(Y | X, W)

2 2 2 2
Oyix =720y x TOyixw

Relationships: True SE
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Unadjusted Model [se(ﬂ )] Var Y ‘X

nVar(X)
Adjusted Model [se(7,)]* = nZ’:(( i r)
xXw

Var(Y | X)=y3Var(W | X )+ Var(Y | X, W)

Thus, se(ﬂl)z se(p,) if

Fyw

=0
AND

7,=0 OR Var(W|X)=0 12




Relationships: Estimated SE

......................... ;.é..: . SSE(Y |X)/(n—2)
[ ( 1)] - (n—l)s)z(

Unadjusted Model

SSE(Y

X )/(n-3)

Adjusted Model [sé(7,)]” = (n—1)s2 (1 2 )
X Xw

SSE(Y|X):Z(Y1'_B0_:6A’1XX1)Z
SSE(Y | X, W)= (Y, =7, =7, x X, =7, x W)

Relationships: Estimated SE

..............................

5 )] = SSE(Y |x)/(n-2)

D5
SSE(Y [x,w)/(n-3)
N (n - l)sf( (1 — Ty )

Thus, sé(ﬁl)z sé(p,) if
Fyy =0
AND

SSE(Y | X )/(n—2)=SSE(Y | X, W )/(n-3) ”

Residual Squared Error

..............................

SSE(Y | X)= YV~ B~ Bix x.)
SSE(Y | X, W)= (Y, =7, =7, x X, =7, x W)

When calculated on the same data :
SSE(Y|X)>SSE(Y | X, W)

Relationships: Estimated SE
SSE(Y|X)=Z(K_ﬂA0_ﬂAlXXi)Z
SSE(Y | X, W)= (Y, =7, =71 x X, = 7, xW,)’

Now f3, = 7, if

7, =0, in which case SSE(Y | X )= SSE(Y | X, W)
OR

Far =0, and SSE(Y | X)> SSE(Y | X, W )if 7, #0

16




Special Cases
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» Behavior of unadjusted and adjusted
models according to whether
— X and W are uncorrelated
— W s associated with Y after adjustment for X

Ty =0 Ty 0
7, #0 Precision Confoundirg

7, =0 Irrelevant VarInflation

Precision Variables

* E.g., independence in population, or
completely randomized experiment

Pxw =0 7, #0

True Value Estimates
Slopes b= ﬁl ~ 7;1
Std Errs se(,BA1 )> se(j?l) sé(ﬁ1 )> sé(j?l)
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Stratified Randomization
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« Stratified randomization in a designed
experiment

Ty =0 7,720
True Value Estimates

Slopes B =7 /3)1 =7
Std Errs se(ﬂA1 ): se(jﬂ) Sé(ﬁl )> Sé(};l)

Confounding
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» Causally associated with response and
associated with POI in sample

Ty 20 7, #0

True Value Estimates
oy PN . Sy
Slopes Bi=n+Pxw —=7, B=n|1+7rw| ————
Oy Sx (rYX ~Yyw Uxw )
> >
Std Errs se(ﬁl) =1 se(7,) sé(/}]) =t sé(7,)
< < 2




Variance Inflation
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» Associated with POl in sample, but not
associated with response

Ty %0 7, =0

True Value Estimates

s . . Sy
Bi= }/1[1 + Vo xw |:Sx(ryx T )}j
Sé(ﬁl) < Sé(ﬁl)

Slopes Bi=»

Std Errs se(ﬁl) < se(7,)
21

Irrelevant Variables
* Uncorrelated with POl in sample, and not
associated with response

Ty =0 7,=0

True Value Estimates
Slopes b= ﬁl =7
Std Errs se(ﬁl) = se(7,) sé(ﬁl) < 5é(7,)

22

Stata: Multiple Regression

* |In Stata, we use the same commands as
were used for simple regression
— We just list more variable names

— Interpretation of Cl, P values for coefficient
estimates now relate to new scientific
interpretation of intercept and slopes

— Test of entire regression model also provided
* A test that all slopes are equal to 0

23

Ex: FEV and Smoking
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. regress logfev smoker if age>=9, robust

Number of obs = 439
F( 1, 437) = 10.45
Prob > F = 0.0013
R-squared = 0.0212
Root MSE = .24765
| Robust
logfev | Coef. St Err t P>|t]| [95% CI]
smoker | .102 .0317 3.23 0.001 .040 .165

_cons | 1.058 .0129 81.82 0.000 1.033 1.084

24




Unadjusted Interpretation
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* Intercept

—Geometric mean of FEV in nonsmokers is 2.88 I/sec
» The scientific relevance is questionable here, because we
do not really know the population our sample represents

— Comparing smokers to nonsmokers is more useful than
looking at either group by itself

» (Calculations: e'9%8=2.881)

* (The P value is of no importance whatsoever, it is testing
that the log geometric mean is 0 or that the geometric mean
is 1. Why would we care?)

—(Because smoker is a binary variable, the estimate
ry

corresponds to the sample geometric mean)
25

Unadjusted Interpretation

» Smoking effect
— Geometric mean of FEV is 10.8% higher in smokers

than in nonsmokers (95% Cl: 4.1% to 17.9% higher)

» These results are atypical of what we might expect with no
true difference between groups: P = 0.001

+ (Calculations: €9-102= 1.108; €0-040= 1.041; €%-165= 1.179)
— (Note that exp (x) is approx 1+x for x close to 0)
— (Because smoker is a binary (0-1) variable, this
analysis is nearly identical to a two sample t test
allowing for unequal variances)

26

Ex: Adjusted for Age
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. regress logfev smoker age if age>=9, robust

Number of obs = 439
F( 2, 437) = 82.28
Prob > F = 0.0000
R-squared = 0.3012
Root MSE = .20949
| Robust
logfev | Coef. St Err t P>|t]| [95% CI]
smoker | -.051 .0344 -1.49 0.136 -.119 .016
age | .064 .0051 12.37 0.000 .053 .074
|

_cons 0.352 .0575 6.12 0.000 .239 .465

27

Age Adjusted Interpretation
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* Intercept

—Geometric mean of FEV in newborn
nonsmokers is 1.42 |/sec

» Intercept corresponds to the log geometric mean
in a group having all predictors equal to 0

* There is no scientific relevance is here, because
we are extrapolating outside our data

+ (Calculations: €9-352= 1.422)

28




Age Adjusted Interpretation
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» Age effect

—Geometric mean of FEV is 6.6% higher for
each year difference in age between two
groups with similar smoking status(95% CI:
5.5% to 7.6% higher for each year difference in
age)

* These results are highly atypical of what we
might expect with no true difference in the
geometric mean FEV between age groups having

similar smoking status: P < 0.0005
29

Age Adjusted Interpretation
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* Smoking effect

— Geometric mean of FEV is 5.0% lower in smokers
than in nonsmokers of the same age (95% CI: 12.2%
lower to 1.6% higher)

* These results are not atypical of what we might expect with
no true difference between groups of the same age: P =
0.136

— Lack of statistical significance is also evident because the
confidence interval contains 1 (as a ratio) or 0 (as a percent
difference)

* (Calculations: e0%%'= 0.950; e-119= 0.888; €°016= 1.016)

— (Note that exp (x) is approx 1+x for x close to 0)

30

Age Adjusted Comments
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» Comparing unadjusted and age adjusted
analyses
— Marked difference in effect of smoking suggests that
there was indeed confounding
* Age is a relatively strong predictor of FEV
» Age is associated with smoking in the sample
— Mean (SD) of age in analyzed smokers: 11.1 (2.04)
— Mean (SD) of age in analyzed nonsmokers: 13.5 (2.34)
— Effect of age adjustment on precision

* Lower Root MSE (.209 vs .248) would tend to increase
precision of estimate of smoking effect
» Association between smoking and age tends to lower
precision
» Net effect: Less precision (adj SE 0.034 vs unadj SE 0.031)
31

Ex: Adjusted for Age, Height

9000000000000 000000000000000CFO

. regress logfev smoker age loght if age>=9, robust

Number of obs = 439
F( 3, 437) = 284.22
Prob > F = 0.0000
R-squared = 0.6703
Root MSE = .14407
| Robust

logfev | Coef. St Err t P>|t]| [95% CI]
smoker | -.054 .0241 -2.22 0.027 -.101 -.006
age | .022 .0035 6.18 0.000 .015 .028
loght | 2.870 .1280 22.42 0.000 2.618 3.121
|-11.095 .5153 -21.53 0.000 -12.107 -10.082

cons

32




Age, Ht Adjusted Interpretation

* Intercept

— Geometric mean of FEV in newborn nonsmokers who
are 1 inch high is 0.000015 I/sec
* Intercept corresponds to the log geometric mean in a group
having all predictors equal to 0
— Nonsmokers
— Age 0 (newborn)
— Log height 0 (height 1 inch)
« There is no scientific relevance is here, because there are no
such people in our sample OR the population
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Age, Ht Adjusted Interpretation

* Age effect

— Geometric mean of FEV is 2.2% higher for each year
difference in age between two groups with similar
height and smoking status (95% CI: 1.5% to 2.9%
higher for each year difference in age)

* These results are highly atypical of what we might expect
with no true difference in the geometric mean FEV between
age groups having similar height and smoking status: P <
0.0005

— Note that there is clear evidence that height
confounded the age effect estimated in the analysis
which modeled only smoking and age

» But there is a clear independent effect of age on FEV
34

Age, Ht Adjusted Interpretation

+ Height effect

— Geometric mean of FEV is 31.5% higher for each
10% difference in height between two groups with
similar ages and smoking status (95% CI: 28.3% to
34.6% higher for each 10% difference in height)

» These results are highly atypical of what we might expect
with no true difference in the geometric mean FEV between
height groups having similar age and smoking status: P <
0.0005

* (Calculations: 1.12867= 1.315)
— Note that the regression coefficient of 2.870 (95% CI
2.618 to 3.121) is consistent with the scientifically

derived value of 3.0
35

Age, Ht Adjusted Interpretation

» Smoking effect

— Geometric mean of FEV is 5.2% lower in smokers
than in nonsmokers of the same age and height (95%
Cl: 9.6% to 0.6% lower)

* These results are atypical of what we might expect with no
true difference between groups of the same age and height:
P =0.027

* (Calculations: e0054=,948; e0101= 904; e0:006= 994)

— Note the wording “same age and height” even though
| adjusted using a log transformation of height.

« Equal log heights lead to equal heights

36




Age, Ht Adjusted Comments

» Comparing age and age-height adjusted
analyses
— No difference in effect of smoking suggests there was
no more confounding after age adjustment

— Effect of height adjustment on precision

* Lower Root MSE (.144 vs .209) would tend to increase
precision of estimate of smoking effect

« Little association between smoking and height after
adjustment for age will not tend to lower precision

* Net effect: Higher precision (adj SE 0.024 vs unadj SE 0.034)

37

Effect Modification

38

Effect Modifier

» The association between Response and
POl differs in strata defined by effect
modifier

« Statistical term: “Interaction”

— Depends on the measurement of effect

M Summary measure

— Mean, geometric mean, median, proportion, odds,
hazard, etc.

» Comparison across groups

— Difference, ratio
39

Analysis of Effect Modification
* When the scientific question involves
effect modification, analyses must be
within each stratum separately
— If we want to estimate degree of effect
modification or test for its existence:

* A regression model will typically include
— Predictor of interest
— Effect modifier
— A covariate modeling the interaction (usually product)

40




Model for Effect Modification

» Typical model for effect modification

— Include “main effects” (can be bad not to)
* X (or predictors that involve only X)
* W (or predictors that involve only W)

— Include “interactions”
* Predictor(s) derived from both X and W

elo | X, W)= By + By x X, + By x W, + By x (XW),

= Lo+ By x X, + By xW, + By x X, xW,

41

Interpretation of Parameters

lO X, W, ]= By + By x X, 4 By x W, + Bry x X, xW,

» Usual approach a bit more difficult

— We can try using the idea of “comparison of 6
across groups differing by 1 unit in
corresponding predictor but agreeing in other
modeled predictors”

— However, terms involving two scientific

variables makes this approach difficult
42

Intercept

g[‘9 Xi’m]:ﬂo + Py X X+ By x W, + By x X, xW,
* Interpretation of intercept straightforward

— By corresponds to X=0, W=0
» May not be scientifically meaningful

43

Slopes for Main Effects

g[@ Xiam]:ﬂo + Py x X+ By x W, + By x X, xW,
* Interpretation of main effects
— By corresponds to 1 unit difference in X
holding W and (XxW) constant
» So 1 unit difference in X when W= 0
* May not be scientifically meaningful
— Bw corresponds to 1 unit difference in W
holding X and (XxW) constant
* So 1 unit difference in W when X=0
» May not be scientifically meaningful 44




Slope for interaction
g[@ X[’VVi]:ﬂO + By X X+ By XW, + By x X, X W,
* Interpretation of interaction difficult
— Byw corresponds to 1 unit difference in (XxW)

holding X and W constant

* Impossible, so we need another way to interpret
this slope parameter

45

Consider Scientific Predictors

9000000000000 000000000000000CFO

g[@ Xfaw]:ﬂ0+ﬂx><Xi+ﬂWxW+ﬂXWXX;'XW
:(ﬂo+ﬂW><w)+(,6’X+ﬂXW><w)><Xi

In stratum with W =w
Intercept : (ﬂo + By x w) corresponds to X, =0
Slope : (ﬂ v+ B X w) compares groups differing
by 1 unit in X
B 1s difference in X slope per 1 unit

difference in W 46

Consider Scientific Predictors

9000000000000 000000000000000CFO

glO [, ]= By + By xx+ By x W, + By x xxW,
=(By + By xx)+(By + By xx)x W,

In stratum with X =x
Intercept : (ﬂo + [ % x)corresponds toW. =0
Slope : (,BW + By X x)compares groups differing
by 1 unit in W
B 1s difference in W slope per 1 unit

difference in X 47

Symmetry of Effect Modification

9000000000000 000000000000000CFO

* Note that if X modifies the association
between Y and W, then W modifies the
association between Y and X

— Aside: Confounding need not be symmetric
* W can confound the association between Y and X,
but X not confound the association between Y and W
— W and X associated in the sample
— Y and X not associated after adjusting for W
—Y and W associated after adjusting for X

48




Inference for Effect Modification

g[@ Xnm]:ﬂo +ﬂX x X, +ﬂW xW, +ﬁXW X X, xW,
* No effect modification if By,, =0
— Hence, inference about existence of effect

modification tests that By, =0

* We can perform such inference using standard
regression output for the corresponding slope
parameter

49

Inference for Main Effect Slope

gl
* Interpretation of By, =0
— Same intercept in all strata defined by W
— Generally a very uninteresting question

— We rarely make inference on main effect
slopes by themselves

Xi’VVi]:ﬂO-i_ﬂXxXi-i_ﬂWXVVi—i_ﬂXWXXiXVVi

50

Inference About Effect of X

g[‘9 Xi’m]:ﬂo + Py X X+ By x W, + By x X, xW,
* Response parameter not associated with
Xif Bx = 0 AND By, =0
— We will need to construct special tests that

both parameters are simulataneously 0

» The t tests given in regression output consider only
one slope parameter at a time

51

Stata: Testing Multiple Slopes

+ Stata has easy method for performing test

that multiple parameters are
simultaneously 0

— Perform any regression command
—Then use “test varl var2 ..”

* Provides P value of the hypothesis test based on
most recently executed regression command of
any type of regression

52




Ex: Salary by Sex and Admin

9000000000000 000000000000000CFO

* Does sex modify the association between
mean salary and administrative duties

— With two binary variables, modeling
interaction by product is the obvious choice

E[Sal | Fem,Adm]z By + ByxAdm, + B, x Fem, +
Bur x Adm; x Fem,

53

Ex: Stata output
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. g admfem= admin * female
. regress salary admin female admfem if year==95,

Linear regression Number of obs = 1597
F( 3, 1593) = 125.26
Prob > F = 0.0000
R-squared = 0.1615
Root MSE = 1866.9

| Robust

salary | Coef. StdErr t P>|t] [95% CI]

admin | 1951.378 176 11.06 0.000 1605 2297

female | -1226.234 95 -12.86 0.000 -1413 -1039

admfem | -461.9072 342 -1.35 0.177 -1132 208

_cons | 6506.607 62 105.25 0.000 6385 6627

Ex: Descriptive Statistics

» Note that with two binary variables, the
regression parameters agree exactly with
the corresponding group sample means

. table admin female if year==95, co(mean salary)

| female
admin | Male Female
Nonadmin | 6506.607 5280.373
|

8457.985 6769.844

Admin

55

Ex: Inference About Eff Mod
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— Does sex modify association between mean
salary and administrative duties?
« Estimate that the “administrative supplement”
averages $462 less for women than men
— 95% CI: $1132 less to $208 more
— Not statistically significant: P = 0.177

| Robust

salary | Coef. StdErr t P>t [95% CI]
admin | 1951.378 176 11.06 0.000 1605 2297
female | -1226.234 95 -12.86 0.000 -1413 -1039

admfem | -461.9072 342 -1.35 0.177 -1132 208
~cons | 6506.607 62 105.25 0.000 6385 6627 =56




Ex: Inference About Sex Assoc

— Is sex associated with mean salary?
* Need to test that slope parameters for female and
admfem are simultaneously 0

. test female admfem
(1) female = 0
( 2) admfem = 0

F( 2, 1593) 95.90
Prob > F = 0.0000

57

Ex: Inference for Admin Assoc

— Are administrative duties associated with
mean salary?
* Need to test that slope parameters for admin and
admfem are simultaneously 0

. test admin admfem
(1) admin = 0
( 2) admfem = 0

F( 2, 1593) 74.15
Prob > F = 0.0000 58

Continuous Predictors
* Modeling interactions with continuous
predictors is conceptually more
complicated
— Is a multiplicative interaction at all a
reasonable model for the data?
— Nonetheless, this is the most common way we

detect interactions

* | would caution against using the model as
predictions without carefully examining the data
— But this can be difficult, too 59

Example: SEP “Normal Ranges”

* We want to find normal ranges for
somatosensory evoked potential (SEP)
— As a first step, we want to consider important
predictors of nerve conduction times

« If any variables such as sex, age, height, race, etc.
are important predictors of nerve conduction times,
then it would make most sense to obtain normal
ranges within such groups

60




Example: SEP “Normal Ranges”

+ Scientifically, we might expect that height,
age, and sex are related to the nerve
conduction time

— Nerve length should matter, and height is a
surrogate for nerve length

— Age might affect nerve conduction times:
People slow down with age

— Sex: Men are SO fragile

61

Example: SEP “Normal Ranges”
* Prior to looking at the data, we can also
consider the possibility that interactions
between these variables might be
important
— Height - age interaction?
* Do we expect the difference in conduction times
between 6 foot tall and 5 foot tall 20 year olds to be

the same as the difference in conduction times
between 6 foot tall and 5 foot tall 80 year olds?

62

Example: SEP “Normal Ranges”
* We might suspect such an interaction due
to the fact that height may not be as good
a surrogate for nerve length in older
people
— With age, some people tend to shrink due to
osteoporosis and compression of
intervertebral discs

* It is not clear that nerve length would be altered in
such a process

63

Example: SEP “Normal Ranges”

* Thus, in young people, differences in
height probably are a better measure of
nerve length than in old people

* Tall old people probably have been tall always

+ Short old people will include some who were much
taller when they were young

64




Example: SEP “Normal Ranges”
» We can also consider the possibility of
three way interactions between height,
age, and sex
— Osteoporosis affects women far more than
men

* Hence, we might expect the height - age
interaction to be greatest in women and not so
important in men

65

Example: SEP “Normal Ranges”

* A two way interaction between height and
age that is different between men and
women defines a three way interaction
between height, age, and sex

66

Stratified Scatterplots

Average Time to p60 Peak: Females

Height (in.)

67

Example: SEP “Normal Ranges”

» Defining a regression model with
interactions

— We must create variables to model the three
way interaction term

68




Example: SEP “Normal Ranges”

* Furthermore, it is a VERY GOOQOD idea to
include all “main effects” and “lower order
interactions” in the model as well

* “main effects”: the individual variables which
contribute to the interaction

 “lower order terms”: all interactions that involve
some combination of the variables which
contribute to the interaction

69

Example: SEP “Normal Ranges”
* Most often, we lack sufficient information
to be able to guess what the true form of
an interaction might be
— The most popular approach is thus to
consider multiplicative interactions

* Create a new variable by merely multiplying the
two (or more) interacting predictors

70

Example: SEP “Normal Ranges”

» Thus for this problem we could create
variables
— HA = Height * Age
— HM = Height * Male
— AM = Age * Male
— HAM = Height * Age * Male

71

Example: SEP “Normal Ranges”

* Interpretation of the model parameters

— In the presence of higher order terms
(powers, interactions) interpretation of
parameters is not easy

» We can no longer use “the change associated with
a 1 unit difference in predictor holding other
variables constant”

— ltis generally impossible to hold other variables constant
when changing a covariate involved in an interaction

— If not impossible, it is often uninteresting

72




Example: SEP “Normal Ranges”

9000000000000 000000000000000CFO

Interpretation of the model in terms of the
SEP height relationship within age-sex
strata

73

Example: SEP “Normal Ranges”

E(p60 | Ht, Age,Male)z B+ By Ht+ p,Age+ B,,Male
+ B, HA+ By HM + B, AM + B,,,,, HAM

p60 - Height relationship for Age=a:
Sex Intercept Slope
F (ﬂo +ﬂAa) (ﬂ1 +ﬂHAa)
M (Bt B+ (Bt Buida) (B + By + (B + B Jo)

74

Example: SEP “Normal Ranges”

9000000000000 000000000000000CFO

* From the above, we see the importance of
including the main effects and lower order
terms

— E.g., leaving out the height - sex interaction is
tantamount to claiming that the p60 - height
relationship among newborns is the same for
the two sexes

* (It might be, but the chance that our lines would
predict the truth is very slight-- we are trying to
approximate relationships in other age ranges)

Example: Regression Output

9000000000000 000000000000000CFO

. regress p60 height age male HA HM AM HAM

p60 | Coef SE t P>|t| [95% CI]
height | 1.38 .363 3.81 0.000 .666 2.09
age | 1.13 .425 2.66 0.008 .292 1.97
male | 75.0 32.3 2.32 0.021 11.3 138
HA | -.015 .007 -2.26 0.025 =-.028 ~-.0019

HM | -1.12 .483 -2.34 0.020 -2.08 ~-.176
AM | -1.16 .582 -2.00 0.047 -2.31 ~-.0170
HAM | .0175 .009 2.00 0.047 .0002 .0347
_cons | -36.4 23.5 -1.55 0.122 -82.7 9.82
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Aside: Subgroup Analysis

9000000000000 000000000000000CFO

* If | restrict analysis to females, estimates

are the same in this “saturated” model
— (Restricting by age or height would differ due to
“borrowing information across groups)
* Inference can differ due to the estimate of the
residual standard error
. regress p60 height age HA if male==0
p60 | Coef SE t P>|t] [95% CI]
height | 1.38 .361 3.82 0.000 .665 2.10
age | 1.13 .424 2.67 0.009 .292 1.97
HA | -.015 .007 -2.27 0.025 -.028 -.002
_cons | -36.4 23.4 -1.56 0.122 -82.7 9.86 77

Interpreting Estimates
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* Figuring out what all these estimates
mean is nearly impossible

— | find it easiest to graph the predicted values

78

Lines Predicted By Model
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Average Time to p60 Peak: Females

Ra=20-3y0
Bb=35-50y0
Cio=50-65y0 3

‘Time to p60 Peak

50 55 60 65 70 75

55 60 65 70 75

Height (in)

Average Time to p60 Peak: Males

Time to p60 Peak
50 55 60 65 70 75
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Example: SEP “Normal Ranges”
* From the inference, we find a statistically
significant three way interaction
—P=.0471
* This would argue that | should make
predictions based on a model including the
3-way interaction
— But...
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Influence of Individual Cases

* | always worry that interactions might be
significant only because of a single
“outlier”
— If that were the case, | might choose not to

include the interaction (but | always include
the case)

— Looking ahead: | can “diagnose” such a
problem by assessing the influence of each
case

81

Example: SEP “Normal Ranges”
* | am now interested in ensuring that the
evidence for an interaction is not based
solely on a single person’s observation
— Hence, | consider 250 different regressions in
which | leave out each case in turn

— | plot the slope estimates and P values for
each variable as a function of which case | left
out

* Case 0 corresponds to using the full data set
82

Influence on Estimates

9000000000000 00000000000000000
Intercept Height Age Male

cccccc
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Influence on P values
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Example: SEP “Normal Ranges”
» Contrary to what | was afraid of, the only
influential case actually lessened the
evidence of an interaction
— When Case 140 is removed from the data, the
evidence for an interaction is a larger estimate
and a lower P value
— We can examine the scatterplot to see why
Case 140 might be so influential

85

Stratified Scatterplots

Average Time to p60 Peak: Females

Height (in.)
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Example: SEP “Normal Ranges”

» So now what do | do with Case 140

— From the influence diagnostics, | now feel
comfortable with the fact that the data really
do suggest a three way interaction

87

Example: SEP “Normal Ranges”

» Personally, | do NOT remove the case
from the dataset when making my

prediction intervals
* | do not know why Case 140 is so unusual

* It is possible that people like her are actually more
prevalent in the population than my sample would

suggest
— My best guess is that she represents 0.4% of the
population, so leave her in
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Modeling Complex
“Dose-Response”

900000000000 0000000000000000OCCTC

89

Linear Predictors

* The most commonly used regression
models use “linear predictors”
—“Linear” refers to linear in the parameters

— The modeled predictors can be
transformations of the scientific
measurements

» Examples

g[@ |Xi’VVi:|:ﬂ0 +ﬂlog)( xlog(Xi)
glo|x,.w )= B, + By x X, + B . x X?

90

Transformations of Predictors

9000000000000 000000000000000CFO

» We transform predictors to provide more
flexible description of complex
associations between the response and
some scientific measure

» Threshold effects

» Exponentially increasing effects
» U-shaped functions

» S-shaped functions

* efc.
91

Ex: Cubic Relationship
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FEV vs Height in Children

FEV (lisec)

Height (in.)
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Ex: Threshold Effect of Dose?

9000000000000 000000000000000CFO

Plasma Beta-carotene at 3 months by Dose Plasma Beta-carotene at 9 months by Dose
°
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Ex: U-shaped Trend?

9000000000000 000000000000000CFO

* Inflammatory marker vs cholesterol

Lowess smoother, bandwidth = .8

100
&=
2
g
s
2
g 50
8
g
o
04

o

200
Cholesterol (mg/dl)

Ex: S-shaped trend
* In vitro cytotoxic effect of Doxorubicin with
chemosensitizers

Chemosensitizers

3
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Concentration of Doxirubicin

“1:1 Transformations”

9000000000000 000000000000000CFO

» Sometimes we transform 1 scientific
measurement into 1 modeled predictor

— Ex: log transformation will sometimes address
apparent “threshold effects”

— Ex: cubing height produces more linear
association with FEV
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Log Transformations

Untransformed Log Transformed X

“1:Many Transformations”

» Sometimes we transform 1 scientific
measurement into several modeled
predictor
— Ex: “polynomial regression”

— Ex: “dummy variables” (“factored variables”)
— Ex: “piecewise linear”
— Ex: “splines”

98

Polynomial Regression

« Fit linear term plus higher order terms
(squared, cubic, ...)
— Can fit arbitrarily complex functions
— An n-th order polynomial can fit n+1 points exactly
— Generally very difficult to interpret parameters
— lusually graph function when | want an interpretation
— Special uses
« 2" order (quadratic) model to look for U-shaped
trend
« Test for linearity by testing that all higher order
terms have parameters equal to zero

99

Ex: FEV — Height Assoc Linear?

* We can try to assess whether any
association between mean FEV and
height follows a straight line association

— | fit a 3" order (cubic) polynomial due to the
known scientific relationship between volume
and height

100




Ex: FEV — Height Assoc Linear?

9000000000000 00000COCOIOIOIOIOTIOOOYTTYS
. g htsgr= height”"2
. g htcub = height”3
. regress fev height htsqgr htcub, robust

Linear regression Number of obs = 654
Prob > F = 0.0000
R-squared = 0.7742
Root MSE = .41299

| Robust
fev | Coef SE t P>|t] [95% C I]

height | .0306 .635 0.05 0.962 -1.22 1.28

htsgr | -.0015 .0108 -0.14 0.888 -.0227 .0196

htcub | .00003 .00006 0.43 0.671 -.00009 .0001

_cons | .457 12.4 0.04 0.971 -23.8 24.76 101

Ex: FEV — Height Assoc Linear?

9000000000000 000000000000000CFO

* Note that the P values for each term were
not significant

— But these are addressing irrelevant questions:

« After adjusting for 2" and 3 order relationships, is
the linear term important?

« After adjusting for linear and 3™ order
relationships, is the squared term important?

« After adjusting for linear and 2" order
relationships, is the cubed term important
— We need to test 2nd and 3rd order terms

. 102
simultaneously

Ex: FEV — Height Assoc Linear?

9000000000000 000000000000000CFO

. test htsgr htcub

(1) htsgr =0
( 2) htcub

F( 2, 650) 30.45
Prob > F = 0.0000
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Ex: FEV — Height Assoc Linear?

9000000000000 000000000000000CFO

» We find clear evidence that the trend in
mean FEV versus height is nonlinear

— (Had we seen P > 0.05, we could not be sure
it was linear— it could have been nonlinear in
a way that a cubic polynomial could not
detect)
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Ex: log FEV — Ht Assoc Linear?

9000000000000 000000000000000CFO

* We can try to assess whether any
association between mean log FEV and
height follows a straight line association

— | again fit a 3" order (cubic) polynomial, but
don’t really have a good reason to do this
rather than some other polynomial

105

Ex: log FEV — Ht Assoc Linear?

9000000000000 00000COCOIOIOIOIOTIOOOYTTYS
. g logfev = log(fev)
. regress logfev height htsgr htcub, robust

Linear regression Number of obs = 654
F( 3, 650) = 730.53
Prob > F = 0.0000
R-squared = 0.7958
Root MSE = .15094

| Robust

logfev | Coef SE t P>|t| [95% C I]

height | .0707 .24835 0.28 0.776 -.417 .558

htsgr | -.0002 .00410 -0.04 0.964 -.0082 .008

htcub | 3e-07 .00002 0.01 0.989 -.00004 .00004

_cons | -2.79 4.985 -0.56 0.576 -12.6 6.997 108

Ex: log FEV — Ht Assoc Linear?

9000000000000 000000000000000CFO

* Note that again that the P values for each
term were not significant
— But these are addressing irrelevant questions:

— We need to test 2nd and 3™ order terms
simultaneously
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Ex: log FEV — Ht Assoc Linear?

9000000000000 000000000000000CFO

. test htsgr htcub

(1) htsgr =0
( 2) htcub 0

F( 2, 650)
Prob > F

0.29
0.7464
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Ex: log FEV — Ht Assoc Linear?

* We do not find clear evidence that the
trend in mean FEV versus height is
nonlinear
— This does not prove linearity, because it could

have been nonlinear in a way that a cubic
polynomial could not detect

* (But | would think that the cubic would have picked
up most patterns of nonlinearity likely to occur in
this setting)

109

Ex: log FEV — Ht Assoc Linear?

* We have not addressed the question of
whether log FEV is associated with height

— This question could have been addressed in
the cubic model by

* Testing all three height-derived variables
simultaneously

* OR (because only height-derived variables are
included in the model) looking at the overall F test
— Alternatively, fit a model with only the height

* But generally bad to go fishing for models o

Ex: log FEV — Ht Assoc?

. regress logfev height, robust

Linear regression Number of obs = 654
F( 1, 652) = 2155.08
Prob > F = 0.0000
R-squared = 0.7956
Root MSE = .15078

| Robust
logfev | Coef. Std. Err. t P>|t]|
[95% Conf. Interval]
height | .0521 .0011 46.42 0.000 .0499 .0543

_cons | -2.27 .0686 -33.13 0.000 -2.406 -2.137
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Dummy Variables

* Indicator variables for all but one group

— This is the only appropriate way to model
nominal (unordered) variables
* E.g., for marital status
— Indicator variables for
» married (married = 1, everything else = 0)
» widowed (widowed = 1, everything else = 0)
» divorced (divorced = 1, everything else = 0)
» (single would then be the intercept)
— Often used for other settings as well

— Equivalent to “Analysis of Variance (ANOVA)*




Ex: Mean Salary by Field

9000000000000 000000000000000CFO

* Field is a nominal variable, so we must
use dummy variables

— | decide to use “Other” as a reference group,
so generate new indicator variables for Fine

Arts and Professional fields
. g arts= 0
. replace arts=1 if field==1
(2840 real changes made)
. g prof= 0
. replace prof=1 if field==3
(3809 real changes made) 113

Ex: Mean Salary by Field
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. regress salary arts prof if year==95, robust

Linear regression Number of obs = 1597
F( 2, 1594) = 120.85
Prob > F = 0.0000
R-squared = 0.1021
Root MSE = 1931.2
| Robust
salary | Coef SE t P>t [95% CI]
arts | -1014 105 -9.67 0.000 -1219 -808
prof | 1225 134 9.16 0.000 963 1487
~cons | 6292 61.1 103.03 0.000 6172 6411
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Ex: Interpretation of Intercept
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» Based on coding used

— Intercept corresponds to mean salary for
faculty in “Other” fields
 These faculty will have arts==0 and prof==0

— Estimated mean salary is $6,292 / month
—95% Cl: $6,172 to $6,411 / month
— Highly statistically different from $0 / month
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Ex: Interpretation of Slopes
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» Based on coding used
— Slope for “arts” is difference in mean salary
between “Fine Arts” and “Other” fields

* Fine arts faculty will have arts==1 and prof==0;
“Other” fields wil have arts==0 and prof==0

— Estimated difference in mean monthly salary
is $1,014 lower for fine arts

—95% CI: $808 to $1,219 / month lower
— Highly statistically different from $0

116




Ex: Interpretation of Slopes
» Based on coding used
— Slope for “prof” is difference in mean salary
between “Professional” and “Other” fields

* Professional faculty will have arts==0 and prof==1;
“Other” fields wil have arts==0 and prof==0

— Estimated difference in mean monthly salary
is $1,225 higher for professional

—95% ClI: $963 to $1,487 / month higher

— Highly statistically different from $0

17

Ex: Descriptive Statistics

* Because we modeled the three groups
with two predictors plus intercept, the
estimates agree exactly with sample
means

. table field if year==95, co(mean salary)

field | mean(salary)
Arts | 5278.082
Other | 6291.638
Prof | 7516.67

118

Ex: Hypothesis Test

 To test for different mean salaries by field

— We have modeled field with two variables

 Both slopes would have to be zero for there to be
no association between field and mean salary

— Simultaneous test of the two slopes

* We can use the Stata “test’” command
. test arts prof
F( 2, 1594) = 120.85
Prob > F = 0.0000
* OR because only field variables are in the model,
we can use the overall F test 119

Stata: Dummy Variables

 Stata has a facility to automatically create
dummy variables
— Prefix regression commands with “xi: ..

— Prefix variables to be modeled as dummy
variables with “i . varname”

— (Stata will drop the lowest category)

”
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Stata: Dummy Variables

9000000000000 00000COCOIOIOIOIOTIOOOYTTYS
. xi: regress salary i.field if year==95, robust
i.field Ifield 1-3(ntrlly coded; Ifield 1 omitted)

Linear regression Number of obs = 1597
F( 2, 1594) = 120.85
Prob > F = 0.0000
R-squared = 0.1021
Root MSE = 1931.2
| Robust
salary | Coef SE t P>|t] [95% C I]
_Ifield 2 | 1014 105 9.67 0.000 808 1219
_Ifield 3 | 2239 146 15.30 0.000 1952 2526
_cons | 5278 85.2 61.94 0.000 5111 5445
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Ex: Correspondence

* This regression model is the exact same
as the one in which | modeled “arts” and
Hprof”
— Merely “parameterized” (coded) differently

» Two models are equivalent if they lead to
the exact same estimated parameters
— Inference about corresponding parameters

will be the same no matter how it is

parameterized
122

Continuous Variables
» We can also use dummy variables to
represent continuous variables

— Continuous variables measured at discrete
levels
« E.g., dose in an interventional experiment

— Continuous variables divided into categories
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Relative Advantages

« Dummy variables fits groups exactly
— If no other predictors in the model, parameter
estimates correspond exactly with descriptive
statistics
» With continuous variables, dummy
variables assume a “step function” is true
* Modeling with dummy variables ignores
order of predictor of interest
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Choice of Model for Analysis

» Compare power of linear continuous
versus ANOVA as a function
— of trend in means and
— standard errors within groups

125

ANOVA (dummy variables)

* Fits group means exactly

* Does not mix “random error” with
“systematic error:

* Ignores the ordering of the groups, so it
gains no power from trends

» The same level of significance is obtained no
matter what permutation of dose groups is
considered
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Linear Continuous Models

» Borrows information across groups
— Accurate, efficient if model is correct

* If model incorrect, mixes “random” and
“systematic” error

+ Can gain power from ordering of groups in
order to detect a trend

— But, no matter how low the standard error is, if
there is no trend in the mean, there is no
statistical significance
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Hypothetical Settings

Linear: Highest Power; ANOVA: High Power Linear: Moderate Power; ANOVA: Low Power
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Other Options

* We can model continuous variables with
other flexible models

— Combinations of linear trends and indicator
variables

— Splines
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