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Lecture Outline

• Adjustment for confounders / precision
• Effect modification
• Modeling complex “dose response”
• Testing for linearity

3

Adjustment for Confounders, 
Precision Variables

4

Adjustment for Covariates

• We “adjust” for other covariates
– Define groups according to

• Predictor of interest, and
• Other covariates

– Compare the distribution of response across 
groups which

• differ with respect to the Predictor of Interest, but
• are the same with respect to the other covariates

– “holding other variables constant”
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Unadjusted vs Adjusted Models

• Adjustment for covariates changes the 
scientific question
– Unadjusted models

• Slope compares parameters across groups 
differing by 1 unit in the modeled predictor

– Groups may also differ with respect to other variables

– Adjusted models
• Slope compares parameters across groups 

differing by 1 unit in the modeled predictor but 
similar with respect to other modeled covariates 

6

Interpretation of Slopes

• Difference in interpretation of slopes

– β1 = Compares θ for groups differing by 1 unit in X
• (The distribution of W might differ across groups being 

compared)

– γ1 = Compares θ for groups differing by 1 unit in X, 
but agreeing in their values of W

[ ] iiii WXWXg ×+×+= 210,  :Model Adjusted γγγθ

[ ] ii XXg ×+= 10     :Model Unadjusted ββθ
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Comparing models
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Linear Regression

• Difference in interpretation of slopes

– β1 = Diff in mean Y for groups differing by 1 unit in X
• (The distribution of W might differ across groups being 

compared)

– γ1 = Diff in mean Y for groups differing by 1 unit in X, 
but agreeing in their values of W

[ ] iiiii WXWXYE ×+×+= 210,  :Model Adjusted γγγ

[ ] iii XXYE ×+= 10     :Model Unadjusted ββ
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Relationships: True Slopes
• The slope of the unadjusted model will tend to 

be

• Hence, true adjusted and unadjusted slopes for 
X are estimating the same quantity only if
– ρXW = 0   (X and W are truly uncorrelated), OR
– (no association between W and Y after 

adjusting for X)

211 γ
σ
σργβ
X

W
XW+=

02 =γ
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Relationships: Estimated Slopes
• The estimated slope of the unadjusted model 

will be

• Hence, estimated adjusted and unadjusted 
slopes for X are equal only if
– rXW = 0   (X and W are uncorrelated in the sample, 

which can be arranged by experimental design), OR
– (which cannot be predetermined, because Y 

is random)
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Relationships: True SE
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Relationships: True SE
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Relationships: Estimated SE
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Relationships: Estimated SE
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Residual Squared Error
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Relationships: Estimated SE

( ) ( )
( ) ( )

( ) ( )

( ) ( ) 0ˆ if ,||  and  ,0
OR

,|| casein which   ,0ˆ
 if ˆˆ Now

ˆˆˆ,|

ˆˆ|

2

2

11

2
210

2

10

≠>=

==
=

×−×−−=

×−−=

∑
∑

γ

γ
γβ

γγγ

ββ

WXYSSEXYSSEr

WXYSSEXYSSE

WXYWXYSSE

XYXYSSE

XW

iii

ii



Applied Biostatistics II, WIN 2006 January 30, 2006

Part 1:5

17

Special Cases

• Behavior of unadjusted and adjusted 
models according to whether
– X and W are uncorrelated
– W is associated with Y after adjustment for X
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Precision Variables

• E.g., independence in population, or 
completely randomized experiment
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Stratified Randomization

• Stratified randomization in a designed 
experiment

( ) ( ) ( ) ( )1111

1111

2

ˆˆˆˆˆˆ       Errs Std

ˆˆ                Slopes

Estimates               Value True                       

00

γβγβ

γβγβ

γ

esessese

rXW

>=

==

≠=

20

Confounding

• Causally associated with response and 
associated with POI in sample
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Variance Inflation

• Associated with POI in sample, but not 
associated with response

( )
( ) ( ) ( ) ( )1111

21111

2

ˆˆˆˆˆˆ       Errs Std

ˆ1ˆˆ                 Slopes

Estimates                                   Value True                       
00

γβγβ

γγβγβ

γ

esessese

rrrs
sr

r

XWYWYXX

W
XW

XW

<<



















−

+==

=≠

22

Irrelevant Variables

• Uncorrelated with POI in sample, and not 
associated with response
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Stata: Multiple Regression

• In Stata, we use the same commands as 
were used for simple regression
– We just list more variable names
– Interpretation of CI, P values for coefficient 

estimates now relate to new scientific 
interpretation of intercept and slopes

– Test of entire regression model also provided
• A test that all slopes are equal to 0

24

Ex: FEV and Smoking
. regress logfev smoker if age>=9, robust

Number of obs =     439
F(  1,   437) =   10.45
Prob > F      =  0.0013
R-squared     =  0.0212
Root MSE      =  .24765

|         Robust
logfev |   Coef. St Err    t    P>|t|   [95% CI]
smoker |   .102  .0317   3.23  0.001   .040   .165
_cons |  1.058  .0129  81.82  0.000  1.033  1.084
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Unadjusted Interpretation

• Intercept
–Geometric mean of FEV in nonsmokers is 2.88 l/sec

• The scientific relevance is questionable here, because we 
do not really know the population our sample represents

– Comparing smokers to nonsmokers is more useful than 
looking at either group by itself

• (Calculations: e1.058= 2.881)
• (The P value is of no importance whatsoever, it is testing 

that the log geometric mean is 0 or that the geometric mean 
is 1. Why would we care?)

–(Because smoker is a binary variable, the estimate 
corresponds to the sample geometric mean)

26

Unadjusted Interpretation

• Smoking effect
– Geometric mean of FEV is 10.8% higher in smokers 

than in nonsmokers (95% CI: 4.1% to 17.9% higher)
• These results are atypical of what we might expect with no 

true difference between groups: P = 0.001
• (Calculations: e0.102= 1.108; e0.040= 1.041; e0.165= 1.179)

– (Note that exp (x) is approx 1+x for x close to 0)

– (Because smoker is a binary (0-1) variable, this 
analysis is nearly identical to a two sample t test 
allowing for unequal variances)

27

Ex: Adjusted for Age
. regress logfev smoker age if age>=9, robust

Number of obs =     439
F(  2,   437) =   82.28
Prob > F      =  0.0000
R-squared     =  0.3012
Root MSE      =  .20949

|         Robust
logfev |   Coef. St Err    t    P>|t|   [95% CI]
smoker |  -.051  .0344  -1.49  0.136  -.119   .016

age |   .064  .0051  12.37  0.000   .053   .074
_cons |  0.352  .0575   6.12  0.000   .239   .465

28

Age Adjusted Interpretation

• Intercept
–Geometric mean of FEV in newborn 
nonsmokers is 1.42 l/sec

• Intercept corresponds to the log geometric mean 
in a group having all predictors equal to 0

• There is no scientific relevance is here, because 
we are extrapolating outside our data

• (Calculations: e0.352= 1.422)



Applied Biostatistics II, WIN 2006 January 30, 2006

Part 1:8

29

Age Adjusted Interpretation

• Age effect
–Geometric mean of FEV is 6.6% higher for 
each year difference in age between two 
groups with similar smoking status(95% CI: 
5.5% to 7.6% higher for each year difference in 
age)

• These results are highly atypical of what we 
might expect with no true difference in the 
geometric mean FEV between age groups having 
similar smoking status: P < 0.0005

30

Age Adjusted Interpretation
• Smoking effect

– Geometric mean of FEV is 5.0% lower in smokers 
than in nonsmokers of the same age (95% CI: 12.2% 
lower to 1.6% higher)

• These results are not atypical of what we might expect with 
no true difference between groups of the same age: P = 
0.136

– Lack of statistical significance is also evident because the 
confidence interval contains 1 (as a ratio) or 0 (as a percent 
difference)

• (Calculations: e-0.051= 0.950; e-0.119= 0.888; e0.016= 1.016)
– (Note that exp (x) is approx 1+x for x close to 0)

31

Age Adjusted Comments
• Comparing unadjusted and age adjusted 

analyses
– Marked difference in effect of smoking suggests that 

there was indeed confounding
• Age is a relatively strong predictor of FEV
• Age is associated with smoking in the sample

– Mean (SD) of age in analyzed smokers: 11.1 (2.04)
– Mean (SD) of age in analyzed nonsmokers: 13.5 (2.34)

– Effect of age adjustment on precision
• Lower Root MSE (.209 vs .248) would tend to increase 

precision of estimate of smoking effect
• Association between smoking and age tends to lower 

precision
• Net effect: Less precision (adj SE 0.034 vs unadj SE 0.031)

32

Ex: Adjusted for Age, Height
. regress logfev smoker age loght if age>=9, robust

Number of obs =     439
F(  3,   437) =  284.22
Prob > F      =  0.0000
R-squared     =  0.6703
Root MSE      =  .14407

|         Robust
logfev |   Coef. St Err    t    P>|t|    [95% CI]
smoker |  -.054  .0241  -2.22  0.027   -.101   -.006

age |   .022  .0035   6.18  0.000    .015    .028
loght |  2.870  .1280  22.42  0.000   2.618   3.121
_cons |-11.095  .5153 -21.53  0.000 -12.107 -10.082



Applied Biostatistics II, WIN 2006 January 30, 2006

Part 1:9

33

Age, Ht Adjusted Interpretation

• Intercept
– Geometric mean of FEV in newborn nonsmokers who 

are 1 inch high is 0.000015 l/sec
• Intercept corresponds to the log geometric mean in a group 

having all predictors equal to 0
– Nonsmokers
– Age 0 (newborn)
– Log height 0 (height 1 inch)

• There is no scientific relevance is here, because there are no 
such people in our sample OR the population

34

Age, Ht Adjusted Interpretation
• Age effect

– Geometric mean of FEV is 2.2% higher for each year 
difference in age between two groups with similar 
height and smoking status (95% CI: 1.5% to 2.9% 
higher for each year difference in age)

• These results are highly atypical of what we might expect 
with no true difference in the geometric mean FEV between 
age groups having similar height and smoking status: P < 
0.0005

– Note that there is clear evidence that height 
confounded the age effect estimated in the analysis 
which modeled only smoking and age

• But there is a clear independent effect of age on FEV

35

Age, Ht Adjusted Interpretation
• Height effect

– Geometric mean of FEV is 31.5% higher for each 
10% difference in height between two groups with 
similar ages and smoking status (95% CI: 28.3% to 
34.6% higher for each 10% difference in height)

• These results are highly atypical of what we might expect 
with no true difference in the geometric mean FEV between 
height groups having similar age and smoking status: P < 
0.0005

• (Calculations: 1.12.867= 1.315)
– Note that the regression coefficient of 2.870 (95% CI 

2.618 to 3.121) is consistent with the scientifically 
derived value of 3.0

36

Age, Ht Adjusted Interpretation

• Smoking effect
– Geometric mean of FEV is 5.2% lower in smokers 

than in nonsmokers of the same age and height (95% 
CI: 9.6% to 0.6% lower)

• These results are atypical of what we might expect with no 
true difference between groups of the same age and height: 
P = 0.027

• (Calculations: e-0.054= .948; e-0.101= .904; e-0.006= .994)

– Note the wording “same age and height” even though 
I adjusted using a log transformation of height.

• Equal log heights lead to equal heights
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Age, Ht Adjusted Comments

• Comparing age and age-height adjusted 
analyses
– No difference in effect of smoking suggests there was 

no more confounding after age adjustment
– Effect of height adjustment on precision

• Lower Root MSE (.144 vs .209) would tend to increase 
precision of estimate of smoking effect

• Little association between smoking and height after 
adjustment for age will not tend to lower precision

• Net effect: Higher precision (adj SE 0.024 vs unadj SE 0.034)

38

Effect Modification

39

Effect Modifier

• The association between Response and 
POI differs in strata defined by effect 
modifier

• Statistical term: “Interaction”
– Depends on the measurement of effect

• Summary measure
– Mean, geometric mean, median, proportion, odds, 

hazard, etc.

• Comparison across groups
– Difference, ratio

40

Analysis of Effect Modification

• When the scientific question involves 
effect modification, analyses must be 
within each stratum separately
– If we want to estimate degree of effect 

modification or test for its existence:
• A regression model will typically include

– Predictor of interest
– Effect modifier
– A covariate modeling the interaction (usually product)
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Model for Effect Modification

• Typical model for effect modification
– Include “main effects” (can be bad not to)

• X (or predictors that involve only X)
• W (or predictors that involve only W)

– Include “interactions”
• Predictor(s) derived from both X and W

[ ] ( )
iiXWiWiX

iXWiWiXii

WXWX
XWWXWXg
××+×+×+=

×+×+×+=

ββββ
ββββθ

0

0, 

42

Interpretation of Parameters

• Usual approach a bit more difficult
– We can try using the idea of “comparison of θ

across groups differing by 1 unit in 
corresponding predictor but agreeing in other 
modeled predictors”

– However, terms involving two scientific 
variables makes this approach difficult

[ ] iiXWiWiXii WXWXWXg ××+×+×+= ββββθ 0, 

43

Intercept

• Interpretation of intercept straightforward
– β0 corresponds to X= 0, W= 0

• May not be scientifically meaningful

[ ] iiXWiWiXii WXWXWXg ××+×+×+= ββββθ 0, 

44

Slopes for Main Effects

• Interpretation of main effects
– βX corresponds to 1 unit difference in X

holding W and (X×W) constant
• So 1 unit difference in X when W= 0
• May not be scientifically meaningful

– βW corresponds to 1 unit difference in W
holding X and (X×W) constant

• So 1 unit difference in W when X= 0
• May not be scientifically meaningful

[ ] iiXWiWiXii WXWXWXg ××+×+×+= ββββθ 0, 
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Slope for interaction

• Interpretation of interaction difficult
– βXW corresponds to 1 unit difference in (X×W)

holding X and W constant
• Impossible, so we need another way to interpret 

this slope parameter

[ ] iiXWiWiXii WXWXWXg ××+×+×+= ββββθ 0, 
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Consider Scientific Predictors
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Consider Scientific Predictors
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Symmetry of Effect Modification

• Note that if X modifies the association 
between Y and W, then W modifies the 
association between Y and X
– Aside: Confounding need not be symmetric

• W can confound the association between Y and X, 
but X not confound the association between Y and W

– W and X associated in the sample
– Y and X not associated after adjusting for W
– Y and W associated after adjusting for X
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Inference for Effect Modification

• No effect modification if βXW = 0
– Hence, inference about existence of effect 

modification tests that βXW = 0
• We can perform such inference using standard 

regression output for the corresponding slope 
parameter

[ ] iiXWiWiXii WXWXWXg ××+×+×+= ββββθ 0, 

50

Inference for Main Effect Slope

• Interpretation of βX = 0
– Same intercept in all strata defined by W
– Generally a very uninteresting question
– We rarely make inference on main effect 

slopes by themselves

[ ] iiXWiWiXii WXWXWXg ××+×+×+= ββββθ 0, 

51

Inference About Effect of X

• Response parameter not associated with  
X if βX = 0 AND βXW = 0 
– We will need to construct special tests that 

both parameters are simulataneously 0
• The t tests given in regression output consider only 

one slope parameter at a time

[ ] iiXWiWiXii WXWXWXg ××+×+×+= ββββθ 0, 

52

Stata: Testing Multiple Slopes

• Stata has easy method for performing test 
that multiple parameters are 
simultaneously 0
– Perform any regression command
– Then use “test var1 var2 …”

• Provides P value of the hypothesis test based on 
most recently executed regression command of 
any type of regression
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Ex: Salary by Sex and Admin

• Does sex modify the association between 
mean salary and administrative duties
– With two binary variables, modeling 

interaction by product is the obvious choice

[ ]
iiAF

iFiA

FemAdm
FemAdmAdmFemSal

××
+×+×+=

β
βββ0,|E 

54

Ex: Stata output
. g admfem= admin * female
. regress salary admin female admfem if year==95, 
Linear regression          Number of obs =    1597

F(  3,  1593) =  125.26
Prob > F      =  0.0000
R-squared     =  0.1615
Root MSE      =  1866.9

|           Robust
salary |    Coef.  StdErr t    P>|t|   [95% CI]
admin |  1951.378   176  11.06 0.000  1605  2297
female | -1226.234    95 -12.86 0.000 -1413 -1039
admfem | -461.9072   342  -1.35 0.177 -1132   208
_cons |  6506.607    62 105.25 0.000  6385  6627

55

Ex: Descriptive Statistics

• Note that with two binary variables, the 
regression parameters agree exactly with 
the corresponding group sample means

. table admin female if year==95, co(mean salary)

|       female      
admin |     Male    Female

Nonadmin | 6506.607  5280.373
Admin | 8457.985  6769.844

56

Ex: Inference About Eff Mod

– Does sex modify association between mean 
salary and administrative duties?

• Estimate that the “administrative supplement” 
averages $462 less for women than men

– 95% CI: $1132 less to $208 more
– Not statistically significant: P = 0.177

|                  Robust
salary |    Coef.  StdErr t    P>|t|   [95% CI]
admin |  1951.378   176  11.06 0.000  1605  2297
female | -1226.234    95 -12.86 0.000 -1413 -1039
admfem | -461.9072   342  -1.35 0.177 -1132   208
_cons |  6506.607    62 105.25 0.000  6385  6627
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Ex: Inference About Sex Assoc

– Is sex associated with mean salary?
• Need to test that slope parameters for female and 
admfem are simultaneously 0

. test female admfem
( 1)  female = 0
( 2)  admfem = 0

F(  2,  1593) =   95.90
Prob > F =    0.0000
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Ex: Inference for Admin Assoc

– Are administrative duties associated with 
mean salary?

• Need to test that slope parameters for admin and 
admfem are simultaneously 0

. test admin admfem
( 1)  admin = 0
( 2)  admfem = 0

F(  2,  1593) =   74.15
Prob > F =    0.0000

59

Continuous Predictors

• Modeling interactions with continuous 
predictors is conceptually more 
complicated
– Is a multiplicative interaction at all a 

reasonable model for the data?
– Nonetheless, this is the most common way we 

detect interactions
• I would caution against using the model as 

predictions without carefully examining the data
– But this can be difficult, too 60

Example: SEP “Normal Ranges”

• We want to find normal ranges for 
somatosensory evoked potential (SEP)
– As a first step, we want to consider important 

predictors of nerve conduction times
• If any variables such as sex, age, height, race, etc. 

are important predictors of nerve conduction times, 
then it would make most sense to obtain normal 
ranges within such groups
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Example: SEP “Normal Ranges”

• Scientifically, we might expect that height, 
age, and sex are related to the nerve 
conduction time
– Nerve length should matter, and height is a 

surrogate for nerve length
– Age might affect nerve conduction times: 

People slow down with age
– Sex: Men are SO fragile

62

Example: SEP “Normal Ranges”

• Prior to looking at the data, we can also 
consider the possibility that interactions 
between these variables might be 
important
– Height - age interaction?

• Do we expect the difference in conduction times 
between 6 foot tall and 5 foot tall 20 year olds to be 
the same as the difference in conduction times 
between 6 foot tall and 5 foot tall 80 year olds?

63

Example: SEP “Normal Ranges”

• We might suspect such an interaction due 
to the fact that height may not be as good 
a surrogate for nerve length in older 
people
– With age, some people tend to shrink due to 

osteoporosis and compression of 
intervertebral discs

• It is not clear that nerve length would be altered in 
such a process

64

Example: SEP “Normal Ranges”

• Thus, in young people, differences in 
height probably are a better measure of 
nerve length than in old people

• Tall old people probably have been tall always
• Short old people will include some who were much 

taller when they were young
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Example: SEP “Normal Ranges”

• We can also consider the possibility of 
three way interactions between height, 
age, and sex
– Osteoporosis affects women far more than 

men
• Hence, we might expect the height - age 

interaction to be greatest in women and not so 
important in men

66

Example: SEP “Normal Ranges”

• A two way interaction between height and 
age that is different between men and 
women defines a three way interaction 
between height, age, and sex

67

Stratified Scatterplots
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Example: SEP “Normal Ranges”

• Defining a regression model with 
interactions
– We must create variables to model the three 

way interaction term
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Example: SEP “Normal Ranges”

• Furthermore, it is a VERY GOOD idea to 
include all “main effects” and “lower order 
interactions” in the model as well

• “main effects”: the individual variables which 
contribute to the interaction

• “lower order terms”: all interactions that involve 
some combination of the variables which 
contribute to the interaction

70

Example: SEP “Normal Ranges”

• Most often, we lack sufficient information 
to be able to guess what the true form of 
an interaction might be
– The most popular approach is thus to 

consider multiplicative interactions
• Create a new variable by merely multiplying the 

two (or more) interacting predictors

71

Example: SEP “Normal Ranges”

• Thus for this problem we could create 
variables
– HA = Height * Age
– HM = Height * Male
– AM = Age * Male
– HAM = Height * Age * Male

72

Example: SEP “Normal Ranges”

• Interpretation of the model parameters
– In the presence of higher order terms 

(powers, interactions) interpretation of 
parameters is not easy

• We can no longer use “the change associated with 
a 1 unit difference in predictor holding other 
variables constant”

– It is generally impossible to hold other variables constant 
when changing a covariate involved in an interaction

– If not impossible, it is often uninteresting
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Example: SEP “Normal Ranges”

Interpretation of the model in terms of the 
SEP height relationship within age-sex 
strata

74

Example: SEP “Normal Ranges”
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Example: SEP “Normal Ranges”

• From the above, we see the importance of 
including the main effects and lower order 
terms
– E.g., leaving out the height - sex interaction is 

tantamount to claiming that the p60 - height 
relationship among newborns is the same for 
the two sexes

• (It might be, but the chance that our lines would 
predict the truth is very slight-- we are trying to 
approximate relationships in other age ranges)
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Example: Regression Output
. regress p60 height age male HA HM AM HAM

p60 |  Coef SE    t   P>|t|      [95% CI]
height |  1.38 .363  3.81 0.000   .666    2.09

age |  1.13 .425  2.66 0.008   .292    1.97
male |  75.0 32.3  2.32 0.021   11.3    138

HA | -.015 .007 -2.26 0.025  -.028  -.0019
HM | -1.12 .483 -2.34 0.020  -2.08  -.176
AM | -1.16 .582 -2.00 0.047  -2.31  -.0170
HAM | .0175 .009  2.00 0.047  .0002   .0347

_cons | -36.4 23.5 -1.55 0.122  -82.7    9.82
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Aside: Subgroup Analysis

• If I restrict analysis to females, estimates 
are the same in this “saturated” model

– (Restricting by age or height would differ due to 
“borrowing information across groups)

• Inference can differ due to the estimate of the 
residual standard error

. regress p60 height age HA   if male==0
p60 |  Coef SE    t   P>|t|   [95% CI]

height |  1.38 .361  3.82 0.000  .665  2.10
age |  1.13 .424  2.67 0.009  .292  1.97
HA | -.015 .007 -2.27 0.025 -.028 -.002

_cons | -36.4 23.4 -1.56 0.122 -82.7  9.86 78

Interpreting Estimates

• Figuring out what all these estimates 
mean is nearly impossible
– I find it easiest to graph the predicted values

79

Lines Predicted By Model
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Example: SEP “Normal Ranges”

• From the inference, we find a statistically 
significant three way interaction
– P= .0471

• This would argue that I should make 
predictions based on a model including the 
3-way interaction
– But…
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Influence of Individual Cases

• I always worry that interactions might be 
significant only because of a single 
“outlier”
– If that were the case, I might choose not to 

include the interaction (but I always include 
the case)

– Looking ahead: I can “diagnose” such a 
problem by assessing the influence of each 
case

82

Example: SEP “Normal Ranges”

• I am now interested in ensuring that the 
evidence for an interaction is not based 
solely on a single person’s observation
– Hence, I consider 250 different regressions in 

which I leave out each case in turn
– I plot the slope estimates and P values for 

each variable as a function of which case I left 
out

• Case 0 corresponds to using the full data set 
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Influence on P values
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Example: SEP “Normal Ranges”

• Contrary to what I was afraid of, the only 
influential case actually lessened the 
evidence of an interaction
– When Case 140 is removed from the data, the 

evidence for an interaction is a larger estimate 
and a lower P value

– We can examine the scatterplot to see why 
Case 140 might be so influential
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Stratified Scatterplots
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Example: SEP “Normal Ranges”

• So now what do I do with Case 140
– From the influence diagnostics, I now feel 

comfortable with the fact that the data really 
do suggest a three way interaction

88

Example: SEP “Normal Ranges”

• Personally, I do NOT remove the case 
from the dataset when making my 
prediction intervals

• I do not know why Case 140 is so unusual
• It is possible that people like her are actually more 

prevalent in the population than my sample would 
suggest

– My best guess is that she represents 0.4% of the 
population, so leave her in 
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Modeling Complex 
“Dose-Response”

90

Linear Predictors

• The most commonly used regression 
models use “linear predictors”
– “Linear” refers to linear in the parameters
– The modeled predictors can be 

transformations of the scientific 
measurements

• Examples
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Transformations of Predictors

• We transform predictors to provide more 
flexible description of complex 
associations between the response and 
some scientific measure

• Threshold effects
• Exponentially increasing effects
• U-shaped functions 
• S-shaped functions
• etc.
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Ex: Cubic Relationship

FEV vs Height in Children
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Ex: Threshold Effect of Dose?
Plasma Beta-carotene at 3 months by Dose
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Ex: U-shaped Trend?

• Inflammatory marker vs cholesterol
Lowess smoother, bandwidth = .8
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Ex: S-shaped trend

• In vitro cytotoxic effect of Doxorubicin with 
chemosensitizers
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“1:1 Transformations”

• Sometimes we transform 1 scientific 
measurement into 1 modeled predictor
– Ex: log transformation will sometimes address 

apparent “threshold effects”
– Ex: cubing height produces more linear 

association with FEV
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Log Transformations
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“1:Many Transformations”

• Sometimes we transform 1 scientific 
measurement into several modeled 
predictor
– Ex: “polynomial regression”
– Ex: “dummy variables” (“factored variables”)
– Ex: “piecewise linear”
– Ex: “splines”

99

Polynomial Regression

• Fit linear term plus higher order terms 
(squared, cubic, …)
– Can fit arbitrarily complex functions

– An n-th order polynomial can fit n+1 points exactly

– Generally very difficult to interpret parameters
– I usually graph function when I want an interpretation

– Special uses
• 2nd order (quadratic) model to look for U-shaped 

trend
• Test for linearity by testing that all higher order 

terms have parameters equal to zero
100

Ex: FEV – Height Assoc Linear?

• We can try to assess whether any 
association between mean FEV and 
height follows a straight line association
– I fit a 3rd order (cubic) polynomial due to the 

known scientific relationship between volume 
and height
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Ex: FEV – Height Assoc Linear? 
. g htsqr= height^2
. g htcub = height^3
. regress fev height htsqr htcub, robust
Linear regression           Number of obs =     654

Prob > F      =  0.0000
R-squared     =  0.7742
Root MSE      =  .41299

|       Robust
fev |  Coef SE      t  P>|t|    [95% C I]

height |  .0306 .635   0.05 0.962 -1.22   1.28
htsqr | -.0015 .0108 -0.14 0.888 -.0227  .0196
htcub | .00003 .00006 0.43 0.671 -.00009 .0001
_cons |  .457  12.4   0.04 0.971 -23.8   24.76 102

Ex: FEV – Height Assoc Linear?

• Note that the P values for each term were 
not significant
– But these are addressing irrelevant questions:

• After adjusting for 2nd and 3rd order relationships, is 
the linear term important?

• After adjusting for linear and 3rd order 
relationships, is the squared term important?

• After adjusting for linear and 2nd order 
relationships, is the cubed term important

– We need to test 2nd and 3rd order terms 
simultaneously

103

Ex: FEV – Height Assoc Linear? 
. test htsqr htcub

( 1)  htsqr = 0
( 2)  htcub = 0

F(  2,   650) =   30.45
Prob > F =    0.0000

104

Ex: FEV – Height Assoc Linear?

• We find clear evidence that the trend in 
mean FEV versus height is nonlinear
– (Had we seen P > 0.05, we could not be sure 

it was linear– it could have been nonlinear in 
a way that a cubic polynomial could not 
detect)
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Ex: log FEV – Ht Assoc Linear?

• We can try to assess whether any 
association between mean log FEV and 
height follows a straight line association
– I again fit a 3rd order (cubic) polynomial, but 

don’t really have a good reason to do this 
rather than some other polynomial

106

Ex: log FEV – Ht Assoc Linear? 
. g logfev = log(fev)
. regress logfev height htsqr htcub, robust
Linear regression          Number of obs =     654

F(  3,   650) =  730.53
Prob > F      =  0.0000
R-squared     =  0.7958
Root MSE      =  .15094

|        Robust
logfev |   Coef SE     t   P>|t|  [95% C I]
height |  .0707 .24835  0.28 0.776 -.417   .558
htsqr | -.0002 .00410 -0.04 0.964 -.0082  .008
htcub | 3e-07  .00002  0.01 0.989 -.00004 .00004
_cons | -2.79  4.985  -0.56 0.576 -12.6    6.997

107

Ex: log FEV – Ht Assoc Linear?

• Note that again that the P values for each 
term were not significant
– But these are addressing irrelevant questions:
– We need to test 2nd and 3rd order terms 

simultaneously

108

Ex: log FEV – Ht Assoc Linear? 
. test htsqr htcub

( 1)  htsqr = 0
( 2)  htcub = 0

F(  2,   650) =    0.29
Prob > F =    0.7464
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Ex: log FEV – Ht Assoc Linear?

• We do not find clear evidence that the 
trend in mean FEV versus height is 
nonlinear
– This does not prove linearity, because it could 

have been nonlinear in a way that a cubic 
polynomial could not detect

• (But I would think that the cubic would have picked 
up most patterns of nonlinearity likely to occur in 
this setting)

110

Ex: log FEV – Ht Assoc Linear?

• We have not addressed the question of 
whether log FEV is associated with height
– This question could have been addressed in 

the cubic model by 
• Testing all three height-derived variables 

simultaneously
• OR (because only height-derived variables are 

included in the model) looking at the overall F test
– Alternatively, fit a model with only the height

• But generally bad to go fishing for models 

111

Ex: log FEV – Ht Assoc? 
. regress logfev height, robust
Linear regression          Number of obs =     654

F(  1,   652) = 2155.08
Prob > F      =  0.0000
R-squared     =  0.7956
Root MSE      =  .15078

|               Robust
logfev |      Coef.   Std. Err.      t    P>|t|

[95% Conf. Interval]
height | .0521 .0011  46.42 0.000  .0499    .0543
_cons | -2.27 .0686 -33.13 0.000 -2.406  -2.137

112

Dummy Variables

• Indicator variables for all but one group
– This is the only appropriate way to model 

nominal (unordered) variables
• E.g., for marital status

– Indicator variables for 
» married (married = 1, everything else = 0)
» widowed (widowed = 1, everything else = 0)
» divorced (divorced = 1, everything else = 0)
» (single would then be the intercept)

– Often used for other settings as well
– Equivalent to “Analysis of Variance (ANOVA)”
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Ex: Mean Salary by Field

• Field is a nominal variable, so we must 
use dummy variables
– I decide to use “Other” as a reference group, 

so generate new indicator variables for Fine 
Arts and Professional fields

. g arts= 0

. replace arts=1 if field==1
(2840 real changes made)
. g prof= 0
. replace prof=1 if field==3
(3809 real changes made) 114

Ex: Mean Salary by Field
. regress salary arts prof if year==95, robust
Linear regression            Number of obs =    1597

F(  2,  1594) =  120.85
Prob > F      =  0.0000
R-squared     =  0.1021
Root MSE      =  1931.2

|       Robust
salary |  Coef SE      t   P>|t|   [95% CI]
arts | -1014  105   -9.67 0.000 -1219  -808
prof |  1225  134    9.16 0.000   963  1487
_cons |  6292  61.1 103.03 0.000  6172  6411

115

Ex: Interpretation of Intercept

• Based on coding used
– Intercept corresponds to mean salary for 

faculty in “Other” fields
• These faculty will have arts==0 and prof==0

– Estimated mean salary is $6,292 / month
– 95% CI: $6,172 to  $6,411 / month
– Highly statistically different from $0 / month

116

Ex: Interpretation of Slopes

• Based on coding used
– Slope for “arts” is difference in mean salary 

between “Fine Arts” and “Other” fields
• Fine arts faculty will have arts==1 and prof==0; 

“Other” fields wil have arts==0 and prof==0
– Estimated difference in mean monthly salary 

is $1,014  lower for fine arts
– 95% CI: $808 to  $1,219 / month lower
– Highly statistically different from $0
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Ex: Interpretation of Slopes

• Based on coding used
– Slope for “prof” is difference in mean salary 

between “Professional” and “Other” fields
• Professional faculty will have arts==0 and prof==1; 

“Other” fields wil have arts==0 and prof==0
– Estimated difference in mean monthly salary 

is $1,225  higher for professional
– 95% CI: $963 to  $1,487 / month higher
– Highly statistically different from $0

118

Ex: Descriptive Statistics

• Because we modeled the three groups 
with two predictors plus intercept, the 
estimates agree exactly with sample 
means

. table field if year==95, co(mean salary)

field | mean(salary)
Arts |     5278.082
Other |     6291.638
Prof |     7516.67

119

Ex: Hypothesis Test

• To test for different mean salaries by field
– We have modeled field with two variables

• Both slopes would have to be zero for there to be 
no association between field and mean salary

– Simultaneous test of the two slopes
• We can use the Stata “test” command

. test arts prof
F(  2,  1594) =  120.85
Prob > F =    0.0000

• OR because only field variables are in the model, 
we can use the overall F test 120

Stata: Dummy Variables

• Stata has a facility to automatically create 
dummy variables
– Prefix regression commands with “xi: …”
– Prefix variables to be modeled as dummy 

variables with “i.varname”
– (Stata will drop the lowest category)
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Stata: Dummy Variables
. xi: regress salary i.field if year==95, robust
i.field _Ifield_1-3(ntrlly coded; _Ifield_1 omitted)
Linear regression           Number of obs =    1597

F(  2,  1594) =  120.85
Prob > F      =  0.0000
R-squared     =  0.1021
Root MSE      =  1931.2

|     Robust
salary | Coef SE    t   P>|t|    [95% C I]

_Ifield_2 | 1014 105   9.67 0.000  808    1219
_Ifield_3 | 2239 146  15.30 0.000 1952    2526

_cons | 5278 85.2 61.94 0.000 5111    5445
122

Ex: Correspondence

• This regression model is the exact same 
as the one in which I modeled “arts” and 
“prof”
– Merely “parameterized” (coded) differently

• Two models are equivalent if they lead to 
the exact same estimated parameters
– Inference about corresponding parameters 

will be the same no matter how it is 
parameterized

123

Continuous Variables

• We can also use dummy variables to 
represent continuous variables
– Continuous variables measured at discrete 

levels
• E.g., dose in an interventional experiment

– Continuous variables divided into categories

124

Relative Advantages

• Dummy variables fits groups exactly
– If no other predictors in the model, parameter 

estimates correspond exactly with descriptive 
statistics

• With continuous variables, dummy 
variables assume a “step function” is true

• Modeling with dummy variables ignores 
order of predictor of interest
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Choice of Model for Analysis

• Compare power of linear continuous 
versus ANOVA as a function 
– of trend in means and 
– standard errors within groups

126

ANOVA (dummy variables)

• Fits group means exactly
• Does not mix “random error” with 

“systematic error:
• Ignores the ordering of the groups, so it 

gains no power from trends
• The same level of significance is obtained no 

matter what permutation of dose groups is 
considered

127

Linear Continuous Models

• Borrows information across groups
– Accurate, efficient if model is correct

• If model incorrect, mixes “random” and 
“systematic” error

• Can gain power from ordering of groups in 
order to detect a trend
– But, no matter how low the standard error is, if 

there is no trend in the mean, there is no 
statistical significance
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Other Options

• We can model continuous variables with 
other flexible models
– Combinations of linear trends and indicator 

variables
– Splines


