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Lecture Outline

* General Setting

* Prediction of Summary Measures
* Necessary Assumptions for Inference
» Special cases
— Means, Geometric Means, Odds, Probabilities, Rates,
Hazard Ratios, Survival probabilities
* Prediction of Individual Observations
» Necessary Assumptions for Inferences

» Special cases

— Continuous measurements, binary measurements, count2
measurements

Setting for Predictions

General Classification

* Clustering of observations

* Clustering of variables
Quantification of distributions

» Comparing distributions

Prediction of individual observations




1. Cluster Analysis
* Focus is on identifying similar groups of
observations
— Divide a population into subgroups based on
patterns of similar measurements
¢ Univariate, multivariate
* Known or unknown number of clusters

— (All variables treated symmetrically: No
delineation between outcomes and groups)

2. Clustering Variables
+ |dentifying hidden variables indicating
groups that tend to have similar
measurements of some outcome
— Interest in some particular outcome
measurement
— Predictors that imprecisely measure some
abstract quality

— Desire to find patterns in predictors that more
precisely reflect the abstract quality

3. Quantifying Distributions

* Focus is on distributions of measurements
within a population
— Scientific questions about tendencies for
specific measurements within a population
* Point estimates of summary measures
* Interval estimates of summary measures
— Quantifying uncertainty
» Decisions about hypothesized values
— May desire estimates within subgroups

« E.g., estimates by sex, age, race

Example: Estimation of Median

« Statistical Tasks
— Sample of patients newly diagnosed with
stage Il breast cancer
* Follow for survival time (may be censored)
— Statistical analysis
+ Best estimate of the median survival (K-M?)
* Quantify uncertainty in that estimate

» Compare to some clinically important time range
(e.g., 10 years)




4. Comparing Distributions
» Comparing distributions of measurements
across populations
—4a. ldentifying groups that have different
distributions of some measurement
—4b. Quantifying differences in the distribution
of some measurement across predefined
groups (effects or associations)

— 4c. Quantifying differences in effects across
subgroups (interactions or effect modification)
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4a. ldentifying Groups
* |dentifying groups that have different
distributions of some measurement
— Focus is on some particular outcome
measurement
— ldentify groups based on other measurements
* E.g., quantifying distributions within subgroups
* E.g, stepwise regression models

— (cf: Cluster analysis where all measurements

are treated symmetrically)
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Example: Identifying Groups

« Statistical Tasks
— Sample subjects to measure risk factors and
disease prevalence
 Cohort study
» Case-control study
— Statistical analysis

» Stepwise model building
— (Rank most interesting variables by p value?)

5. Prediction

* Focus is on individual measurements

— Point prediction:
* Best single estimate for the measurement that
would be obtained on a future individual
— Continuous measurements
— Binary measurements (discrimination)
— Interval prediction:

* Range of measurements that might reasonably be
observed for a future individual
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Example: Continuous Prediction

» Creatinine clearance

— Creatinine
» Breakdown product of creatine
* Removed by the kidneys by filtration
— Little secretion, reabsorption
— Measure of renal function

* Amount of creatinine cleared by the kidneys in 24
hours

Example: Continuous Prediction

* Problem:

— Need to collect urine output (and blood
creatinine) for 24 hours

* Goal:

— Find blood, urine measures that can be
obtained instantly, yet still provide an accurate
estimate of a patient’s creatinine clearance
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Example: Continuous Prediction

« Statistical Tasks:
— Training sample
* Measure true creatinine clearance
* Measure sex, age, weight, height, creatinine
— Statistical analysis

* Regression model that uses other variables to
predict creatinine clearance

» Quantify accuracy of predictive model
— (Mean squared error?)

Example: Discrimination
» Diagnosis of prostate cancer

— Use other measurements to predict whether a
particular patient might have prostate cancer
» Demographic: Age, race, (sex)
* Clinical: Symptoms
* Biological: Prostate specific antigen (PSA)

— Goal is a diagnosis for each patient
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Example: Discrimination

« Statistical Tasks:
— Training sample
* “Gold standard” diagnosis
* Measure age, race, PSA
— Statistical analysis
* Regression model that uses other variables to
predict prostate cancer diagnosis

* Quantify accuracy of predictive model
— ROC curve analysis
» Sensitivity vs 1 — Specificity
» True Positives vs False Positives

Example: Interval Prediction

* Determining normal range for PSA

— ldentify the range of PSA values that would be
expected in the 95% most typical healthy
males

— Age, race specific values
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Example: Interval Prediction

 Statistical Tasks:
— Training sample
» Measure age, race, PSA
— Statistical analysis

* Regression model that uses other variables to
define prediction interval
— (Mean plus/minus 2 SD?)
— (Confidence interval for quantiles?)
+ Quantify accuracy of predictive model
— (Coverage probabilities?)

Regression Based Inference

» Estimation of summary measures
 Point, interval estimates within groups
* Tests hypotheses about absolute measurements

* |Inference about associations

— First order trends in summary measures
across groups
* Point, interval estimates of contrasts across groups
* Tests hypotheses about relative measurements

* Inference about individual predictions

* Point, interval estimates 20




So far: Inference for Associations

» Necessary assumptions for classical
regressions (no robust SE)
* Independence of response measurements
» Appropriate within group variance

— Linear regression: Equal variance across groups

— Other regressions: Appropriate mean-variance
relationship

» Hence, some dependence on model fit
« Sufficiently large sample size for asymptotic
normal distribution of estimates to be a good

approximation
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So far: Inference for Associations

* Necessary assumptions for first order
trends using robust SE

* Independence of response measurements across
identified clusters
— May have correlated response within identified clusters
* (Robust SE accounts for heteroscedasticity in
large samples)
— Lack of “model fit” leads to conservative inference due to
mixing systematic and random error
« Sufficiently large sample size for asymptotic
normal distribution of estimates to be a good
approximation

Now: Inference for Predictions

» Additional assumptions for predictions

— Estimation of summary measures within
groups
* We need to know that our regression model
accurately describes the relationship between
summary measures across groups
— Prediction of individual observations

» We need to know the shape of the distribution
within each group
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Estimation (Prediction)
of Summary Measures
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Examples
» Estimate age, height, and sex specific
mean (or geometric mean) FEV
* Linear regression to obtain estimates and Cl
» Estimate probability (or odds) of remaining
in remission for 24 months by age, PSA
* Logistic regression to obtain estimates and Cl
» Estimate median time to liver failure in
PBC patients by age, bilirubin, etc.

* Proportional hazards regression for estimates (antz:i5
Cl1?)

Issues
* Which statistic provides the best estimate?

— Definition of best?
+ Consistent (correct with infinite sample size)
* Precise (minimal variability, minimal squared error)
— Answer: Common regression models provide
the best estimate in a wide variety of settings

* |s best good enough in particular setting?

— Answer: Cl for the value of true summary

measure for each group
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General Methods
» Estimated summary measure involves a
linear function of regression parameters
— Linear, logistic, Poisson regression this is all
that is needed
— Proportional hazards regression also needs
an estimate of the survival distribution in the
reference group

» We are not yet very good at putting confidence
bounds on this part of the estimates
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Necessary Assumptions
— Independence
* (between clusters for robust SE)
— Variance appropriate to the model
* (relaxed for robust SE)

— Regression model accurately describes
relationship of summary measures across
groups

— Sufficient sample sizes for asymptotic
distributions to be a good approximation
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Obtaining Point Estimates

» Substitution of predictor values provides
the estimate of the modeled
transformation of the summary measure

* Linear regression: mean

* Linear regression on logs: log geometric mean

* Logistic regression: log odds

* Poisson regression: log rate

* Proportional hazards: log hazard ratio applied to
baseline survival estimate
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Obtaining Interval Estimates
* Under the appropriate assumptions, we
can obtain standard errors for each such
estimate
— Notable exception: Proportional hazards
» More work to be done to get interval estimates

— We generally find a confidence interval for the
transformed summary measure, and then
back transform to obtain the desired quantity
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Stata Commands: Predict

* After performing any regression command,
the Stata command “predict” will
compute estimates and standard errors

—predict varname, [what]
» varname is the name of the variable where you
want the predictions stored
- what is an option specifying what you want
computed
— xb = linear prediction (works for all types)

— stdp = SE of linear prediction (works for all types)
— p = probability (works for logistic) 31

Computing CI for Predictions

» Just use the usual formula
(est) +/- (crit val) * (std err)
— In linear regression, we usually use the t
distribution to obtain Cl
« Stata: (critval) = invttail (df, a/2)
+ degrees of freedom = n minus number of
regression parameters
— In all other regressions, we would use the
standard normal distribution
* (critval) = invnorm (1-a/2) (1.96 for 95% Cl3,




Ex: Geom Mean FEV by ht, age

9000000000000 000000000000000CFO

regress logfev height age

Number of obs = 654

logfev | Coef. Std. Err. t P>|t| [95% CI]

height | .044 .002 26.71 0.000 .041 .047
age | .020 .003 6.23 0.000 .014 .026

_cons | -1.97 .078 -25.16 0.000 -2.12 -1.82

predict flogfev
predict sefit, stdp
g gmfev= exp (flogfev)
g gmlofev = exp(flogfev - invttail (651, .025) * sefit)
g gmhifev = exp(flogfev + invttail (651, .025) * sefit)
list gmfev gmlofev gmhifev if age==10 & height==66
gmfev gmlofev gmhifev 33
330. 3.097021 3.038578 3.156588

Ex: Odds Relapse by NadirPSA

9000000000000 00000COCOIOIOIOIOTIOOOYTTYS
logit relapse24 lognadir, robust
. predict lorel, xb
. predict selo, stdp
g odds= exp (lorel)
g oddslo= exp(lorel - 1.96 * selo)
g oddshi= exp(lorel + 1.96 * selo)
list odds oddslo oddshi if nadir==
odds oddslo oddshi
10. .4911836 .2388794 1.009971
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Ex: Prob Relapse by NadirPSA

9000000000000 00000COCOIOIOIOIOTIOOOYTTYS
logit relapse24 lognadir, robust
. predict prel
g prob = odds / (l+odds)
g problo= oddslo / (1 + oddslo)
g probhi= oddshi / (1 + oddshi)
list prel prob problo probhi if nadir==
prel prob problo probhi
10. .3293918 .3293918 .192819 .5024805
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Prediction in PH Regression

9000000000000 000000000000000CFO

» Recall that there is no intercept in PH
models

* Instead there is a “baseline hazard function” which
is related to the survival function in the reference

group
— Stata will allow prediction of baseline survival
function in their “stcox” command
* Specify option basesurv (newvar)in stcox

e Thenuse stcurve, survival at( )
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Stata Ex: Relapse in PSA Data

9000000000000 00000COCOIOIOIOIOTIOOOYTTYS
. g relapse=0
. replace relapse=1 if inrem=="no"
. stset obstime relapse
. g lnadir= log(nadir)

. stcox lnadir ps, robust basesurv(bslnS)

No. of subjects = 48 Number of obs = 48
No. of failures = 34 Time at risk = 1408
Wald chi2(2) = 33.18
Log pseudolklhd = -97.1 Prob > chi2 = 0.0000
| Robust
t | HR SE z P>|z| [95% C I]

lnadir | 1.56 .124 5.66 0.000 1.34 1.83

ps | .960 .0162 -2.41 0.016 .929 .992 %7

Stata Ex: Predicted Survival

9000000000000 000000000000000CFO

¢ stcurve, survival at(lnadir=2 ps=70)

Cox proportional hazards regression

Survival

40
analysis time
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Comments on PH Regression

9000000000000 000000000000000CFO

» We can thus easily obtain estimated
summary measures for any group based
on semi-parametric PH assumption
— Survival probabilities
— Quantiles (median, etc.)

— (Restricted mean (area under survival curve))

» We do not yet provide SE for those
estimates

39

Prediction (Forecast) of
Individual Measurements

40




Examples

» Estimate “normal range” for FEV by age,
height, and sex groups
— Linear regression

 Estimate probability (or odds) of remaining
in remission for 24 months by age, PSA
— Logistic regression

» Estimate range of times to liver failure in
PBC patients by age, bilirubin, etc.
— Proportional hazards regression 41

Issues
* Which statistic provides the best estimate?

— Definition of best?
+ Consistent (correct with infinite sample size)
* Precise (minimal variability, minimal squared error)
— Answer: Common regression models provide
the best estimate in a wide variety of settings

* How variable is “best” in particular setting?

— Answer: Prediction (Stata: Forecast) interval
for the value of individual observation in each
group “

Necessary Assumptions
— Independence
* (between identified clusters for robust SE)
— Variance appropriate to the model
* (NOT relaxed for robust SE)

— Regression model accurately describes
relationship of summary measures across
groups

— Shape of distribution same in each group

— Sufficient sample sizes for asymptotic
distributions to be a good approximation 43

Comments

* These are strong assumptions

— Consequently, we do not have many methods
that provide robust inference
* Robust SE will only work here for correlated
response, not for heteroscedasticity
— For the most part, precise methods have only
been well developed for

* Binary or Poisson variables
— All we need is an estimate of the probability or rate

* Normally distributed data

44




Obtaining Point Estimates

» Substitution of predictor values provides
the estimate of the modeled
transformation of the summary measure

* Linear regression: mean

* Linear regression on logs: log geometric mean
* Logistic regression: log odds

* Poisson regression: log rate

* Proportional hazards: log hazard ratio applied to
baseline survival estimate
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Obtaining Interval Estimates
* Under the appropriate assumptions, we
can obtain standard errors for each such
estimated summary measure
— Notable exception: Proportional hazards
» More work to be done to get interval estimates
— We generally find a confidence interval for the

transformed summary measure, and then
back transform to obtain the desired quantity

* THEN: Add in variability within group
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Statistical Software

* No statistical package that | know of will
provide prediction intervals except for
normally distributed data

— Even then, | do not think that they are
behaving the way we want them to

» Frequentist intervals describe behavior across
repeated experiments, not within one experiment
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Prediction Intervals: Normal Data
» Obtaining point estimates

— The point prediction is typically the mean (or
log geometric mean) from the regression

model
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Obtaining Interval Estimates

» Under the appropriate assumptions, we
can obtain standard errors for each such
prediction

— The standard error accounts for

» Uncertainty in estimating the regression
parameters

» The within group standard deviation
— Spread of data about the group specific means

49

Stata Commands: Predict

9000000000000 000000000000000CFO

+ After performing any regression command,
the Stata command “predict” will
compute estimates and standard errors

—predict varname, [what]
» varname is the name of the variable where you
want the predictions stored
- what is an option specifying what you want

computed

— stdf = standard error of forecast (works for linear
regression)
50

Computing Prediction Intervals
* Just use the usual formula
(est) +/- (crit val) * (std err)
— In linear regression, we usually use the t
distribution to obtain CI
« Stata: (crit val) = invttail (df, o/2)

* degrees of freedom = n minus number of
regression parameters

51

Ex: Geom Mean FEV by ht, age

9000000000000 000000000000000CFO

regress logfev height age

Number of obs = 654
logfev | Coef. Std. Err. t P>t [95% CI
height | .044 .002 26.71 0.000 .041 .047
age | .020 .003 6.23 0.000 .014 .026
~cons | -1.97 .078 -25.16 0.000 -2.12 -1.82

predict flogfev

predict sefore, stdf

g predfev= exp (flogfev)

g predlofev = exp(flogfev - invttail (651, .025) * sefore)

g predhifev = exp(flogfev + invttail (651, .025) * sefore)

list predfev predlofev predhifev if age==10 & height==66
predfev predlofev predhifev 52

330. 3.097021 2.320911 4.132662




Caveat

» This “forecast” or “prediction interval”
assumes that the log FEV measurements
are normally distributed
— This is a pretty strong assumption
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Extensions

* | know how to get approximate intervals
based on some slightly weaker semi-
parametric assumptions

* Uses nonparametric estimates of the error
distribution

 This would work for censored data as well
— Most software packages will not do this
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Better Approaches

* It would be better to find nonparametric
confidence intervals for
—the 2.5th percentile
—the 97.5th percentile
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But Still....

* All of these methods suffer from
— Strong semiparametric assumptions

— Multiple comparisons if more than one group
* (But we do know how to get confidence bands)
— Coverage probabilities defined across
replicate experiments

» On average (across experiments), 95% of
observations will be within an interval

» But in any given experiment, the intervals might

truly cover less or more of the population %




