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Lecture Outline

• General Setting
• Prediction of Summary Measures

• Necessary Assumptions for Inference
• Special cases

– Means, Geometric Means, Odds, Probabilities, Rates, 
Hazard Ratios, Survival probabilities

• Prediction of Individual Observations
• Necessary Assumptions for Inferences
• Special cases

– Continuous measurements, binary measurements, count 
measurements

3

Setting for Predictions

4

General Classification

• Clustering of observations
• Clustering of variables
• Quantification of distributions
• Comparing distributions
• Prediction of individual observations
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1. Cluster Analysis

• Focus is on identifying similar groups of 
observations
– Divide a population into subgroups based on 

patterns of similar measurements
• Univariate, multivariate
• Known or unknown number of clusters

– (All variables treated symmetrically: No 
delineation between outcomes and groups)
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2. Clustering Variables

• Identifying hidden variables indicating 
groups that tend to have similar 
measurements of some outcome
– Interest in some particular outcome 

measurement
– Predictors that imprecisely measure some 

abstract quality
– Desire to find patterns in predictors that more 

precisely reflect the abstract quality
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3. Quantifying Distributions

• Focus is on distributions of measurements 
within a population
– Scientific questions about tendencies for 

specific measurements within a population
• Point estimates of summary measures
• Interval estimates of summary measures

– Quantifying uncertainty

• Decisions about hypothesized values
– May desire estimates within subgroups

• E.g., estimates by sex, age, race 8

Example: Estimation of Median

• Statistical Tasks
– Sample of patients newly diagnosed with 

stage II breast cancer
• Follow for survival time (may be censored)

– Statistical analysis
• Best estimate of the median survival (K-M?)
• Quantify uncertainty in that estimate
• Compare to some clinically important time range 

(e.g., 10 years)
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4. Comparing Distributions

• Comparing distributions of measurements 
across populations
– 4a. Identifying groups that have different 

distributions of some measurement 
– 4b. Quantifying differences in the distribution 

of some measurement across predefined 
groups (effects or associations)

– 4c. Quantifying differences in effects across 
subgroups (interactions or effect modification)
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4a. Identifying Groups

• Identifying groups that have different 
distributions of some measurement
– Focus is on some particular outcome 

measurement
– Identify groups based on other measurements

• E.g., quantifying distributions within subgroups
• E.g, stepwise regression models

– (cf: Cluster analysis where all measurements 
are treated symmetrically)
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Example: Identifying Groups

• Statistical Tasks
– Sample subjects to measure risk factors and 

disease prevalence
• Cohort study
• Case-control study

– Statistical analysis
• Stepwise model building 

– (Rank most interesting variables by p value?)
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5. Prediction

• Focus is on individual measurements
– Point prediction: 

• Best single estimate for the measurement that 
would be obtained on a future individual

– Continuous measurements
– Binary measurements (discrimination)

– Interval prediction: 
• Range of measurements that might reasonably be 

observed for a future individual
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Example: Continuous Prediction 

• Creatinine clearance
– Creatinine

• Breakdown product of creatine
• Removed by the kidneys by filtration

– Little secretion, reabsorption

– Measure of renal function
• Amount of creatinine cleared by the kidneys in 24 

hours
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Example: Continuous Prediction

• Problem: 
– Need to collect urine output (and blood 

creatinine) for 24 hours

• Goal: 
– Find blood, urine measures that can be 

obtained instantly, yet still provide an accurate 
estimate of a patient’s creatinine clearance
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Example: Continuous Prediction

• Statistical Tasks: 
– Training sample

• Measure true creatinine clearance
• Measure sex, age, weight, height, creatinine

– Statistical analysis
• Regression model that uses other variables to 

predict creatinine clearance
• Quantify accuracy of predictive model

– (Mean squared error?)

16

Example: Discrimination

• Diagnosis of prostate cancer
– Use other measurements to predict whether a 

particular patient might have prostate cancer
• Demographic: Age, race, (sex)
• Clinical: Symptoms
• Biological: Prostate specific antigen (PSA)

– Goal is a diagnosis for each patient
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Example: Discrimination

• Statistical Tasks: 
– Training sample

• “Gold standard” diagnosis
• Measure age, race, PSA

– Statistical analysis
• Regression model that uses other variables to 

predict prostate cancer diagnosis
• Quantify accuracy of predictive model

– ROC curve analysis
» Sensitivity vs 1 – Specificity
» True Positives vs False Positives 18

Example: Interval Prediction

• Determining normal range for PSA
– Identify the range of PSA values that would be 

expected in the 95% most typical healthy 
males

– Age, race specific values

19

Example: Interval Prediction

• Statistical Tasks: 
– Training sample

• Measure age, race, PSA
– Statistical analysis

• Regression model that uses other variables to 
define prediction interval

– (Mean plus/minus 2 SD?)
– (Confidence interval for quantiles?)

• Quantify accuracy of predictive model
– (Coverage probabilities?)

20

Regression Based Inference

• Estimation of summary measures
• Point, interval estimates within groups
• Tests hypotheses about absolute measurements

• Inference about associations
– First order trends in summary measures 

across groups
• Point, interval estimates of contrasts across groups
• Tests hypotheses about relative measurements

• Inference about individual predictions
• Point, interval estimates
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So far: Inference for Associations

• Necessary assumptions for classical 
regressions (no robust SE)

• Independence of response measurements
• Appropriate within group variance

– Linear regression: Equal variance across groups
– Other regressions: Appropriate mean-variance 

relationship
» Hence, some dependence on model fit

• Sufficiently large sample size for asymptotic 
normal distribution of estimates to be a good 
approximation

22

So far: Inference for Associations

• Necessary assumptions for first order 
trends using robust SE

• Independence of response measurements across 
identified clusters

– May have correlated response within identified clusters

• (Robust SE accounts for heteroscedasticity in 
large samples)

– Lack of “model fit” leads to conservative inference due to 
mixing systematic and random error

• Sufficiently large sample size for asymptotic 
normal distribution of estimates to be a good 
approximation

23

Now: Inference for Predictions

• Additional assumptions for predictions
– Estimation of summary measures within 

groups
• We need to know that our regression model 

accurately describes the relationship between 
summary measures across groups

– Prediction of individual observations
• We need to know the shape of the distribution 

within each group

24

Estimation (Prediction)
of Summary Measures
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Examples

• Estimate age, height, and sex specific 
mean (or geometric mean) FEV

• Linear regression to obtain estimates and CI

• Estimate probability (or odds) of remaining 
in remission for 24 months by age, PSA

• Logistic regression to obtain estimates and CI

• Estimate median time to liver failure in 
PBC patients by age, bilirubin, etc.

• Proportional hazards regression for estimates (and 
CI?) 26

Issues

• Which statistic provides the best estimate?
– Definition of best?

• Consistent (correct with infinite sample size)
• Precise (minimal variability, minimal squared error) 

– Answer: Common regression models provide 
the best estimate in a wide variety of settings

• Is best good enough in particular setting?
– Answer: CI for the value of true summary 

measure for each group

27

General Methods

• Estimated summary measure involves a 
linear function of regression parameters
– Linear, logistic, Poisson regression this is all 

that is needed
– Proportional hazards regression also needs 

an estimate of the survival distribution in the 
reference group

• We are not yet very good at putting confidence 
bounds on this part of the estimates

28

Necessary Assumptions

– Independence
• (between clusters for robust SE)

– Variance appropriate to the model
• (relaxed for robust SE)

– Regression model accurately describes 
relationship of summary measures across 
groups

– Sufficient sample sizes for asymptotic 
distributions to be a good approximation



Applied Biostatistics II, WIN 2006 March 3, 2006

Part 1:8

29

Obtaining Point Estimates

• Substitution of predictor values provides 
the estimate of the modeled 
transformation of the summary measure

• Linear regression: mean
• Linear regression on logs: log geometric mean
• Logistic regression: log odds
• Poisson regression: log rate
• Proportional hazards: log hazard ratio applied to 

baseline survival estimate

30

Obtaining Interval Estimates

• Under the appropriate assumptions, we 
can obtain standard errors for each such 
estimate
– Notable exception: Proportional hazards

• More work to be done to get interval estimates
– We generally find a confidence interval for the 

transformed summary measure, and then 
back transform to obtain the desired quantity

31

Stata Commands: Predict

• After performing any regression command, 
the Stata command “predict” will 
compute estimates and standard errors
– predict varname, [what]

•varname is the name of the variable where you 
want the predictions stored

•what is an option specifying what you want 
computed

– xb = linear prediction (works for all types)
– stdp = SE of linear prediction (works for all types)
– p = probability (works for logistic) 32

Computing CI for Predictions

• Just use the usual formula
(est) +/- (crit val) * (std err)

– In linear regression, we usually use the t 
distribution to obtain CI

• Stata: (crit val) = invttail(df,α/2)
• degrees of freedom = n minus number of 

regression parameters
– In all other regressions, we would use the 

standard normal distribution
• (crit val) = invnorm(1-α/2) (1.96 for 95% CI)
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Ex: Geom Mean FEV by ht, age
regress logfev height age
Number of obs =     654
logfev |  Coef.   Std. Err.   t    P>|t|     [95% CI]
height |   .044   .002    26.71   0.000     .041    .047

age |   .020   .003     6.23   0.000     .014    .026
_cons |  -1.97   .078   -25.16   0.000    -2.12   -1.82

predict flogfev
predict sefit, stdp
g gmfev= exp(flogfev)
g gmlofev = exp(flogfev – invttail(651, .025) * sefit)
g gmhifev = exp(flogfev + invttail(651, .025) * sefit)
list gmfev gmlofev gmhifev if age==10 & height==66

gmfev gmlofev gmhifev
330.  3.097021   3.038578   3.156588 

34

Ex: Odds Relapse by NadirPSA
. logit relapse24 lognadir, robust
. predict lorel, xb
. predict selo, stdp
. g odds= exp(lorel)
. g oddslo= exp(lorel - 1.96 * selo)
. g oddshi= exp(lorel + 1.96 * selo)
. list odds oddslo oddshi if nadir==1

odds     oddslo oddshi
10.  .4911836   .2388794   1.009971  

35

Ex: Prob Relapse by NadirPSA
. logit relapse24 lognadir, robust
. predict prel
. g prob = odds / (1+odds)
. g problo= oddslo / (1 + oddslo)
. g probhi= oddshi / (1 + oddshi)
. list prel prob problo probhi if nadir==1

prel prob problo probhi
10.  .3293918   .3293918 .192819   .5024805  

36

Prediction in PH Regression

• Recall that there is no intercept in PH 
models

• Instead there is a “baseline hazard function” which 
is related to the survival function in the reference 
group

– Stata will allow prediction of baseline survival 
function in their “stcox” command

• Specify option basesurv(newvar)in stcox
• Then use stcurve, survival at( )
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Stata Ex: Relapse in PSA Data
. g relapse=0
. replace relapse=1 if inrem=="no"
. stset obstime relapse
. g lnadir= log(nadir)
. stcox lnadir ps, robust basesurv(bslnS)
No. of subjects = 48          Number of obs =     48
No. of failures = 34          Time at risk  =   1408

Wald chi2(2)  =  33.18
Log pseudolklhd = -97.1       Prob > chi2   = 0.0000

|      Robust
_t |   HR   SE      z    P>|z|     [95% C I]

lnadir | 1.56  .124   5.66   0.000   1.34    1.83
ps | .960  .0162 -2.41   0.016   .929    .992 38

Stata Ex: Predicted Survival
• stcurve, survival at(lnadir=2 ps=70)
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Comments on PH Regression

• We can thus easily obtain estimated 
summary measures for any group based 
on semi-parametric PH assumption
– Survival probabilities
– Quantiles (median, etc.)
– (Restricted mean (area under survival curve))

• We do not yet provide SE for those 
estimates

40

Prediction (Forecast) of
Individual Measurements
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Examples

• Estimate “normal range” for  FEV by age, 
height, and sex groups
– Linear regression

• Estimate probability (or odds) of remaining 
in remission for 24 months by age, PSA
– Logistic regression

• Estimate range of times to liver failure in 
PBC patients by age, bilirubin, etc.
– Proportional hazards regression 42

Issues

• Which statistic provides the best estimate?
– Definition of best?

• Consistent (correct with infinite sample size)
• Precise (minimal variability, minimal squared error) 

– Answer: Common regression models provide 
the best estimate in a wide variety of settings

• How variable is “best” in particular setting?
– Answer: Prediction (Stata: Forecast) interval 

for the value of individual observation in each 
group

43

Necessary Assumptions

– Independence
• (between identified clusters for robust SE)

– Variance appropriate to the model
• (NOT relaxed for robust SE)

– Regression model accurately describes 
relationship of summary measures across 
groups

– Shape of distribution same in each group
– Sufficient sample sizes for asymptotic 

distributions to be a good approximation 44

Comments

• These are strong assumptions
– Consequently, we do not have many methods 

that provide robust inference
• Robust SE will only work here for correlated 

response, not for heteroscedasticity
– For the most part, precise methods have only 

been well developed for 
• Binary  or Poisson variables

– All we need is an estimate of the probability or rate

• Normally distributed data
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Obtaining Point Estimates

• Substitution of predictor values provides 
the estimate of the modeled 
transformation of the summary measure

• Linear regression: mean
• Linear regression on logs: log geometric mean
• Logistic regression: log odds
• Poisson regression: log rate
• Proportional hazards: log hazard ratio applied to 

baseline survival estimate

46

Obtaining Interval Estimates

• Under the appropriate assumptions, we 
can obtain standard errors for each such 
estimated summary measure
– Notable exception: Proportional hazards

• More work to be done to get interval estimates
– We generally find a confidence interval for the 

transformed summary measure, and then 
back transform to obtain the desired quantity

• THEN: Add in variability within group

47

Statistical Software

• No statistical package that I know of will 
provide prediction intervals except for 
normally distributed data
– Even then, I do not think that they are 

behaving the way we want them to
• Frequentist intervals describe behavior across 

repeated experiments, not within one experiment

48

Prediction Intervals: Normal Data

• Obtaining point estimates
– The point prediction is typically the mean (or 

log geometric mean) from the regression 
model
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Obtaining Interval Estimates

• Under the appropriate assumptions, we 
can obtain standard errors for each such 
prediction
– The standard error accounts for

• Uncertainty in estimating the regression 
parameters

• The within group standard deviation
– Spread of data about the group specific means

50

Stata Commands: Predict

• After performing any regression command, 
the Stata command “predict” will 
compute estimates and standard errors
– predict varname, [what]

•varname is the name of the variable where you 
want the predictions stored

•what is an option specifying what you want 
computed

– stdf = standard error of forecast (works for linear 
regression)
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Computing Prediction Intervals

• Just use the usual formula
(est) +/- (crit val) * (std err)

– In linear regression, we usually use the t 
distribution to obtain CI

• Stata: (crit val) = invttail(df,α/2)
• degrees of freedom = n minus number of 

regression parameters

52

Ex: Geom Mean FEV by ht, age
regress logfev height age
Number of obs =     654
logfev |  Coef.   Std. Err.   t    P>|t|     [95% CI]
height |   .044   .002    26.71   0.000     .041    .047

age |   .020   .003     6.23   0.000     .014    .026
_cons |  -1.97   .078   -25.16   0.000    -2.12   -1.82

predict flogfev
predict sefore, stdf
g predfev= exp(flogfev)
g predlofev = exp(flogfev – invttail(651, .025) * sefore)
g predhifev = exp(flogfev + invttail(651, .025) * sefore)
list predfev predlofev predhifev if age==10 & height==66

predfev predlofev predhifev
330.  3.097021   2.320911   4.132662 



Applied Biostatistics II, WIN 2006 March 3, 2006

Part 1:14

53

Caveat

• This “forecast” or “prediction interval” 
assumes that the log FEV measurements 
are normally distributed
– This is a pretty strong assumption

54

Extensions

• I know how to get approximate intervals 
based on some slightly weaker semi-
parametric assumptions

• Uses nonparametric estimates of the error 
distribution

• This would work for censored data as well
– Most software packages will not do this

55

Better Approaches

• It would be better to find nonparametric 
confidence intervals for
– the 2.5th percentile
– the 97.5th percentile
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But Still…

• All of these methods suffer from
– Strong semiparametric assumptions
– Multiple comparisons if more than one group

• (But we do know how to get confidence bands)
– Coverage probabilities defined across 

replicate experiments
• On average (across experiments), 95% of 

observations will be within an interval
• But in any given experiment, the intervals might 

truly cover less or more of the population


