
Biost 518, Winter 2006 Homework #3 Key January 28, 2006, Page 1 of 13 

Biost 518: Applied Biostatistics II 
Emerson, Winter 2006 

 
Homework #3 Key 

January 28, 2003 
 
Written problems due at the beginning of class, Friday, January 27, 2003. 
 
All questions relate to the planning of a phase II cancer prevention study of DFMO and its ability to 
suppress the level polyamines in the colonic mucosa. We will focus in particular on the spermidine 
levels, and will summarize the distribution of spermidine in a treatment group using the mean µ. We 
consider below several different approaches which differ in the definition of the “treatment effect” θ. 
I note here (and again below), that several of the options we consider would be considered highly 
inappropriate for a real study. 
 
We desire to calculate the sample size required to detect a hypothesized effect of DFMO on the 
mean spermidine level. We intend to use a one-sided level α hypothesis test, and we want to have 
power β to reject the null hypothesis H0: θ.=  θ0 when the “design” alternative H1: θ.=  θ1 is true. 
 
Recall from lecture that the most common formula used in sample size calculations is 

2

2

∆
=

V
N αβδ

 

where 
 N is the total sample size  to be accrued to the study, 
 V is the average variability contributed by each subject to the estimate of the treatment effect 
θ (for each problem below, I provide the formula for V), 

 δαβ is a “standardized alternative” which would allow a standardized one-sided level α 
hypothesis test to reject the null hypothesis with probability (power) β (note that many 
textbooks use notation in which the power is denoted 1-β), and 

 ∆ is some measure of the distance between the null and alternative hypotheses. 
 
Often clinical trials are conducted with a stopping rule which allows early termination of the study 
on the basis of one or more interim analyses of the data. When such a “group sequential test” is to be 
used, the value of the standardized alternative δαβ must be found using special computer software. 
On the other hand, when a “fixed sample study” (i.e., one in which the data are analyzed only once) 
is to be conducted, the standardized alternative for a one-sided test is given by 

βααβδ zz += −1  
where zp is the pth quantile of the standard normal distribution. In Stata, the value of  zp can be found 
by using the function invnorm( ). For instance, if α = 0.025, the value of z0.975 can be found 
from the Stata command 

disp invnorm(0.975). 
(Stata would then display 1.959964.) 
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The formula for ∆ depends on the statistical model used, but is usually either 

 ∆ = θ1 - θ0 (used for inference in “additive models” for means and proportions, and 
sometimes medians), or 

 ∆ = log(θ1 / θ0) (used for inference in “multiplicative models” for geometric means, odds, 
and hazards, and sometimes means and medians), 

 
1. (Obtaining estimates for use in sample size calculations) When making inference about 

spermidine levels using means (and differences of means), the formula for V will typically 
involve the standard deviation σ of measurements made within a treatment group. When 
using paired observations, the formula for V may also involve the correlation ρ between two 
measurements made on the same individual some time apart. We will derive estimates of σ 
and ρ from a pilot study of DFMO. The following estimates should be used as needed to 
answer all other questions. Using the DFMO data set available on the class web pages: 

a. What is the standard deviation of spermidine measurements made at baseline (time of 
randomization) across all subjects? (We can ignore dose, because these measurements 
were made prior to receiving drug.) 

Ans: s = 1.553 micromoles/mg protein. (I keep 4 significant digits for use in intermediate 
calculations). 

b. What is the correlation of spermidine measurements made at baseline (time 0) and 
after 12 months of study on subjects in the placebo group? (We use only the placebo 
group to avoid having to adjust for a treatment effect.) 

Ans: r = 0.3935. (I keep 4 significant digits for use in intermediate calculations). 

2. (A single arm study of spermidine after 12 months of treatment and effect of different 
levels of power) Suppose we choose to provide DFMO at a single dose to N subjects. We use 
as our measure of treatment effect the mean spermidine level at the end of treatment. 
Suppose from previous study we know that in the untreated state the mean spermidine level 
is 3.25 micromoles/mg protein, and we want to detect whether treatment with DFMO will 
result instead in an average spermidine level of 2.50 micromoles/mg protein. We intend to 
perform a hypothesis test in which 

 the one-sided level of significance is α = 0.025, 

 the measure of treatment effect is θ = µ D,12 (the mean spermidine level in the 
patients treated with DFMO after 12 months of treatment), 

 the average variability contributed by each subject to the estimated treatment 
effect (the sample mean) is V= σ 2, and 

 the comparison between alternative and null hypotheses is ∆ = θ1 - θ0. 

a. What sample size will provide 80% power to detect the design alternative? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.80 = 0.842; δαβ = 1.960 + 0.8416 = 2.802. 

To find ∆: θ0 = 3.25; θ1 = 2.50; ∆ = 2.50 – 3.25 = -0.7500. 

To find V: V = σ2 = 1.5532 = 2.412 
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To find N: N = δαβ2 V / ∆2 = 2.8022 × 2.412 / 0.75002 = 33.7, so round up to 34.  

b. What sample size will provide 90% power to detect the design alternative? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.90 = 1.282; δαβ = 1.960 + 1.282 = 3.242. 

To find ∆: θ0 = 3.25; θ1 = 2.50; ∆ = 2.50 – 3.25 = -0.7500. 

To find V: V = σ2 = 1.5532 = 2.412 

To find N: N = δαβ2 V / ∆2 = 3.2422 × 2.412 / 0.75002 = 45.1, so round up to 46.  

c. What sample size will provide 95% power to detect the design alternative? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.95 = 1.645; δαβ = 1.960 + 1.645 = 3.605. 

To find ∆: θ0 = 3.25; θ1 = 2.50; ∆ = 2.50 – 3.25 = -0.7500. 

To find V: V = σ2 = 1.5532 = 2.412 

To find N: N = δαβ2 V / ∆2 = 3.6052 × 2.412 / 0.75002 = 55.7, so round up to 56.  

d. What sample size will provide 97.5% power to detect the design alternative? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.975 = 1.960; δαβ = 1.960 + 1.960 = 3.920. 

To find ∆: θ0 = 3.25; θ1 = 2.50; ∆ = 2.50 – 3.25 = -0.7500. 

To find V: V = σ2 = 1.5532 = 2.412 

To find N: N = δαβ2 V / ∆2 = 3.9202 × 2.412 / 0.75002 = 65.9, so round up to 66.  

e. What sample size will guarantee that a 95% confidence interval for θ would not 
include both the null and alternative hypotheses? 

Ans: The same sample size that provides 97.5% power guarantees that the width of the 95% 
confidence interval will be the distance between the null hypothesis and the design alternative 
hypothesis. So a sample size of 66 will suffice. 

f. Why is this a very bad study design scientifically? 

Ans: This study presumes that we can absolutely trust that the mean under the null hypothesis 
was determined with infinite precision (i.e., based on an infinite sample size). Furthermore, it 
presumes that the patient population used in this next study will be exactly the same sort of 
patients that were used to determine the null hypothesis. To the extent that the patient 
population is different due to underlying clinical or subclinical disease, due to changes in diet, 
due to other environmental influences such as ancillary treatments, or due to genetic profile, 
this would make the previously observed mean irrelevant. This would also be the case if there 
have been changes in the way polyamines are measured in the laboratory. All of this is a pretty 
tall order, so such single arm trials are extremely problematic. 

3. (A single arm study of spermidine after 12 months of treatment and the effect of 
dichotomizing the data) Suppose we choose to provide DFMO at a single dose to N 
subjects. We use as our measure of treatment effect the proportion of subjects having 
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spermidine level below 2.50 micromoles/mg protein at the end of treatment. Suppose from 
previous study we know that in the untreated state the mean spermidine level is 3.25 
micromoles/mg protein and that the data is approximately normally distributed. We are 
guessing that the treatment treatment with DFMO will result instead in an average 
spermidine level of 2.50 micromoles/mg protein. We intend to perform a hypothesis test in 
which 

 the one-sided level of significance is α = 0.025, 

 the desired statistical power is β = 0.975, 

 the measure of treatment effect is θ = pD,12 (the proportion of subjects treated 
with DFMO who have spermidine levels lower than 2.50 micromoles/mg protein 
after 12 months of treatment),  

 the average variability contributed by each subject to the estimated treatment 
effect (the sample proportion) is V= θ(1-θ) (most often, we would compute this 
under the alternative hypothesis in this setting), 

 the comparison between alternative and null hypotheses is ∆ = θ1 - θ0. 

a. Using the estimated standard deviation obtained in problem 1 and assuming normally 
distributed spermidine levels, what proportion of subjects would you expect to have 
measurements lower than 2.50 micromoles/mg protein if the true mean were 3.25 
micromoles/mg protein? (This can serve as your null hypothesis for the test of 
proportions.) 

Ans: We want to determine the probability that a N(µ= 3.25, σ2= 1.5532) random variable 
would be less than 2.50. Using the properties of the normal distribution, this is the same as the 
probability that a N(0,1) random variable would be less than (2.50 – 3.25)/1.553 = -0.4829. 
Using the Stata command “display norm(-0.4829)” we find that under the null 
hypothesis (and the assumption of normality) we would expect pD,12 = θ0 = 0.3146.  

b. Using the estimated standard deviation obtained in problem 1 and assuming normally 
distributed spermidine levels, what proportion of subjects would you expect to have 
measurements lower than 2.50 micromoles/mg protein if the true mean were 2.50 
micromoles/mg protein? (This can serve as your alternative hypothesis for the test of 
proportions.) 

Ans: We want to determine the probability that a N(µ= 2.50, σ2= 1.5532) random variable 
would be less than 2.50. Using the properties of the normal distribution, this is the same as the 
probability that a N(0,1) random variable would be less than (2.50 – 2.50)/1.553 =0.0000. Using 
the Stata command “display norm(0)” we find that under the alternative hypothesis 
(and the assumption of normality) we would expect pD,12 = θ1 = 0.5000.  

c. What sample size will provide 97.5% power to detect the design alternative? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.975 = 1.960; δαβ = 1.960 + 1.960 = 3.920. 

To find ∆: θ0 = 0.3146; θ1 = 0.5000; ∆ = 0.3146 - 0.5000 = -0.1854. 

To find V: V = θ1(1-θ1) = 0.2500 
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To find N: N = δαβ2 V / ∆2 = 3.9202 × 0.2500 / 0.18542 = 111.8, so round up to 112.  

d. What advantages or disadvantages does this study design have over the study design 
used in problem 2? 

Ans: To the extent that it is clinically most important to lower spermidine levels below 2.50 
micromoles/mg protein, this study design answers the most relevant scientific question. 
However, if such a scientific threshold did not exist, then we have clearly lost information 
about how DFMO might tend to lower spermidine levels across the population. This loss of 
information is reflected in the higher sample size requirements when dichotomizing the data: 
112 versus 66. 

e. Why is this a very bad study design scientifically? 

 Ans: For the exact same reasons as given in problem 2, we should not use a single arm study. 
4.  (A single arm study of change in spermidine over 12 months of treatment) Suppose we 

choose to provide DFMO at a single dose to N subjects. We use as our measure of treatment 
effect the difference between mean spermidine level at the end of treatment and at the 
beginning of treatment (because we are using means, we know that the difference in means is 
the same as the mean change). The null hypothesis is that the mean change is 0 
micromoles/mg protein, and we want to detect whether treatment with DFMO will result in 
an average decrease of 0.75 micromoles/mg protein (this hypothesis corresponds to the same 
difference hypothesized in problem 2). We intend to perform a hypothesis test in which 

 the one-sided level of significance is α = 0.025, 

 the desired statistical power is β = 0.975, 

 the measure of treatment effect is θ =µ D,12  - µ D,0 (the mean spermidine level in 
the patients treated with DFMO after 12 months of treatment minus the mean 
spermidine level in those same patients prior to treatment), and 

 the average variability contributed by each subject to the estimated treatment 
effect (the sample mean change) is V= 2σ 2(1-ρ). 

 the comparison between alternative and null hypotheses is ∆ = θ1 - θ0. 

a. What sample size will provide 97.5% power to detect the design alternative? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.975 = 1.960; δαβ = 1.960 + 1.960 = 3.920. 

To find ∆: θ0 = 0; θ1 = -0.7500; ∆ = -0.7500 – 0 = -0.7500. 

To find V: V = 2σ2(1 - ρ) = 2 × 1.5532 × (1 - 0.3935) = 2.926 

To find N: N = δαβ2 V / ∆2 = 3.9202 × 2.926 / 0.75002 = 79.9, so round up to 80.  

b. What advantages or disadvantages does this study design have over the study design 
used in problem 2? 

Ans: It is common for naïve researchers to believe that they always gain precision by 
subtracting off baseline values. In this case, however, such a method of adjusting for baseline 
measurements decreased precision as evidenced by the increased sample size needed for this 
design: 80 when using the difference versus 66 when using only the follow up values. The 
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approach using the change does have the advantage of not relying on the need to know that the 
mean spermidine value was 3.25. It replaces that requirement with the need to know that 
spermidine values would not change over time due to aging, due to secular trends in the diet or 
other environmental variables, or due to drift in laboratory measurement procedures. 

c. What would the correlation between measurements made on the same subject have to 
be in order to have this “pre/post” comparison more efficient than the study design 
used in problem 2? 

Ans: Only V is different between problems 2 and 4. By examining the formulas for V, we see 
that V will be equal in the two approaches when ρ = 0.5. When ρ < 0.5, the approach based on 
using only the follow-up will be more precise; when ρ > 0.5, the approach based on the change 
in measurements will be more precise. 

d. Why is this a very bad study design scientifically? 

Ans: This study presumes that we can absolutely trust that in the absence of DFMO treatment, 
there will be no systematic change in spermidine levels. As noted in the answer to part b, 
factors such as aging, secular trends in diet, or drift in laboratory procedures can make such 
an assumption inappropriate. (Recall that we have seen such factors cause a statistically 
significant change in the placebo group in the beta carotene dataset.) All of this is a pretty tall 
order, so such single arm trials are extremely problematic. 

5.  (A two arm study of mean spermidine after 12 months of treatment) Suppose we 
randomly assign N subjects in a double blind fashion to receive either DFMO at a single dose 
or placebo. We use a randomization ratio of r subjects on DFMO to 1 subject on placebo. We 
use as our measure of treatment effect the difference between mean spermidine level at the 
end of treatment for patients on DFMO and mean spermidine level at the end of treatment for 
patients on placebo. The null hypothesis is that the difference in means is 0 micromoles/mg 
protein, and we want to detect whether treatment with DFMO will result in an average 
spermidine level that is 0.75 micromoles/mg protein lower than might be expected on 
placebo (this hypothesis corresponds to the same difference hypothesized in problem 2). We 
intend to perform a hypothesis test in which 

 the one-sided level of significance is α = 0.025, 

 the desired statistical power is β = 0.975, 

 the measure of treatment effect is θ =µ D,12  - µ P,12 (the mean spermidine level 
in the patients treated with DFMO after 12 months of treatment minus the mean 
spermidine level in in the patients treated with placebo after 12 months of 
treatment),  

 the average variability contributed by each subject to the estimated treatment 
effect (the difference in sample means) is V= σ 2(1/r+2+r), and 

 the comparison between alternative and null hypotheses is ∆ = θ1 - θ0. 

a. What sample size will provide 97.5% power to detect the design alternative when 
r=1? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.975 = 1.960; δαβ = 1.960 + 1.960 = 3.920. 
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To find ∆: θ0 = 0; θ1 = -0.7500; ∆ = -0.7500 – 0 = -0.7500. 

To find V: V = σ 2(1/r+2+r) = 4 × 1.5532  = 9.647 

To find N: N = δαβ2 V / ∆2 = 3.9202 × 9.647 / 0.75002 = 263.5, so round up to 264.  

b. What sample size will provide 97.5% power to detect the design alternative when 
r=2? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.975 = 1.960; δαβ = 1.960 + 1.960 = 3.920. 

To find ∆: θ0 = 0; θ1 = -0.7500; ∆ = -0.7500 – 0 = -0.7500. 

To find V: V = σ 2(1/r+2+r) = 4.5 × 1.5532  = 10.85 

To find N: N = δαβ2 V / ∆2 = 3.9202 × 10.85 / 0.75002 = 296.5, so round up to 297 (or 298 so there 
can be equal numbers in each treatment group).  

c. What sample size will provide 97.5% power to detect the design alternative when 
r=5? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.975 = 1.960; δαβ = 1.960 + 1.960 = 3.920. 

To find ∆: θ0 = 0; θ1 = -0.7500; ∆ = -0.7500 – 0 = -0.7500. 

To find V: V = σ 2(1/r+2+r) = 7.2 × 1.5532  = 17.37 

To find N: N = δαβ2 V / ∆2 = 3.9202 × 17.37 / 0.75002 = 474.5, so round up to 475 (or 476 so there 
can be equal numbers in each treatment group). 

d. What advantages or disadvantages does this study design have over the study design 
used in problem 2? 

Ans: This design uses a concurrent control group. This is the standard for credible scientific 
research. 

6.  (A two arm study of change in mean spermidine after 12 months of treatment) Suppose 
we randomly assign N subjects in a double blind fashion to receive either DFMO at a single 
dose or placebo. We use a randomization ratio of 1 subject on DFMO to 1 subject on 
placebo. We use as our measure of treatment effect the mean change in spermidine level at 
the end of treatment for patients on DFMO and mean change in spermidine level at the end 
of treatment for patients on placebo. The null hypothesis is that the difference in means is 0 
micromoles/mg protein, and we want to detect whether treatment with DFMO will result in 
an average change in spermidine level that is 0.75 micromoles/mg protein lower than might 
be expected on placebo (this hypothesis corresponds to the same difference hypothesized in 
problem 2). We intend to perform a hypothesis test in which 

 the one-sided level of significance is α = 0.025, 

 the desired statistical power is β = 0.975, 

 the measure of treatment effect is θ =  (µ D,12  - µ D,0 ) – (µ P,12  - µ P,0 ) (the 
mean change in spermidine level in the patients treated with DFMO after 12 
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months of treatment minus the mean change in spermidine level in the patients 
treated with placebo after 12 months of treatment), and 

 the average variability contributed by each subject to the estimated treatment 
effect (the difference in sample means) is V= 8σ 2(1-ρ). 

 the comparison between alternative and null hypotheses is ∆ = θ1 - θ0. 

a. What sample size will provide 97.5% power to detect the design alternative? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.975 = 1.960; δαβ = 1.960 + 1.960 = 3.920. 

To find ∆: θ0 = 0; θ1 = -0.7500; ∆ = -0.7500 – 0 = -0.7500. 

To find V: V = 8σ2(1-ρ) = 8 × 1.5532 × (1 – 0.3935) = 11.70 

To find N: N = δαβ2 V / ∆2 = 3.9202 × 11.70 / 0.75002 = 319.6, so round up to 320.  

b. What advantages or disadvantages does this study design have over the study design 
used in problem 5? 

Ans: By randomization, both treatment arms would tend to have the same mean spermidine at 
baseline. Hence, the difference in final spermidines should estimate the exact same quantity as 
the difference in change of spermidine levels. Because the scientific question is the exact same, 
we are free to consider only the statistical precision in choosing the better of the two analysis 
approaches. In this case, the spermidine levels in a person are not all that highly correlated 
over the time period of the trial. Thus it turns out that the more statistically precise approach 
would be to ignore the baseline measurements altogether. This is a quite counter-intuitive 
result, but an important one to remember: Taking differences between measurements does not 
always gain you precision (or any accuracy) when the subjects are comparable at baseline, and 
in a randomized trial we are safe in assuming the subjects were comparable at baseline. 

7.  (A two arm study of mean spermidine after 12 months of treatment using Analysis of 
Covariance) Suppose we randomly assign N subjects in a double blind fashion to receive 
either DFMO at a single dose or placebo. We use a randomization ratio of 1 subject on 
DFMO to 1 subject on placebo. We use as our measure of treatment effect the mean change 
in spermidine level at the end of treatment for patients on DFMO and mean change in 
spermidine level at the end of treatment for patients on placebo. We decide to analyze our 
data using linear regression in which we model the mean spermidine level after 12 months of 
treatment (SPD12) including as predictors a binary variable measuring treatment assignment 
(TX) and a continuous variable measuring the baseline spermidine level for each individual 
(SPD0): 

( ) iiiii SPDTXSPDTXSPDE 00,|12 210 ×+×+= βββ  

The null hypothesis is that treatment with DFMO is not associated with any difference in the 
mean spermidine level, and we want to detect whether treatment with DFMO will result in an 
average spermidine level that is 0.75 micromoles/mg protein lower than might be expected 
on placebo (this hypothesis corresponds to the same difference hypothesized in problem 2). 
We intend to perform a hypothesis test in which 

 the one-sided level of significance is α = 0.025, 
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 the desired statistical power is β = 0.975, 

 the measure of treatment effect is θ =  β1 (see part a),  

 the average variability contributed by each subject to the estimated treatment 
effect (the difference in sample means) is V= 4σ 2(1-ρ2 ), 

 the comparison between alternative and null hypotheses is ∆ = θ1 - θ0. 

a. What is the scientific interpretation of the slope parameter β1? 

Ans: β1 is the difference in mean spermidine level after treatment between an individual 
treated with DFMO and an individual who had the same baseline spermidine value but was 
treated with placebo.    

b. What sample size will provide 97.5% power to detect the design alternative? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.975 = 1.960; δαβ = 1.960 + 1.960 = 3.920. 

To find ∆: θ0 = 0; θ1 = -0.7500; ∆ = -0.7500 – 0 = -0.7500. 

To find V: V = 4σ2(1-ρ2) = 4 × 1.5532 × (1 – 0.39352) = 8.153 

To find N: N = δαβ2 V / ∆2 = 3.9202 × 8.153 / 0.75002 = 222.7, so round up to 224.  

c. For what values of the within subject correlation will this analysis be more efficient 
than the analysis in problem 5? 

Ans: Only V is different between problems 5a and 7. By examining the formulas for V, we see 
that V will be equal in the two approaches only when ρ = 0. Otherwise, the approach based on 
the analysis of covariance will be more precise. 

d. For what values of the within subject correlation will this analysis be more efficient 
than the analysis in problem 6? 

Ans: Only V is different between problems 6 and 7. By examining the formulas for V, we see 
that V will be equal in the two approaches only when ρ = 1. Otherwise, the approach based on 
the analysis of covariance will be more precise. 

Some additional general comments about the analysis of covariance approach: 

 These uniformly better efficiency of the Analysis of Covariance (ANCOVA) estimator 
relies on the fact that the mean baseline measurements are the same for the two 
treatment groups. In a randomized clinical trial, we know that to be the case. In an 
observational study, that might not be the case, and we would then have to worry about 
whether we were answering the same scientific question in problems 5, 6, and 7. 
Generally, in an observational study, the analyses in these three problems would be 
answering different scientific questions. 

 Had we used the change in spermidine as our response variable in the above regression 
model adjusting for treatment assignment and baseline spermidine, we would have 
obtained the exact same slope estimate for β1. Thus the key thing is to adjust for the 
baseline in a regression model. 
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 For those of you who do (or have to in Stat 513) care about such things, the slope  can 
be shown to be basically the same as the Uniform Minimum Variance Unbiased 
Estimator (UMVUE) for this problem. 

 Given that the Analysis of Covariance (ANCOVA) estimator is the most efficient 
estimator in the clinical trial setting, is there ever a time we would want to use anything 
else? Yes. When the measurement is very expensive (in money, as with MRI, or in 
patient safety, as with some biopsies), we could consider whether it is better to have 1 
measurement on 2N people and use only the final measurement as in problem 5, or to 
have 2 measurements on N people and use the ANCOVA analysis as in problem 7. The 
deciding point should be when V from problem 5 is double V from problem 7. This 
occurs when (1-ρ2 )=0.5 or ρ = 0.707. So, if you are constrained by the number of 
measurements you can afford, you will have more precision if you only obtain the 
follow-up measurement when ρ < 0.707, and if you obtain both baseline and follow-up 
measurements when ρ > 0.707. 

I didn’t ask this question, but: Given that the analysis of covariance approach is the most 
efficient, is there ever a time we should use something else in a randomized clinical trial? 

e. Suppose we choose instead to use a sample size of 30. What power do we have to 
detect the design alternative of a 2.50 micromole/mg protein difference in mean 
spermidine levels? 

Ans: To solve this problem, we need to rearrange the sample size formula to solve for the 
standardized alternative, and then find zβ. 
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And using the Stata command “display norm(2.836)”, we find that the power is 
99.77%. 

 
f. Suppose we choose instead to use a sample size of 30. For what alternative do we 

have 97.5% power? 

Ans: To solve this problem, we need to rearrange the sample size formula to solve for the 
difference in the hypotheses, and then find ∆= θ1 - θ0 = θ1. 
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8. (A subgroup analysis and test for interaction in a two arm study of mean spermidine 
after 12 months of treatment) Suppose we randomly assign N subjects in a double blind 
fashion to receive either DFMO at a single dose or placebo. We use a randomization ratio of 
1 subject on DFMO to 1 subject on placebo. We use as our measure of treatment effect the 
difference between mean spermidine level at the end of treatment for patients on DFMO and 
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mean spermidine level at the end of treatment for patients on placebo. The null hypothesis is 
that the difference in means is 0 micromoles/mg protein, and we want to detect whether 
treatment with DFMO will result in an average spermidine level that is 0.75 micromoles/mg 
protein lower than might be expected on placebo (this hypothesis corresponds to the same 
difference hypothesized in problem 2). We want to perform tests separately for each of two 
equal size subgroups (say, males and females) in the population. We intend to perform a 
hypothesis test in which 

 the one-sided level of significance is α = 0.025, 

 the desired statistical power is β = 0.975, 

 the measure of treatment effect is θ =µ D,12  - µ P,12 (the mean spermidine level 
in the patients treated with DFMO after 12 months of treatment minus the mean 
spermidine level in in the patients treated with placebo after 12 months of 
treatment),  

 the average variability contributed by each subject to the estimated treatment 
effect (the difference in sample means) is V= 4σ 2, and 

 the comparison between alternative and null hypotheses is ∆ = θ1 - θ0. 

a. What sample size is needed in each subgroup to provide 97.5% power to detect the 
design alternative, if each hypothesis test can be performed using the 0.025 level of 
significance? So what is the total sample size required in this setting? (Note that this 
last quantity could have been obtained from the general formula by using V= 8σ 2,  
where we multiplied the subgroup average variability by 2 to account for needing the 
sample size in each subgroup.) 

Ans: From the answer to problem 5a, we find that we need 264 subjects in each subgroup, and 
therefore 528 subjects total. This can also be derived as follows: 

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.975 = 1.960; δαβ = 1.960 + 1.960 = 3.920. 

To find ∆: θ0 = 0; θ1 = -0.7500; ∆ = -0.7500 – 0 = -0.7500. 

To find V: V = 8σ2 = 8 × 1.5532 = 19.29 

To find N: N = δαβ2 V / ∆2 = 3.9202 × 19.29 / 0.75002 = 526.9, so round up to 528.  

b. If two subgroups are tested, we are in fact giving ourselves two opportunities to 
declare DFMO beneficial. If our type I error rate is 0.025 on each test, then our 
experimentwise error might be nearly double that (0.049375, which is derived by 
considering the error rate of 0.025 for making a mistake in males plus 0.025 for 
making a mistake in females minus 0.0252 for making a mistake in both males and 
females at the same time). Because of this, usual statistical practice in general (and 
for regulatory agencies in particular) might demand that you provide an adjustment 
for the “multiple comparisons” by using one-sided level α = 0.0125 tests in each 
subgroup (in these two independent subgroups, we could actually use α = 
0.01257912). What sample size is needed in each subgroup to provide 97.5% power 
to detect the design alternative in each subgroup if we make such a multiple 
comparison adjustment to control the experimentwise type I error? What would be the 
total sample size required in this setting? 
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Ans:  

To find δαβ: z1- α = z0.9875 = 2.241; zβ = z0.975 = 1.960; δαβ = 2.241 + 1.960 = 4.201. 

To find ∆: θ0 = 0; θ1 = -0.7500; ∆ = -0.7500 – 0 = -0.7500. 

To find V: V = 4σ2 = 4 × 1.5532 = 9.647 

To find N: N = δαβ2 V / ∆2 = 4.2012 × 9.647 / 0.75002 = 302.7, so round up to 304 for each 
subgroup. We would then require 608 subjects overall. 

c. Suppose now that we actually hypothesize that DFMO is associated with a 2.50 
micromole/mg protein difference in mean spermidine levels in males, but that females 
are unaffected by DFMO. We wish to test for such an effect modification by sex (this 
is a single hypothesis test, so no need for multiple comparison adjustments). Because 
we would merely be comparing the difference of treatment effect in males (where the 
average variability is V= 4σ 2 as given above) and females (where the average 
variability is again V= 4σ 2 as given above), and because the estimated treatment 
effects are independent, we know that the average variability for the difference of the 
estimated treatment effects will just be the sum of the average variability for each 
subgroup estimate, and then we would multiply by 2 because we will have to have the 
sample size in both males and females. Hence, the average variability needed to 
detect this interaction could be based on the standard formula with V= 16σ 2. What 
sample size is required to establish the existence of this interaction with 95% 
confidence (97.5% power)? 

Ans:  

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.975 = 1.960; δαβ = 1.960 + 1.960 = 3.920. 

To find ∆: θ0 = 0; θ1 = -2.500; ∆ = -2.500 – 0 = -2.500. 

To find V: V = 16σ2 = 16 × 1.5532 = 38.59 

To find N: N = δαβ2 V / ∆2 = 3.9202 × 38.59 / 2.5002 = 94.9, so round up to 96. 

NOTE: The above answer is the appropriate for the question I asked using a design alternative 
of -2.50. The following answer is appropriate for the question I meant to ask: I meant to use a 
difference of -0.75 as the design alternative, in order that you could see the huge sample size 
needed to detect the interaction.) 

To find δαβ: z1- α = z0.975 = 1.960; zβ = z0.975 = 1.960; δαβ = 1.960 + 1.960 = 3.920. 

To find ∆: θ0 = 0; θ1 = -0.7500; ∆ = -0.7500 – 0 = -0.7500. 

To find V: V = 16σ2 = 16 × 1.5532 = 38.59 

To find N: N = δαβ2 V / ∆2 = 3.9202 × 38.59 / 0.75002 = 1054.2, so round up to 1056. 

Some general comments on subgroups and tests for interactions:  

 Note the difference between the scientific question asked in the subgroup analyses in 
parts a and b and the test for interaction in part c. A subgroup analysis is asking 
whether the treatment works in a subset of the population. The test for interaction is 
asking whether the treatment works differently between two subgroups. Answering the 
latter question requires a very large sample size. 
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 The adjustment made for multiple comparisons in part b is called a “Bonferroni 
correction”. It just divides your level of significance by the number of analyses you 
perform. This protects against mutually exclusive analyses (i.e., cases where a type I 
error could not be made simultaneously in two analyses). This is very conservative as 
you get to large number of analyses, but as can be seen above, it is not all that 
conservative with respect to two independent analyses: We would use a level 0.0125 test 
with Bonferroni, and a level 0.01258 test for two independent analyses. The latter choice 
would have corresponded to a critical value of 2.239 and have allowed a sample size of 
302.4—very little different from the Bonferroni correction. 

 Sometimes in clinical trials we have a single subgroup that we would investigate when 
the treatment is not effective in the whole sample. In these cases, we can perform an 
adjustment that is much improved over the Bonferroni by using the same methods we 
might use in group sequential monitoring of the trial. 


