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Emerson, Winter 2014
Homework #5
February 3, 2014
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Monday, February 10, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
· Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
· Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
Problems 2 and 3 of the homework build on the analyses performed in homeworks #1 through #4. As such, all questions relate to associations among death from any cause, serum low-density lipoprotein (LDL) levels, age, and sex in a population of generally healthy elderly subjects in four U.S. communities. This homework uses the subset of information that was collected to examine MRI changes in the brain. The data can be found on the class web page (follow the link to Datasets) in the file labeled mri.txt. Documentation is in the file mri.pdf. See homework #1 for additional information. Problem 1 of this homework uses the same dataset to explore associations between prevalence of diabetes and race in the population from which that sample was drawn.
1. Perform a statistical regression analysis evaluating an association between prevalence of diabetes and race by comparing the odds of a diabetes diagnosis across.

a. Fit a logistic regression model that uses whites as a reference group. Is this a saturated model? Provide a formal report (methods and inference) about the scientific question regarding an association between diabetes and race. 
ANSWER: The logistic regression model would be expressed as: 
logit(Diabetes=1|Race) = B0 + B1(Black) + B2(Asians) + B3(Others)
This is a saturated model because there are four groups with three predictors (B1, B2, and B3) and the intercept (B0). 
Statistical methods for inferential statistics:

Frequencies and percentages of diabetes at baseline were compared across difference race categories in the MRI dataset. A logistic regression model was constructed to test the association between race and diabetes. Diabetes is a binary outcome variable (yes/no) and race is an unordered categorical variable with 5 groups (white, black, Asian, and other), where white was the referent group. Wald test was used to estimate the P-value (two-tailed) and Huber-White sandwich estimator was used to estimate the standard error used in the 95% CI. Parameter estimates were determined using maximum likelihood estimation method. Quantification of association between race and diabetes was presented as odds ratio with 95% CI. Significance was defined as P<0.05. 
Inferential results:

Data was available for 
735 patients. Diabetes was prevalent in whites (70.89%) followed by blacks (22.78%), Asians (3.80%), and others (2.53%). From the logistic regression model, there was a higher odds of having diabetes among blacks compared to whites (OR=1.9286; 95% CI: 1.0815, 3.4291). In other words, blacks had a 93% higher odds of being diabetes compared to whites (two-tailed, P=0.026). This was not unusual if the true odds of having diabetes for blacks versus whites was anywhere from 8.2% higher and 343% higher. Asians had a lower, but non-significant, odd of having diabetes relative to whites (OR=0.6282; 95% CI: 0.1888, 2.0909; P=0.449). Other had a higher, but non-significant, odd of having diabetes relative to whites (OR=1.8429; 95% CI: 0.3935, 8.6313; P=0.438).
b. Using the regression model fit in part (a), provide an interpretation for each of the regression parameters (including the intercept).

ANSWER: The intercept that is generated by the logistic regression needs to be exponentiated to have any interpretable sense. Therefore, the OR = EXP(0.1085271) = 1.1146; 95% CI = 1.0858, 1.1537). This means that whites have a 11.5% higher odds of having diabetes relative to all the other races combined (blacks, Asians, and others (P<0.0001). The probability of diabetes for whites is calculated as odds/1+odds = 1.1146/(1+1.1146) = 0.5271 or 52.71%. However, the intercept is not useful for interpretation. 
The B1 parameter is for blacks: From the logistic regression model, there was a higher odds of having diabetes among blacks compared to whites (OR=1.9286; 95% CI: 1.0815, 3.4291). In other words, blacks had a 93% higher odds of being diabetes compared to whites (two-tailed, P=0.026). This was not unusual if the true odds of being diabetes for blacks versus whites was anywhere from 8.2% higher and 343% higher.
The B2 parameter is for Asians: From the logistic regression model, there was a lower, but non-significant odds of having diabetes among Asians compared to whites (OR=0.6282; 95% CI: 0.1888, 2.0909; P=0449). In other words, Asians had a 37% lower odds of having diabetes compared to whites (two-tailed, P=0.449). This was not unusual if the true odds of having diabetes for Asians versus whites was anywhere from 81% lower and 210% higher.
The B3 parameter is for Others: From the logistic regression model, there was a higher, but non-significant odds of having diabetes among Others compared to whites (OR=1.8429; 95% CI: 0.3935, 8.6313; P=0.438). In other words, Others had a 84% higher odds of having diabetes compared to whites (two-tailed, P=0.438). This was not unusual if the true odds of having diabetes for Others versus whites was anywhere from 61% lower and 863% higher.
c. If we were to ignore issue related to multiple comparisons, what conclusions would you reach based on the p values reported in the regression output from part (a) using a 0.05 level of significance.
ANSWER: Using the results from the Wald-test for the model, there is no significant association between race and diabetes in this model (two-tailed, P=0.0956). 
The B1 parameter for blacks: Patients who are black have a higher odds of having diabetes compared to whites (OR=1.9286; 95% CI: 1.0815, 3.4391). This is statistically significant (two-tailed, P=0.026). We reject the null of no association between being Black and having Diabetes. This is a parameter that we should not drop from the final model. 
The B2 parameter for Asians: Patients who are Asian have a lower but non-significant odds of having diabetes compared to Whites (OR=0.6282; 95%CI: 0.1888, 2.0909). This is not statistically significant (two-tailed, P=0.449). We do not have enough evidence to reject the null of no association between being Asian and having Diabetes. Because this parameter estimate is not significant, for the purpose of model construction, there is a risk that this could be dropped. This is a problem since Asians is part of the Race unordered category. We have it regressed based on dummy variables. Dropping this term would in effect break up our Race category. 
The B3 parameter for Others: Patients who are in the Other category for race have a high but non-significant odds of having diabetes compared to Whites (OR=1.8429; 95% CI: 0.3935, 8.6313). This is not statistically significant (two-tailed, P=0.438). We do not have enough evidence to reject the null of no association between being Other and having Diabetes. Because this parameter estimate is not significant, for the purpose of model construction, there is a risk that this could be dropped. This is a problem since Others is part of the Race unordered category. We have it regressed based on dummy variables. Dropping this term would in effect break up our Race category.
d. Now fit a logistic regression model that uses blacks as a reference group. How would your report of formal inference differ from that that you provided in part (a)? How does this regression model relate to that in part (a)?
ANSWER: The logistic regression model is expressed as (Model 2):
logit(Diabetes=1|Race) = B0 + B1(Whites) + B2(Asians) + B3(Others)
This is still a saturated model because there are four groups with three predictors (B1, B2, and B3) and the intercept (B0). 
This logistic regression model is the exact same as the one in which White was the referent. We just re-parameterized the race categories. Blacks is the new referent group to which all race categories are compared to.  Therefore, the odds ratio and 95% CI will reflect the relative comparison between one of the race categories (White, Asians, and Others) and Blacks. 
The regression model will keep much of the same format with the exception of one of the parameter estimates. Instead of having Blacks as a dummy variable, it will be removed and replaced with Whites as a dummy variable. 
Inference will remain the same. 
e. Using the regression model fit in part (d), provide an interpretation for each of the regression parameters (including the intercept.)

ANSWER: Similar to the first regression model in part (a), the intercept for Model 2 is not useful in terms of interpretation. The intercept is 0.2093 and when exponentiated is equal to the OR of 1.2328 with 95% CI: 1.1342, 1.4162). 
The B1 parameter for Whites: Patients who are White have a lower odds of having diabetes compared to Blacks (OR=0.5185; 95% CI: 0.2908, 0.9246). This is statistically significant (two-tailed, P=0.026). We reject the null of no association between being White and having Diabtes. This is similar to part (a). The only difference is that the direction of comparison is reversed. 

The B2 parameter for Asians: Patients who are Asian have a lower but non-significant odds of having diabetes compared to Blacks (OR=0.3258; 95% CI: 0.0909, 1.1669). This is not statistically significant (two-tailed, P=0.449). We do not have enough evidence to reject the null of no association between being Asian and having Diabetes. 
The B3 parameter for Others: Patients who are in the Other category for race have a lower but non-significant odd of having diabetes (OR=0.9556; 95% CI: 0.1259, 0.3480). This is not statistically significant (two-tailed, P=0.438).We do not have enough evidence to reject the null of non association between being Other and having Diabetes. 
f. If we were to ignore issue related to multiple comparisons, what conclusions would you reach based on the p values reported in the regression output from part (d) using a 0.05 level of significance.

ANSWER: 

The B1 parameter for Whites: Patients who are White have a lower odds of having diabetes compared to Blacks (OR=0.5185; 95% CI: 0.2908, 0.9246). This is statistically significant (two-tailed, P=0.026). We reject the null of no association between being White and having Diabetes. This is similar to part (a). The only difference is that the direction of comparison is reversed. We should keep this parameter estimate in our final model. 
The B2 parameter for Asians: Patients who are Asian have a lower but non-significant odds of having diabetes compared to Blacks (OR=0.3258; 95% CI: 0.0909, 1.1669). This is not statistically significant (two-tailed, P=0.449). We do not have enough evidence to reject the null of no association between being Asian and having Diabetes. Because this parameter estimate is not significant, for the purpose of model construction, there is a risk that this could be dropped. This is a problem since Asians is part of the Race unordered category. We have it regressed based on dummy variables. Dropping this term would in effect break up our Race category.
The B3 parameter for Others: Patients who are in the Other category for race have a lower but non-significant odd of having diabetes (OR=0.9556; 95% CI: 0.1259, 0.3480). This is not statistically significant (two-tailed, P=0.438). We do not have enough evidence to reject the null of non association between being Other and having Diabetes. Because this parameter estimate is not significant, for the purpose of model construction, there is a risk that this could be dropped. This is a problem since Asians is part of the Race unordered category. We have it regressed based on dummy variables. Dropping this term would in effect break up our Race category.
g. What do your results from parts (c) and (f) say about the dangers of using the p values for individual regression parameters from a dummy variable regression to decide whether to include or exclude those variables in a regression model (i.e., in a “stepwise model building” procedure)?
ANSWER: There is a concern that based on the P-values for the above regression models one would drops Asians and Others from the final model using the process of stepwise model building. Since Race is an unordered category that includes Whites, Blacks, Asians, and Others, we will make the error of dropping two of these groups rendering our final model invalid. 
2. Perform a statistical regression analysis evaluating an association between all-cause mortality and serum by comparing the instantaneous risk (hazard) of death over the entire period of observation across groups defined by serum LDL when fit as dummy variables using the categories suggested by the Mayo Clinic as reported on Homework #1. The Stata egen command can be used to categorize the LDL levels

egen ldlCTG = cut(ldl), at(0 70 100 130 160 190 250)
a. Include full description of your methods, appropriate descriptive statistics, and full report of your inferential statistics.
ANSWER: 

Methods for inferential statistics:

Proportional hazards model was constructed to evaluate the instantaneous risk of death associated with different LDL categories defined by the Mayo Clinic. Death was a binary outcome variable that was dependent on time of reporting. Descriptive analysis was conducted by comparing survival rates across LDL categories for 2- and 5-year time points. Kaplan-Meier survival curves were plotted for each of the LDL categories. Dummy variables were created for all LDL categories except for the lower LDL group, which was set as the referent (LDL <70 mg/dL). Proportional hazard model estimates were calculated using partial maximum likelihood methods. Quantification of association between mortality and LDL categories was summarized using hazard ratios computed from the regression model, with confidence intervals and two-sided P-values calculated using Wald statistics based on the Huber-White sandwich estimator. 
Inferential results: 
Out of 725 evaluable patients, there were a total of 131 (18.07%) deaths. A total of 725 subjects were available for analysis. Ten subjects had missing LDL values and were omitted from the analysis. The average LDL for those who died was 118.63 (SD, 36.00) mg/dL (min-max: 11-227); and the average LDL for those who survived was 127.39 (SD, 32.787) mg/dL (min-max: 39-247). Two deaths occurred at 0.6571 and 0.1889 years after the beginning of observation. A high proportion of deaths were reported in the LDL<70 mg/dL group (46%); in contrast, a low proportion was reported in the LDL 160 to <190 mg/dL group. At the 2-year survival probability, all groups were above 90%. In the LDL<70 mg/dL group, survival probability was 100%. At the 5-year survival probability, the LDL<70mg/dL group had a survival probability that dropped to 59%. Survival probabilities at 5 years were above 80% for all other LDL groups. 
Table 1 summarizes the descriptive analysis in tabular form. Figure 1 shows the KM curve for al DL groups. In the KM curve, LDL<70 mg/dL group has a sharp decline in survival probability after 3.5 years and is almost a 50% at 6 years. 
From the proportional hazards model, all LDL groups had a lower hazard of death compared to the LDL<70 mg/dL group. For all comparisons, the 95% confidence intervals did not cross null indicating that this was significant. Table 2 summarizes the proportional hazards model.
Figure 1. Kaplan-Meier survival curve for different LDL categories. 
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	Table 1. Descriptive summary of survival probabilities at 2 and 5 years for LDL categories.
	
	

	mg/dL
	<70
	70 <100
	100 <130
	130 <160
	160 <190
	</=190

	N
	22
	143
	228
	225
	83
	24

	Deaths, number (%)
	10 (45.45%)
	28 (19.58%)
	44 (19.30%)
	34 (15.11%)
	11 (13.25%)
	4 (16.67%)

	2-years survival probability
	100%
	95.80%
	93.86%
	95.56%
	98.80%
	95.83%

	5-year survival probability
	59.09%
	83.22%
	29 (81.14%)
	87.11%
	87.95%
	83.33%

	10th percentile of survival
	3.46
	3.80
	3.41
	4.30
	4.53
	4.13

	20th percentile of survival
	3.55
	5.44
	5.36
	NA
	NA
	NA


	Table 2. Results from the proportional hazards model. 

	LDL categories
	Hazard ratio
	95% CI
	P-value

	<70 mg/dL (REF)
	 ---
	 ---
	 ---

	70 to < 100 mg/dL
	0.3980
	0.2026, 0.7820
	0.008

	100 to < 130 mg/dL
	0.3926
	0.2071, 0.7442
	0.004

	130 to < 160 mg/dL
	0.2939
	0.1521, 0.5678
	<0.0001

	160 to < 190 mg/dL
	0.2565
	0.1134, 0.5799
	0.001

	>/= 190 mg/dL
	0.3167
	0.1014, 0.9892
	0.048


b. Provide an interpretation for each parameter in your regression model, including the intercept.

ANSWER: The intercept is not provided. This is because the intercept is the baseline hazard h0(t), which is undefined.
For patients in the LDL 70 to < 100 mg/dL group, the hazard is 60.2% lower relative to patients with LDL<70 mg/dL (HR=0.3980; 95% CI: 0.2026, 0.7820; two-side, P=0.008). Based on a 95% confidence interval, this observed hazard ratio suggesting lower death rates for groups of patients with LDL 70 to <100 mg/dL would not be judged unusual if the true instantaneous risk of death were anywhere from 21.80% to 79.74% lower than that in the LDL<70 mg/dL group. A two-sided P=0.008 suggests that we can reject the null hypothesis that the risk of death is not associated with patients in the LDL<70 mg/dL group in favor of a tendency for lower mortality for patients in LDL 70 to <100 mg/dL group. 

For patients in the LDL 100 to <130 mg/dL group, the hazard is 60.74% lower relative to patients with LDL<70 mg/dL (HR=0.3926; 95% CI: 0.2071, 0.7442; two-sided, P=0.004). Based on a 95% confidence interval, this observed hazard ratio suggesting lower death rates for groups of patients with LDL 100 to <130 mg/dL would not be judged unusual if the true instantaneous risk of death were anywhere from 25.58% to 79.29% lower than that in the LDL<70 mg/dL group. A two-sided P=0.008 suggests that we can reject the null hypothesis that the risk of death is not associated with patients in the LDL<70 mg/dL group in favor of a tendency for lower mortality for patients in LDL 100 to <130 mg/dL group. 
For patients in the LDL 130 to <160 mg/dL group, the hazard is 70.61% lower relative to patients with LDL<70 mg/dL (HR=0.2939; 95% CI: 0.1521, 0.5678; two-sided, P<0.0001). Based on a 95% confidence interval, this observed hazard ratio suggesting lower death rates for groups of patients with LDL 130 to <160 mg/dL would not be judged unusual if the true instantaneous risk of death were anywhere from 43.22% to 84.79% lower than that in the LDL<70 mg/dL group. A two-sided P<0.0001 suggests that we can with high confidence reject the null hypothesis that the risk of death is not associated with patients in the LDL<70 mg/dL group in favor of a tendency for lower mortality for patients in LDL 130 to <160 mg/dL group. 
For patients in the LDL 160 to <190 mg/dL group, the hazard is 74.35% lower relative to patients with LDL<70 mg/dL (HR=0.2565; 95% CI: 0.1134, 0.5799; two-sided, P=0.001). Based on a 95% confidence interval, this observed hazard ratio suggesting lower death rates for groups of patients with LDL 160 to <190 mg/dL would not be judged unusual if the true instantaneous risk of death were anywhere from 42.01% to 88.66% lower than that in the LDL<70 mg/dL group. A two-sided P=0.001 suggests that we can with high confidence reject the null hypothesis that the risk of death is not associated with patients in the LDL<70 mg/dL group in favor of a tendency for lower mortality for patients in LDL 160 to <190 mg/dL group. 
For patients in the LDL>/=190 mg/dL group, the hazard is 68.33% lower relative to patients with LDL<70 mg/dL (HR=0.3167; 95% CI: 0.1014, 0.9892; two-sided, P=0.048). Based on a 95% confidence interval, this observed hazard ratio suggesting lower death rates for groups of patients with LDL>/=190 mg/dL would not be judged unusual if the true instantaneous risk of death were anywhere from 1.08% to 89.86% lower than that in the LDL<70 mg/dL group. A two-sided P=0.048 suggests that we can with high confidence reject the null hypothesis that the risk of death is not associated with patients in the LDL<70 mg/dL group in favor of a tendency for lower mortality for patients in LDL>/=190 mg/dL group. 
c. What analysis would you perform to assess whether the regression model used in this problem provides a “better fit” than does a model that uses only a continuous linear term for LDL? What is the result of such an analysis?

ANSWER: We are testing for linearity; therefore, we need to add a linear term to the proportional hazards model along with the dummy variables. When the linear term is added, the HR is 0.9926; 95% CI: 0.9752, 1.0103 for the linear terms. However, this is not what we are testing. The Wald test tells us that there is an association between LDL and mortality (two-tailed, P=0.0089). 
We perform a test of linearity with the dummy variables to see if they are significantly different from non-linearity. We test whether or not each of the dummy variables are different from 0. The result is a chi-square test that is not statistically significant (chi-square (df, 5) = 5.14; P=0.3988). Hence we do not have enough evidence to prove non-linearity. 
d. For each population defined by serum LDL value, compute the hazard ratio relative to a group having serum LDL of 160 mg/dL. (This will be used in problem 4). This can be effected by generating fitted hazard ratio estimates for each individual in the sample, and then dividing that fitted value by the fitted value for a subject having a LDL of 160 mg/dL. 
ANSWER: The fitted HR is 1.4166; 95% CI: 1.3810, 1.4522. 
3. Perform a statistical regression analysis evaluating an association between all-cause mortality and serum by comparing the instantaneous risk (hazard) of death over the entire period of observation across groups defined by serum LDL when fit as linear splines using the categories suggested by the Mayo Clinic as reported on Homework #1. The Stata mkspline command can be used to create the predictors that can be used in a regression
mkspline ldl0 70 ldl70 100 ldl100 130 ldl130 160 ldl160 190 ldl190 = ldl
a. Include full description of your methods, appropriate descriptive statistics, and full report of your inferential statistics.

ANSWER: 

Methods for inferential statistics:

Proportional hazards model was constructed to evaluate the instantaneous risk of death associated with different LDL categories defined by linear splines at several knots (0-70, 70-100, 100-130, 130-160, 160-190, and 190 and greater). Death was a binary outcome variable that was dependent on time of reporting. Descriptive analysis was conducted by comparing survival rates across LDL categories for 2- and 5-year time points. Kaplan-Meier survival curves were plotted for each of the LDL categories. Proportional hazard model estimates were calculated using partial maximum likelihood methods. Quantification of association between mortality and LDL categories was summarized using hazard ratios computed from the regression model, with confidence intervals and two-sided P-values calculated using Wald statistics based on the Huber-White sandwich estimator. 

Inferential results: 

Out of 725 evaluable patients, there were a total of 131 (18.07%) deaths. A total of 725 subjects were available for analysis. Ten subjects had missing LDL values and were omitted from the analysis. The average LDL for those who died was 118.63 (SD, 36.00) mg/dL (min-max: 11-227); and the average LDL for those who survived was 127.39 (SD, 32.787) mg/dL (min-max: 39-247). Two deaths occurred at 0.6571 and 0.1889 years after the beginning of observation. 
Please see Question 2 part (a) for the rest of the descriptive analysis results. 

From the regression model, the splines had a HR less than 1 except for spline ldl130 and ldl190 indicating that there is some directionality change. The Wald test was significant for an overall association between LDL and mortality (two-sided, P<0.0001). We reject the null that there is no association between LDL and mortality. 
See part (b) for details on the interpretation of the parameter estimates. 

b. Provide an interpretation for each parameter in your regression model, including the intercept. 
ANSWER: The intercept is not provided. This is difficult to interpret anyways. For the spline ldl0, the hazard ratio was 0.9781; 95% CI: 0.9602, 0.9963. 

For spline ldl70 (<LDL<70 mg/dL), the hazard ratio was 0.9797; 95% CI: 0.9535, 1.0067. The difference in hazard between subjects with LDL < 70mg/dL differing by 1 unit of LDL is 2.03% lower in the higher LDL group. Based on a 95% confidence interval, this observed hazard ratio suggesting lower death rates for patients with a higher LDL in spline ldl70 ((</=LDL<70 mg/dL) would not be judged unusual if the true instantaneous risk of death were anywhere from 4.65% lower to 0.67% higher than that of patients with lower LDL.

For spline ldl100 (70<LDL<100 mg/dL), the hazard ratio was 0.9977; 95% CI: 0.9764, 1.0195. The difference in hazard between subjects with LDL between 70 and 100 mg/dL differing by 1 unit of LDL is 2.3% lower in the higher LDL group. Based on a 95% CI, this observed hazard ratio suggesting lower death rates for patients with a higher LDL in spline ldl100 (70<LDL<100 mg/dL) would not be judged unusual if the true instantaneous risk of death were anywhere from 2.36 lower to 1.95% higher than that of patients with lower. 
For spline ldl130 (100<LDL<130 mg/dL), the hazard ratio was 1.004; 95% CI: 0.9794, 1.0284. The difference in hazard between two subjects with LDL between 100 and 130 mg/dL differing by 1 unit of LDL is 0.4% higher in the higher LDL group. Based on a 95% CI, this observed hazard ratio suggesting higher death rates for patients with a higher LDL in a spline ldl130 (100<LDL<130 mg/dL)would not be judged unusual if the true instantaneous risk of death were anywhere from 2.06% lower to 2.84% higher than that of patients with lower LDL. 
For spline ldl160 (130<LDL<160 mg/dL), the hazard ratio was 0.9709; 95% CI: 0.9298, 1.0138. The difference in hazard between two subjects with LDL between 130 and 160 mg/dL differing by 1 unit of LDL is 2.91% lower in the higher LDL group. Based on a 95% CI, this observed hazard ratio suggesting lower death rates for patients with a higher LDL in a spline of ldl160 (130<LDL<160 mg/dL) would not be judged unusual if the true instantaneous risk of death were anywhere from 7.02% lower to 1.38% higher than that of patients with lower LDL. 
For spline ldl190 (160<LDL<190 mg/dL), the hazard ratio was 1.0288; 95% CI: 0.9791, 1.0810. The difference in hazard between two subjects with LDL between 160 and 190 differing by 1 unit of LDL is 2.88% higher in the higher LDL group. Based on a 95% CI, this observed hazard ratio suggesting higher death rates for patients with a higher LDL in a spline of ldl190 (160<LDL<190 mg/dL)would not be judged unusual if the true instantaneous risk of death were anywhere from 2.09% lower to 8.10% higher than that of patients with lower LDL. 
c. What analysis would you perform to assess whether the regression model used in this problem provides a “better fit” than does a model that uses only a continuous linear term for LDL? What is the result of such an analysis?

ANSWER: We are testing for linearity; therefore, we need to add a linear term to the proportional hazards model along with the spline variables. When the linear term is added, the HR is 1.0288; 95% CI: 0.9791, 1.0810 for the linear terms. However, this is not what we are testing. The Wald test tells us that there is an association between LDL and mortality (two-tailed, P<0.0001). 

We perform a test of linearity with the spline variables to see if they are significantly different from non-linearity. In this case a straight line is a special case of linear splines. All parameter coefficients would have to be equal. We test whether or not each of the spline variables are different from 0. The result is a chi-square test that is not statistically significant (chi-square (df, 5) = 9.88; P=0.0788). Hence we do not have enough evidence to prove non-linearity. 
d. For each population defined by serum LDL value, compute the hazard ratio relative to a group having serum LDL of 160 mg/dL. (This will be used in problem 4). This can be effected by generating fitted hazard ratio estimates for each individual in the sample, and then dividing that fitted value by the fitted value for a subject having a LDL of 160 mg/dL. 
ANSWER: The HR for the group spline of 160 is 0.9709; 95% CI: 0.9298, 1.0138. All splines will be referring to this group for comparisons. The result of the fitted HR is 0.1220; 95% CI: 0.1186, 0.1255.
4. By answering the following questions, compare the relative advantages and disadvantages of the various statistical analysis strategies we have considered in Homeworks 1-4 and problems 2 and 3 in this homework. 
a. What advantages do the regression strategies used in Homeworks 4 and 5 provide over the approaches used in Homeworks 1-3?

ANSWER: In Homework 1 we calculated the odds ratio of mortality across different LDL groups. This does not take into account censored data and therefore is not a valid reflection of the association between LDL and mortality. In Homework 2, we performed simple linear regression to test the association between LDL and mortality at 5 years. In addition, logistic regression models do not take into censored data. Similar to Homework, it does not take censored data into account. In Homeworks 4 and 5, we were fitting HR models. Proportional hazard models take into account censored data which is an advantage over previous methods in HW # 1 and 2. 
b. Comment on any similarities or differences of the fitted values from the three models fit in Homework 4 and the two models fit in problems 2 and 3 of this homework.

ANSWER: The proportional hazards model that used dummy variables yielded a step-wise plot relative to the LDL X-axis (Figure 3). The proportional hazards model that used splines is relatively straight. We looked at this more closely in Figure 4. The splines have trends that are conflicting across the splines. 

Figure 3. Plots of all the fitted proportional hazards model against LDL. 
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Figure 4. Plot of the proportional hazards model for splines against LDL. 
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c. A priori, of all the analyses we have considered for exploring an (unadjusted) association between all cause mortality and serum LDL in an elderly population, which one would you prefer and why?
ANSWER: I would use proportional hazards model with LDL as a linear predictor. We don’t get better precision or fit with the dummy variables or splines. In both situations, we conclude that we do not have enough evidence for non-linearity. Therefore, it would make more since to use a linear predictor. Moreover, since we have dummy variables and splines, it will require more degrees of freedom. Since the extra degrees of freedom are not contributing to determining whether we have non-linearity, it would be best to go with a linear model. The proportional hazards model also takes censored data into account that the simple linear and logistic regression models do not. 
Discussion Sections: February 3 - 7, 2014
We continue to discuss the dataset regarding FEV and smoking in children. Come do discussion section prepared to describe descriptive statistics, especially as they relate to confounding, precision, effect modification, and the impact of heteroscedasticity.
