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1. Perform a statistical regression analysis evaluating an association between prevalence of diabetes and race by comparing the odds of a diabetes diagnosis across.

a. Fit a logistic regression model that uses whites as a reference group. Is this a saturated model? Provide a formal report (methods and inference) about the scientific question regarding an association between diabetes and race. 
Yes this a saturated model. Saturated model: estimate B0, B1, B2, B3; parameters= white, black, asian, other

Methods: I will use a logistic regression model with the predictor of interest race using dummy variables (white is the referent group) and the outcome is diabetes, a binary outcome. I will use a robust standard error to allow for the possibility of unequal variance among groups to calculate odds ratios and the wald estimate for the p-values and 95% confidence intervals.
Inference: Using a logistic regression model with robust standard error, the odds of diabetes comparing black to white is 1.929. The odds of diabetes comparing asian and white is 0.628. The odds of diabetes comparing other races to white is 1.843. We will not assess significance based on the individual slopes but rather the overall wald chi-squared. With a p-value of 0.0956 we fail to reject the null hypothesis that race and odds of diabetes are not associated.
b. Using the regression model fit in part (a), provide an interpretation for each of the regression parameters (including the intercept).

b0= -2.2208=log odds of diabetes and being white
b(category2)= 0.657=difference (subtract) in log odds of diabetes in blacks compared to whites

b(category3)= -0.465= difference in log odds of diabetes in asians compared to whites

b(category4)= 0.611=difference in log odds of diabetes in other races compared to whites
If we were to exponentiate all of these would get-

exp(b0)= odds of diabetes and being white

exp(b(category2))= odds ratio of diabetes in blacks compared to whites

exp(b(category3))= odds ratio of diabetes in asians compared to whites

exp(b(category4))= odds ratio diabetes in other races compared to whites
c. If we were to ignore issue related to multiple comparisons, what conclusions would you reach based on the p values reported in the regression output from part (a) using a 0.05 level of significance.
The difference in log odds of diabetes is statistically significant between blacks and whites (p=0.026), however there is no statistically significant difference in log odds between Asians and white or other races and whites (p=0.449, p=0.438 respectively). However, the overall chi-squared test is not statistically significant (p=0.0956) indicating no overall difference in the odds of diabetes by race.

d. Now fit a logistic regression model that uses blacks as a reference group. How would your report of formal inference differ from that that you provided in part (a)? How does this regression model relate to that in part (a)?
Inference: Using a logistic regression model with robust standard error, the odds ratio of diabetes comparing black to white is 0.519. The odds ratio of diabetes comparing asian and black is 0.326, The odds ratio of diabetes comparing other races to black is 0.956. We will not assess significance based on the individual slopes but rather the overall wald chi-squared. With a p-value of 0.0956 we fail to reject the null hypothesis that race and odds of diabetes are not associated.

The overall test does not differ, we just reparameratized the model so that black was not the reference group. 

e. Using the regression model fit in part (d), provide an interpretation for each of the regression parameters (including the intercept.)

b0= -1.564=log odds of diabetes in blacks

b1= -0.657=difference in log odds of diabetes in white v blacks  (this is the negative version of b1 above, the odds ratio is the inverse in the exponentiated model)

b3=-1.122= difference in log odds of diabetes in Asians v blacks

b4= -0.045=difference in log odds of diabetes in other races v blacks
after exponentiating:

exp(b0)= odds of diabetes in blacks

exp(b1)= odds ratio of diabetes in whites compared to blacks

exp(b3)= odds ratio of diabetes in asian compared to blacks

exp(b4)=odds ratio of diabetes in other compared to blacks
f. If we were to ignore issue related to multiple comparisons, what conclusions would you reach based on the p values reported in the regression output from part (d) using a 0.05 level of significance.

The difference in log odds of diabetes is statistically significant between whites and blacks (p=0.026), however there is no statistically significant difference in log odds between Asians and blacks or other races and blacks (p=0.085, p=0.956 respectively). However, the overall chi-squared test is not statistically significant (p=0.0956) indicating no overall difference in the odds of diabetes by race.

This is the same test that we got on part a.

g. What do your results from parts (c) and (f) say about the dangers of using the p values for individual regression parameters from a dummy variable regression to decide whether to include or exclude those variables in a regression model (i.e., in a “stepwise model building” procedure)?
However, the overall chi-squared test which does not have the multiple testing problems stays consistent because this is a reparameratized model. It would be dangerous to use individual p-values in regression model building because you might get different answers based on what your referent category is and you are increasing your type I error by multiple testing.
2. Perform a statistical regression analysis evaluating an association between all-cause mortality and serum by comparing the instantaneous risk (hazard) of death over the entire period of observation across groups defined by serum LDL when fit as dummy variables using the categories suggested by the Mayo Clinic as reported on Homework #1. The Stata egen command can be used to categorize the LDL levels

egen ldlCTG = cut(ldl), at(0 70 100 130 160 190 250)
<70, 70-<100, 100-<130, 130-<160, 160-<190, 190+ (did not go up to 250)
a. Include full description of your methods, appropriate descriptive statistics, and full report of your inferential statistics.
Methods:  We will examine the descriptive statistics of different survival distributions comparing at ldl levels <700, 70-<100, 100-<130, 130-<160, 160-<190, and 190+ mg/dL. We will also look at survival probabilities at 0, 1, 2 3, 4, and 5 years. 

We will use a proportional hazards regression model to estimate the hazard ratio comparing the survival distribution between groups of participants that differ on ldl using dummy variable categories of <700, 70-<100, 100-<130, 130-<160, 160-<190, and 190+ mg/dL. We will use a robust standard error (the Huber-White sandwich estimator) to allow for the possibility of non-proportional hazards when calculating 95% confidence intervals. The wald test will provide a p-value of this test.
Descriptive Statistics: The study consisted of 735 subjects who were followed to death with an estimated average of 5.33 years (median 5.66 years, range 5.00-5.91 years). 133 deaths were observed here. Serum LDL measurements were not available for 10 participants in the study. Excluding these participants, the mean LDL was 126 mg/dL with standard deciation 33.6 mg/dL, range 11-247 mg/dl>
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	Survival Probabilities by Year and Serum LDL levels (mg/dL)

	Year
	 <70 mg/dL
	 70-<100 mg/dL
	100-<130 mg/dL
	130-<160 mg/dL
	160-<190 mg/dL
	190+ mg/dL

	0
	1.0000
	1.0000
	1.0000
	1.0000
	1.0000
	1.0000

	1
	1.0000
	0.9790    
	0.9825    
	0.9778    
	1.0000
	1.0000

	2
	1.0000
	0.9580    
	0.9386    
	0.9556
	0.9880    
	0.9583    

	3
	0.9091    
	0.9091
	0.9123    
	0.9289    
	0.9639    
	0.9167    

	4
	0.7727    
	0.8811
	0.8772    
	0.9111    
	0.9036
	0.9167    

	5
	0.5909
	0.8322
	0.8114
	0.8711
	0.8795
	0.8333    


Inference:

Based on the Kaplan-meier curve above we can see that we will have to use robust standard errors since we do not see proportional hazards. From the table above, those with <70 mg/dL serum LDL have the worst survival after 5 years while those 160-<190 mg/dL have the best. However this changed significantly throughout the 5 years of time on study.

Using the proportional hazards regression model with robust standard error, the instantaneous risk of death between two groups with serum LDL 70-<100 mg/dl and <70 mg/dL is 0.398 with lower risk of death among higher serum LDL. Based on a 95% CI this observed HR would not be judged as unusual if the true HR was between 0.207 and 0.782. The instantaneous risk of death between two groups with serum LDL 100-<130 mg/dl and <70 mg/dl is 0.393. Based on a 95% CI this observed HR would not be judged as unusual if the true HR was between 0.207 and 0.744. The instantaneous risk of death between two groups with serum LDL 130-<160 mg/dl and <70 mg/dl is 0.294. Based on a 95% CI this observed HR would not be judged as unusual if the true HR was between 0.152 and 0.578. The instantaneous risk of death between two groups with serum LDL 160-<190 mg/dl and <70 mg/dl is 0.2257. Based on a 95% CI this observed HR would not be judged as unusual if the true HR was between 0.113 and 0.580. The instantaneous risk of death between two groups with serum LDL 190+ mg/dl and <70 mg/dl is 0.317. Based on a 95% CI this observed HR would not be judged as unusual if the true HR was between 0.101 and 0.989. Based on a p-value of 0.0087 we reject the null hypothesis that there is no association between serum LDL in these categories and survival.

3/3 for descriptive statistics

2/3 for performing an appropriate analysis

Did not report which statistic the statistical inference is based on (-1)

1/4 for reporting the association appropriately

No interpretation of coefficient (-2)

No interpretation of CI (-1)

Total: 6
b. Provide an interpretation for each parameter in your regression model, including the intercept.

b0= cannot be directly calculated but this is a function of the log hazard of survival for serum <70 mg/dL
b1= difference in log hazards of survival comparing 70-100 ldl to <70 ldl

b2= difference in log hazards of survival comparing 100-130 ldl to <70 ldl

b3= difference in log hazards of survival comparing 130-160 ldl to <70 ldl

b4: difference in log hazards of survival comparing 160-190 ldl to <70 ldl

b5= difference in log hazards of survival comparing 190+ ldl to <70 ldl
after exponentiate:

exp(b0)=hazard function for serum <70

exp(b1)= hazard ratio of survival comparing 70-100 ldl to <70 ldl
exp(b2)= hazard ratio comparing 100-130 ldl to <70 ldl
exp(b3)= hazard ratio comparing 130-160 ldl to <70 ldl
exp(b4)=hazard ratio comparing 160-190 ldl to <70 ldl
exp(b5)=hazard ratio comparing 190+ ldl to <70 ldl

Total: 5
c. What analysis would you perform to assess whether the regression model used in this problem provides a “better fit” than does a model that uses only a continuous linear term for LDL? What is the result of such an analysis?
To assess whether the regression model used in this problem provides a better fit than just the continuous linear term, we can add a linear term and then test the linear and the dummy variables together, using the null hypothesis that all of these slopes are equal to zero. After we run the model and then use post-estimation commands on the slopes, based on a p-value of 0.3988 we see no strong evidence for non-linearity.

Did not mention what kind of test you use (-1)
Total: 4
d. For each population defined by serum LDL value, compute the hazard ratio relative to a group having serum LDL of 160 mg/dL. (This will be used in problem 4). This can be effected by generating fitted hazard ratio estimates for each individual in the sample, and then dividing that fitted value by the fitted value for a subject having a LDL of 160 mg/dL.  
3. Perform a statistical regression analysis evaluating an association between all-cause mortality and serum by comparing the instantaneous risk (hazard) of death over the entire period of observation across groups defined by serum LDL when fit as linear splines using the categories suggested by the Mayo Clinic as reported on Homework #1. The Stata mkspline command can be used to create the predictors that can be used in a regression
mkspline ldl0 70 ldl70 100 ldl100 130 ldl130 160 ldl160 190 ldl190 = ldl
a. Include full description of your methods, appropriate descriptive statistics, and full report of your inferential statistics.

(see descriptive statistics above)

Methods: We will use a proportional hazards regression model to estimate the hazard ratio comparing the survival distribution between groups of participants that differ on ldl using linear spline categories of <700, 70-<100, 100-<130, 130-<160, 160-<190, and 190+ mg/dL. We will use a robust standard error (the Huber-White sandwich estimator) to allow for the possibility of non-proportional hazards when calculating 95% confidence intervals. The wald test will provide a p-value of this test.
Inference: Using the proportional hazards regression model with robust standard error, the instantaneous risk of death between two groups differing by 1 mg/dl with serum LDL between 0-70 is 0.978 (95% CI 0.960-0.996), within serum LDL between 70-100 mg/dL is 0.9797 (95%CI 0.953-1.0067), within serum LDL between 100-130 is 0.9977 (0.976-1.019), within serum LDL between 130-160 is 1.004 (0.979-1.028), within serum LDL between 160-190 mg/dLis 0.971 (0.9298-1.014), within serum LDL higher than 190 mg/dL is 1.029 (0.979-1.081). Based on an overall wald test of the model (p<0.0001) we can reject the null hypothesis that serum LDL as a linear spline is not associated with survival.
b. Provide an interpretation for each parameter in your regression model, including the intercept.
B0= log hazards survival function for ldl <70

B1= difference in log hazards between two groups between the knot (0-70) differing by 1 mg/dL ldl

B2= difference in log hazards between two groups between the knot (70-100) differing by 1 mg/dL ldl

B3= difference in log hazards between two groups between the knot (100-130) differing by 1 mg/dL ldl

B4= difference in log hazards between two groups between the knot (130-160) differing by 1 mg/dL ldl

B5= difference in log hazards between two groups between the knot (160-190) differing by 1 mg/dL ldl

B6= difference in log hazards between two groups between the knot (190+) differing by 1 mg/dL ldl
after exponentiation:

exp(b0)=hazards survival function for ldl <70
exp(b1)=hazard ratio between two groups between the knot (0-70) differing by 1 mg/dL ldl
exp(b2)= hazard ratio between two groups between the knot (70-100) differing by 1 mg/dL ldl
exp(b3)=hazard ratio between two groups between the knot (100-130) differing by 1 mg/dL ldl
exp(b4)=hazard ratio between two groups between the knot (130-160) differing by 1 mg/dL ldl
exp(b5)=hazard ratio between two groups between the knot (160-190) differing by 1 mg/dL ldl
exp(b6)=hazard ratio between two groups between the knot (190+) differing by 1 mg/dL ldl
c. What analysis would you perform to assess whether the regression model used in this problem provides a “better fit” than does a model that uses only a continuous linear term for LDL? What is the result of such an analysis?

In order to test whether the regression model used in this problem provides a better fit, we would have to test if all of the linear spline coefficients were equal to each other. Using post estimation commands, based on a p-value of 0.0788 we don’t have strong evidence here that the coefficients are not equal to each other which means there is no suggestion for nonlinearity.
d. For each population defined by serum LDL value, compute the hazard ratio relative to a group having serum LDL of 160 mg/dL. (This will be used in problem 4). This can be effected by generating fitted hazard ratio estimates for each individual in the sample, and then dividing that fitted value by the fitted value for a subject having a LDL of 160 mg/dL.    
4. By answering the following questions, compare the relative advantages and disadvantages of the various statistical analysis strategies we have considered in Homeworks 1-4 and  problems 2 and 3 in this homework. 
a. What advantages do the regression strategies used in Homeworks 4 and 5 provide over the approaches used in Homeworks 1-3?

In homework 4 and 5 we are using serum LDL as a continuous variable and we use proportional hazards regression to account for varying time and the censoring of survival. In homeworks 1-3 we were either dichotomizing serum LDL which means we lose information, or dichotomizing death in 5 years. While dichotomizing death in 5 years is valid, we do lose information about time to death or censoring. Also, it is more natural to have serum LDL as the predictor and death as the outcome instead of the other way around.

b. Comment on any similarities or differences of the fitted values from the three models fit in Homework 4 and the two models fit in problems 2 and 3 of this homework.
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The first graph above shows the step-wise dummy variable and then linear splines. We can see that they do generally overlap but of course the dummy variable is stepwise. The second graph shows all of these models together. The ends are pretty consistent as is the overall trend that is slightly curvilinear (though not statistically significant in our models). 
c. A priori, of all the analyses we have considered for exploring an (unadjusted) association between all cause mortality and serum LDL in an elderly population, which one would you prefer and why?
A priori, I would choose to use proportional hazards regression with serum LDL as a linear predictor and hazards of death as the outcome. This way we don’t lose any information about either variable. Unless I was sure a priori, I wouldn’t have necessarily used ldl on a log scale unless I think it was multiplicative by nature. Also, I would not have chosen to fit non-linear models, unless a prior I had some reason to believe the association was not linear. I would not test these without hypotheses a prior or else I would increase my type I error.
