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Biost 515: Biostatistics II
Emerson, Winter 2015
Homework #3
January 23, 2015
This homework considers pregnancy outcomes in an observational study of women attending a prenatal clinic in South Africa. Questions in this homework focus most closely on association with delivery of babies that are small for gestational age (SGA). The data can be found on the class web page (follow the link to Datasets) in the file labeled pregout.txt (you will not need any of the longitudinal measurements in the file preglong.txt). Documentation is in the file pregnancy.pdf.
1. Provide suitable descriptive statistics relevant to this analysis.
Answer:

Methods: From the documentation of the dataset, we know that low birth weight babies might be caused by either pre-term delivery or small for gestational age. In this homework, we focus most closely on association with delivery of babies that are small for gestational age (SGA).  Therefore, I stratified the dataset into two groups (SGA and NOTSGA) by the indicator variable SGA, and provided descriptive statistics for maternal age, maternal height, smoker, number of prior deliveries, birthweight of babies, an indicator variable of low birthweight (LBW), sex of the infant, and the gestational age at delivery in the following table. For continuous variables, I presented the mean, standard deviation and range; for binary variables, I presented percentage.  
From the problems below, we consider maternal smoking behavior as the main predictor of interest. Therefore, I stratified the whole dataset into two groups by maternal smoking behavior and then presented the descriptive statistics of SGA, maternal age, maternal height, prior history of deliveries and the sex of the infant. For continuous variables, I presented the mean, standard deviation and range; for binary variables, I presented percentage.
Inference:

In the dataset, we have 755 subjects in total. However, there are 6 subjects with missing height, 4 subjects with missing smoking information, missing birthweight of baby (of course, missing LBW), and missing sex of infant, and 5 subjects with missing gestational age. I just omitted these missing values. We should remember that we cannot assess the impact of these omissions on our results.
Of the 755 subjects, 650 babies are not small for the gestational age and 105 are small for the gestational age. The following table presents descriptive statistics within these groups and for the entire sample. From the following table, we can easily find that the percentage of LBW infant is much higher in the SGA group than in the NOTSGA (SGA=0) group (which is easy to understand). In addition, the mothers in SGA group tend to be more likely to smoke and a little bit younger and shorter. The babies in SGA group tend to have smaller gestational age and the percentage of boy baby is lower. What’s more, because of the small mean and large standard deviation of prior deliveries, we cannot draw a valid conclusion on this variable.
	
	Small for Gestational Age

	
	NO (SGA=0)
n=650
	YES (SGA=1)
n=105
	BOTH
n=755

	Age (year)
	24.9 (5.4; 14 - 43)
	23.8 (4.9; 16 - 35)
	24.8 (5.4; 14 - 43)

	Height (cm)
	157.0 (6.5; 106 - 176)
	154.6 (5.9; 142 - 172)
	156.7 (6.5; 106 - 176)

	Smoker
	28.7%
	43.3%
	30.8%

	Prior Deliveries
	1.13 (1.2; 0 - 6)
	0.90 (1.1; 0 - 6)
	1.10 (1.2; 0 - 6)

	Birthweight (gm)
	3246.2

(402.1; 2510 - 4730)
	2231.1

(411.6; 1035 - 3780)
	3105.6

(534.5; 1035 - 4730)

	LBW
	0%
	72.1%
	10.0%

	Male Infant
	52.4%
	42.3%
	51.0%

	Gestational Age (week)
	39.4 (1.2; 38 - 44)
	37.9 (2.2; 30 - 42)
	39.2 (1.5; 30 - 44)


Descriptive statistics presented in the form: mean (standard deviation; minimum - maximum)
For 755 subjects in the dataset, there are 751 subjects with available smoking behavior. 520 subjects are nonsmoker, while 231 subjects are smoker. There are 6 subjects among the 751 subjects with missing height. I just omitted these values. The following table presents descriptive statistics within the two groups and for the entire sample. From the following table, we can easily find that the probability of delivery of SGA infant is higher in the maternal smoking group, with 19.5% compared to 11.3% in the nonsmoking group. And the percentage of boy in the infants is also higher in the nonsmoker group than the smoker group. For maternal age, height and prior deliveries, because of the small difference and large standard deviation, we cannot draw a valid conclusion about these variables.
From the two tables, we can find that the distribution of sex of infant is different across group defined by SGA and it’s also different across group defined by smoking. It may be a potential confounder, and I think we need to do more analysis on this variable.

	
	Maternal Smoking Behavior

	
	Nonsmoker

n=520
	Smoker

n=231
	Both

n=751

	Age (years)
	24.6 (5.37; 14-43)
	25.1 (5.35; 15 - 42)
	24.8 (5.36; 14 - 43)

	Height (cm)
	156.6(6.16; 127 - 175)
	156.8(7.19; 106 - 176)
	156.7(6.49; 106 - 176)

	SGA
	11.3% (0.128)
	19.5% (0.242)
	13.8%

	Boy Infant
	52.3% (1.097)
	48.1% (0.925)
	51.0%

	Prior Deliveries
	1.06 (1.19; 0 - 6)
	1.19 (1.27; 0 - 6)
	1.10 (1.21; 0 - 6)


Descriptive statistics presented in the form: mean (standard deviation; minimum - maximum)
Or: risk (odds) for binary variables
2. Perform a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. (Only give a formal report of the inference where asked to.)
a. Give full inference regarding the association between SGA and maternal smoking. 
Answer:

Methods: I used a logistic regression model to compare the odds of delivery of infants who were SGA within the maternal smoking group and the maternal non-smoking group. Based on Wald statistics and the approximate normal distribution for logistic regression parameter estimates, I computed the point estimate of the slope parameter with its standard error, two-sided p value and a 95% confidence interval. Since it’s a saturated model, the robust standard error is just slightly different from the standard error. Therefore, I used a classical logistic regression.

Inference: Among the whole dataset of 755 subjects, there are 751 subjects with available smoking information, with 231 smokers and 520 nonsmokers. Of the 520 nonsmoking subjects, the odds of delivery of infants who were SGA is 0.128, while for the 231 smoking subjects, the odds of delivery of infants who were SGA is 0.242.  The odds ratio is 1.89. Based on a 95% confidence interval, our data would not be unusual if the true odds ratio is between 1.24 and 2.89, with the smoking group having larger odds of delivery of infants who were SGA. Based on the results of the classical logistic regression model, this observation is statistically significant at a 0.05 level of significance (two-sided p value = 0.003). Therefore, we can with high confidence reject the null hypothesis that there is no association between the odds of delivery of infants who were SGA and maternal smoking.
b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.
Answer:

The point estimates of slope and intercept for the classical logistic regression model are 0.637 and -2.056, respectively.

 For nonsmokers, the odds of delivering a SGA infant is the exponentiation of the intercept, i.e. exp (-2.056), which is 0.128. Since the proportion is equal to odds/(1+odds), for nonsmokers, the probability of delivering a SGA infant is 11.3%.
For smokers, the odds of delivering a SGA infant is the exponentiation of the sum of intercept and slope, which is 0.242. Using the same equation as above, the probability of delivering a SGA infant for nonsmokers is 19.5%.

We can see that the estimates of probabilities of delivering a SGA infant for smokers and nonsmokers from the classical logistic regression are exactly the same as the descriptive statistics in Q1, i.e. the probabilities in the sample. Since odds is equal to p/(1-p), the odds and odds ratio agree exactly, too. It’s because that this is a saturated model (here are two groups modeled by two regression parameters), and for a saturated model, the fitted odds and probabilities must agree exactly with the sample odds and sample proportion.
c. There were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):
 The following three models are just re-parameterization of the original model, and they are all saturated, too. Since the models are just linear transformations of the predictor variables and the two probabilities of complementary events sum to 1, we can predict the estimates and inference. 
i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.
Answer:

For the NONSMOKER variable, when the mother is a smoker, NONSMOKER=0; when the mother is a nonsmoker, NONSMOKER=1.
When we fit a logistic regression model of SGA on NONSMOKER, the exponentiation of the slope is the ratio of the odds of delivering a SGA infant for nonsmokers to the odds of delivering a SGA infant for smokers, which is the reciprocal of the odds ratio from part a. In other word, the estimate of slope in this model has the same absolute value as the original estimate of slope, with a different sign symbol. For the estimate of intercept in this model, the exponentiation of the estimate is the odds of delivering a SGA infant for a smoker. Therefore, the estimate of intercept in this model is the sum of the estimate of slope and intercept in the original model.
For the estimate of the slope, we have mentioned that the absolute value is the same as the original estimate. And the standard error for the estimate of slope is also the same as the original. Therefore, the two 95% confidence intervals are the same, except for the sign symbol. And the two z-statistics (except the sign symbol) and two-sided p values are the same, too. (But the standard error and 95% CI of the estimate of intercept are not the same as the original.)
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.
Answer:

 For the NOTSGA variable, when the infant is SGA, NOTSGA=0; when the infant is not SGA, NOTSGA=1.

When we fit a logistic regression model of NOTSGA on SMOKER, the exponentiation of the slope is the ratio of the odds of delivering a not SGA infant for smokers to the odds of delivering a not SGA infant for nonsmokers, which is the reciprocal of the odds ratio from part a. (The odds of delivering a not SGA infant for a group is the reciprocal of the odds of delivering a SGA for the group.) In other word, the estimate of slope in this model has the same absolute value as the original estimate of slope, with a different sign symbol. For the estimate of intercept in this model, the exponentiation of the estimate is the odds of delivering a not SGA infant for a nonsmoker. Therefore, the estimate of intercept in this model has the same absolute value as the original estimate of intercept, with a different sign symbol.

For the estimate of the slope, we have mentioned that the absolute value is the same as the original estimate. And the standard error for the estimate of slope is also the same as the original. Therefore, the two 95% confidence intervals are the same, except the sign symbol. And the two z-statistics (except the sign symbol) and two-sided p values are the same, too. For the estimate of the intercept, we have mentioned that the absolute value is the same as the original estimate. And the standard error for the estimate of slope is also the same as the original. Therefore, the two 95% confidence intervals are the same, except the sign symbol.

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
Answer:

When we fit a logistic regression model of NOTSGA on NONSMOKER, the exponentiation of the slope is the ratio of the odds of delivering a not SGA infant for nonsmokers to the odds of delivering a not SGA infant for smokers, which is exactly the same as the original odds ratio. (The odds of delivering a not SGA infant for a group is the reciprocal of the odds of delivering a SGA for the group.) In other word, the estimate of slope in this model is the same as the original model in part a. For the estimate of intercept in this model, the exponentiation of the estimate is the odds of delivering a not SGA infant for a smoker. Therefore, the estimate of intercept in this model has the same absolute value as the sum of original estimate of intercept and slope, with a different sign symbol.

For the estimate of the slope, we have mentioned that it’s the same as the original estimate. And the standard error for the estimate of slope is also the same as the original. Therefore, the two 95% confidence intervals are the same. And the two z-statistics and two-sided p values are the same, too. (For the estimate of the intercept, the standard error and 95% CI are not the same as the original.)
3. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the difference in probabilities for SGA across smoking groups. 
a. Give full inference regarding the association between SGA and maternal smoking. 
Answer:

Methods: I used a linear regression model to compare the probabilities for SGA across smoking groups. The statistical inference on the difference in probabilities for SGA is based on the estimate and confidence interval of the slope parameter in the model. Based on the approximate normal distribution for linear regression parameter estimates and using the Wald statistics and Huber-White sandwich estimator, we can compute a 95% confidence interval with robust standard error, and get a two-sided p value.
Inference: Among the whole dataset of 755 subjects, there are 751 subjects with available smoking information, with 231 smokers and 520 nonsmokers. Of the 520 nonsmoking subjects, the probability of delivery of infants who were SGA is 0.113, while for the 231 smoking subjects, the probability of delivery of infants who were SGA is 0.195.  The difference between the probabilities is 0.0813, with smoking group having higher risk of SGA. Based on a 95% confidence interval using Huber-White sandwich estimator, our data would not be unusual if the true risk difference is between 0.0233 and 0.139, with the smoking group having higher risk of delivery of infants who were SGA. Based on the results of the simple linear regression model with robust standard error, this observation is statistically significant at a 0.05 level of significance (two-sided p value = 0.006). Therefore, we can with high confidence reject the null hypothesis that the probability of SGA is not associated with maternal smoking.
b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.
Answer:

The point estimates of slope and intercept for the linear regression model with robust standard error are 0.0813 and 0.113, respectively.
For nonsmoker group, estimate of the probability of SGA is just the estimate of the intercept in the model, which is 11.3%. The odds of SGA for nonsmokers is p/(1-p), which is 0.128.
For smoker group, estimate of the probability of SGA is the sum of the estimate of the intercept and slope in the model, which is 19.5%. The odds of SGA for smokers is 0.242.

We can see that the estimates of probabilities of delivering a SGA infant for smokers and nonsmokers from the linear regression model are exactly the same as the descriptive statistics in Q1, i.e. the probabilities in the sample. Since odds is equal to p/(1-p), the odds and odds ratio agree exactly, too. It’s because that this is a saturated model (here are two groups modeled by two regression parameters), and for a saturated model, the fitted odds and probabilities must agree exactly with the sample odds and sample proportion.
c. There were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):
The following three models are just re-parameterization of the original model, and they are all saturated, too. Since the models are just linear transformations of the predictor variables and the two probabilities of complementary events sum to 1, we can predict the estimates and inference.
i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a regression model of response SGA on predictor NONSMOKER.
Answer:

For the NONSMOKER variable, when the mother is a smoker, NONSMOKER=0; when the mother is a nonsmoker, NONSMOKER=1.

When we fit a linear regression model of SGA on NONSMOKER, the estimate of slope is the difference between the probability of delivering a SGA infant for nonsmokers and the probability of delivering a SGA infant for smokers, which has the same absolute value as the original risk difference in part a, but with different sign symbol. In other word, the estimate of slope in this model has the same absolute value as the original estimate of slope, with a different sign symbol. For the estimate of intercept in this model, it is the probability of delivering a SGA infant for a smoker. Therefore, the estimate of intercept in this model is the sum of the estimate of slope and intercept in the original model.

For the estimate of the slope, we have mentioned that the absolute value is the same as the original estimate. And the standard error for the estimate of slope is also the same as the original. Therefore, the two 95% confidence intervals are the same, except for the sign symbols. And the two t-statistics (except the sign symbols) and two-sided p values are the same, too. (But the standard error and 95% CI of the estimate of intercept are not the same as the original.)
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a regression model of response NOTSGA on predictor SMOKER.
Answer:

For the NOTSGA variable, when the infant is SGA, NOTSGA=0; when the infant is not SGA, NOTSGA=1.

When we fit a linear regression model of NOTSGA on SMOKER, the estimate of slope is difference between the probability of delivering a not SGA infant for smokers to the probability of delivering a not SGA infant for nonsmokers, which has the same absolute value as the risk difference in original model in part a, with different sign symbol. (The probability of delivering a not SGA infant for a group is equal to one minus the probability of delivering a SGA infant for the group.) In other word, the estimate of slope in this model has the same absolute value as the original estimate of slope, with a different sign symbol. For the estimate of intercept in this model, the estimate is the probability of delivering a not SGA infant for a nonsmoker. Therefore, the estimate of intercept in this model is equal to one minus the original estimate of intercept in part a.

For the estimate of the slope, we have mentioned that the absolute value is the same as the original estimate. And the standard error for the estimate of slope is also the same as the original. Therefore, the two 95% confidence intervals are the same, except the sign symbols. And the two t-statistics (except the sign symbol) and two-sided p values are the same, too. (For the estimate of the intercept, we have mentioned that the estimate of intercept in this model is equal to one minus the original estimate of intercept in part a. And the standard error for the estimate of intercept is the same as the original. Therefore, the two end points of the 95% confidence interval in this model are equal to one minus the two end points of the 95% confidence interval of intercept in the original model, respectively. )
iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
Answer:

When we fit a linear regression model of NOTSGA on NONSMOKER, the estimate of slope is the difference of the probability of delivering a not SGA infant for nonsmokers and the probability of delivering a not SGA infant for smokers, which is exactly the same as the original risk difference. In other word, the estimate of slope in this model is the same as the estimate in original model in part a. For the estimate of intercept in this model, it’s the probability of not SGA for smoker. Therefore, the estimate of intercept in this model is equal to one minus the sum of the estimate of intercept and slope in the original model in part a.

For the estimate of the slope, we have mentioned that it’s the same as the original estimate. And the standard error for the estimate of slope is also the same as the original. Therefore, the two 95% confidence intervals are the same. And the two t-statistics and two-sided p values are the same, too. (For the estimate of the intercept, the standard error and 95% CI are not the same as the original.)
4. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the ratio of probabilities for SGA across smoking groups. 

a. Give full inference regarding the association between SGA and maternal smoking. 
Answer:

Methods: I used a Poisson regression model to compare the probabilities of delivery of infants who were SGA within the maternal smoking group and the maternal non-smoking group. The statistical inference on the ratio of probabilities for SGA across smoking groups is based on the estimate and confidence interval of the slope parameter in the model. Based on the approximate normal distribution for Poisson regression parameter estimates and using the Wald statistics and Huber-White sandwich estimator, we can compute a 95% confidence interval with robust standard error, and get a two-sided p value. 

Inference: Among the whole dataset of 755 subjects, there are 751 subjects with available smoking information, with 231 smokers and 520 nonsmokers. Of the 520 nonsmoking subjects, the probability of delivery of infants who were SGA is 11.3%, while for the 231 smoking subjects, the probability of delivery of infants who were SGA is 19.5%.  The risk ratio is 1.72. Based on a 95% confidence interval, our data would not be unusual if the true risk ratio is between 1.20 and 2.45, with the smoking group having higher probability of delivery of infants who were SGA. Based on the results of the Poisson regression model with robust standard error, this observation is statistically significant at a 0.05 level of significance (two-sided p value = 0.003). Therefore, we can with high confidence reject the null hypothesis that there is no association between the probability of delivery of infants who were SGA and maternal smoking.
b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.
Answer:

The point estimates of slope and intercept for the Poisson regression model are 0.541 and -2.18, respectively.

 For nonsmokers, the probability of delivering a SGA infant is the exponentiation of the intercept, i.e. exp (-2.18), which is 11.3%. Since the odds is equal to p/(1-p), for nonsmokers, the odds of delivering a SGA infant is 0.128.

For smokers, the probability of delivering a SGA infant for nonsmokers is the exponentiation of the sum of intercept and slope, i.e. exp(-2.18+0.541), which is 19.5%. Since the odds is equal to p/(1-p), for smokers, the odds of delivering a SGA infant is 0.242.

We can see that the estimates of probabilities of delivering a SGA infant for smokers and nonsmokers from the Poisson regression are exactly the same as the descriptive statistics in Q1, i.e. the probabilities in the sample. Since odds is equal to p/(1-p), the odds and odds ratio agree exactly, too. It’s because that this is a saturated model (here are two groups modeled by two regression parameters), and for a saturated model, the fitted odds and probabilities must agree exactly with the sample odds and sample proportion.
c. There were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):
The following three models are just re-parameterization of the original model, and they are all saturated, too. Since the models are just linear transformations of the predictor variables and the two probabilities of complementary events sum to 1, we can predict the estimates and inference. However, for Poisson regression, the response variable is logarithmically transformed, while the predictor variable is not, and when we do a linear transformation for the response variable, the relationship will get complicated.
i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a regression model of response SGA on predictor NONSMOKER.
Answer:

For the NONSMOKER variable, when the mother is a smoker, NONSMOKER=0; when the mother is a nonsmoker, NONSMOKER=1.

When we fit a Poisson regression model of SGA on NONSMOKER, the exponentiation of the slope is the ratio of the risk of delivering a SGA infant for nonsmokers to the risk of delivering a SGA infant for smokers, which is the reciprocal of the risk ratio from part a. In other word, the estimate of slope in this model has the same absolute value as the original estimate of slope, with a different sign symbol. For the estimate of intercept in this model, the exponentiation of the estimate is the risk of delivering a SGA infant for a smoker. Therefore, the estimate of intercept in this model is the sum of the estimate of slope and intercept in the original model.

For the estimate of the slope, we have mentioned that the absolute value is the same as the original estimate. And the standard error for the estimate of slope is also the same as the original. Therefore, the two 95% confidence intervals are the same, except for the sign symbol. And the two z-statistics (except the sign symbol) and two-sided p values are the same, too. (But the standard error and 95% CI of the estimate of intercept are not the same as the original.)
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.
Answer:

For the NOTSGA variable, when the infant is SGA, NOTSGA=0; when the infant is not SGA, NOTSGA=1.

When we fit a Poisson regression model of NOTSGA on SMOKER, the exponentiation of the slope is the ratio of the risk of delivering a not SGA infant for smokers to the risk of delivering a not SGA infant for nonsmokers, which is the ratio of one minus risk of SGA for smokers to one minus risk of SGA for nonsmokers. (The risk of delivering a not SGA infant for a group is equal to one minus the risk of delivering a SGA for the group.) Therefore, we cannot get a simple relationship between the two estimates, but a relationship did exist. For the estimate of intercept in this model, the exponentiation of the estimate is the risk of delivering a not SGA infant for a nonsmoker. Therefore, the estimate of intercept in this model is equal the log transformation of one minus exponentiation of the original estimate of the intercept.
For the two models, they have different standard error for the estimate of slope, hence difference confidence interval. What’s more, the two-sided p values are different, too.
iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
Answer:

When we fit a Poisson regression model of NOTSGA on NONSMOKER, the exponentiation of the slope is the ratio of the risk of delivering a not SGA infant for nonsmokers to the risk of delivering a not SGA infant for smokers, which is equal to one minus the risk of SGA for nonsmokers to one minus the risk of SGA for smokers. (The risk of delivering a not SGA infant for a group is equal to one minus the risk of delivering a SGA for the group.) Therefore, we cannot get a simple relationship between the two estimates of slope, but a relationship did exist. For the estimate of intercept in this model, the exponentiation of the estimate is the risk of delivering a not SGA infant for a smoker. Therefore, the estimate of intercept in this model is equal the log transformation of one minus exponentiation of the sum of original estimate of the intercept and slope.

For the two models, they have different standard error for the estimate of slope, hence difference confidence interval. What’s more, the two-sided p values are different, too.
5. How do the analyses performed in problems 2-4 compare to that that would be obtained in a simple two sample comparison of SGA by smoking status (i.e., using methods covered in Biost 517/514.) Explicitly mention where they would be similar or different?
Answer:

For problem 2, I used a classical logistic regression model to compare the odds of SGA across groups defined by maternal smoking behavior. The point estimate of the odds ratio is 1.89, and a 95% confidence interval is between 1.238 and 2.888. For the methods covered in Biost 514, I used a chi squared test and the odds ratio is exactly the same as the estimate in the regression model, 1.89. What’s more, the 95% Woolf confidence interval is exactly the same as the 95% confidence interval in the regression model, too. But the 95% confidence interval based on Cornfield method is slightly wider than the 95% CI in the regression model. The two sided p value from the Wald test is 0.0032, which is close to the two-sided p value from the chi squared test, which is 0.0029. Because the chi squared test corresponds to the score test in logistic regression model, and the two tests may be different in small samples. The two-sided p value from the likelihood ratio test is 0.0037, differing from the two p-values, too. From the Fisher’s exact test, the two-sided p value is 0.0041, which may be more conservative depending on the sample size.

For problem 3, I used a linear regression model with robust standard error to evaluate the difference in probabilities of SGA across smoking groups. The point estimate of the risk of SGA in nonsmoking group and smoking group are 11.3% and 19.5%, respectively. And the point estimate of risk difference is 8.13%, with a 95% confidence interval (2.33%, 13.94%). For the methods covered in Biost 514, I used a chi squared test and the risk difference is exactly the same as the estimate in the regression model, 8.13%. What’s more, the 95% Woolf confidence interval is (2.35%, 13.92%), which is slightly narrower than the 95% confidence interval in the regression model. In addition, the two-sided p value of the chi squared test is 0.0029, which is smaller than the two-sided p value in the regression model (0.006). It is probably because the different ways the mean-variance relationship is handled. We are using a linear regression model with robust standard error here; it may be more conservative and give a larger p value and a wider confidence interval.
For problem 4, I used a Poisson regression model with robust standard error to evaluate the ratio of probabilities of SGA across smoking groups. The point estimate of the risk ratio of SGA in smoking group to nonsmoking group is 1.72, with a 95% confidence interval (1.2028, 2.4507). For the methods covered in Biost 514, I used a chi squared test and the risk ratio is exactly the same as the estimate in the regression model, 1.72. What’s more, the 95% Woolf confidence interval is (1.2031, 2.4501), which is slightly narrower than the 95% confidence interval in the regression model. In addition, the two-sided p value of the chi squared test is 0.0029, which is really close to the two-sided p value in the regression model (0.0029). The slightly difference in the CI and p values may result from the different ways the mean-variance relationship is handled. We are using a Poisson regression model with robust standard error here; it may be more conservative and give a larger p value and a wider confidence interval.
6. Perform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. Evaluate associations using risk difference (RD: difference in probabilities).
Answer:

Methods: To evaluate the association between the prevalence of SGA infants across groups defined by maternal age by using risk difference, I used a simple linear regression model with robust standard error. The maternal age is the predictor of interest. Based on the approximate normal distribution for linear regression parameter estimates and Wald statistic, p value is computed. And 95% confidence interval is constructed using the Huber-White sandwich estimator. We used the point estimate and 95% CI of slope and the two-sided p value to test the association.
Inference: Among the whole dataset, there are 755 subjects, and they all have available SGA and age information. From the linear regression analysis of the 755 subjects, we estimate that the risk difference is - 0.452% for absolute 1 year difference between the two groups in their age, with the older group tending to have lower risk of SGA. Based on a 95% confidence interval, our data would not be unusual if the true risk difference of SGA is anywhere between 0.0287% and 0.874%, with the older group having lower risk of SGA. The observation is statistically significant at a 0.05 level of significance (two-sided p value=0.036). Therefore, we can with high confidence interval reject the null hypothesis that the risk difference between groups defined by age is zero. And we would prefer the hypothesis that there is an association between the prevalence of SGA infants across groups defined by maternal age.
b. Evaluate associations between risk ratio (RR: ratios of probabilities).
Answer:
Methods: To evaluate the association between the prevalence of SGA infants across groups defined by maternal age by using risk ratio, I used a Poisson regression model with robust standard error. The maternal age is the predictor of interest. Based on the approximate normal distribution for Poisson regression parameter estimates and Wald statistic, two-sided p value is computed. And 95% confidence interval is constructed using the Huber-White sandwich estimator. We can use the exponentiation of point estimate and 95% CI of the slope and the two-sided p value to test the association.
Inference: Among the whole dataset, there are 755 subjects, and they all have available SGA and age information. From the Poisson regression analysis of the 755 subjects, we estimate that the risk ratio is 0.966 for absolute 1 year difference between the two groups in their age, with the older group tending to have lower risk of SGA. Based on a 95% confidence interval, our data would not be unusual if the true ratio of the risk of SGA is anywhere between 0.934 and 0.999, with the older group having lower risk of SGA. The observation is statistically significant at a 0.05 level of significance (two-sided p value=0.046). Therefore, we can with high confidence interval reject the null hypothesis that the risk ratio between groups defined by age is one. And we would prefer the hypothesis that there is an association between the prevalence of SGA infants across groups defined by maternal age.
c. Evaluate associations using odds ratio (OR: ratios of odds)
Answer:

Methods: To evaluate the association between the prevalence of SGA infants across groups defined by maternal age by using odds ratio, I used a classical logistic regression model. The maternal age is the predictor of interest. Based on the approximate normal distribution for logistic regression parameter estimates and Wald statistic, two-sided p value is computed, and 95% confidence interval is constructed. We can use the exponentiation of point estimate and 95% CI of the slope and the two-sided p value to test the association.
Inference: Among the whole dataset, there are 755 subjects, and they all have available SGA and age information. From the logistic regression analysis of the 755 subjects, we estimate that the odds ratio is 0.961 for absolute 1 year difference between the two groups in their age, with the older group tending to have smaller odds of SGA. Based on a 95% confidence interval, our data would not be unusual if the true ratio of the odds of SGA is anywhere between 0.923 and 1.001, with the older group having smaller odds of SGA. The observation is not statistically significant at a 0.05 level of significance (two-sided p value=0.054). Therefore, we cannot reject the null hypothesis that the odds ratio between groups defined by age is one, i.e. there is no association between prevalence of SGA across groups defined by maternal age. 
d. Using the regression parameter estimates from each of these regressions, provide an estimate of the probability that a 20 year old mother would have a SGA infant. Explain any similarities or differences these estimates might have when compared to the sample proportion of SGA infants among 20 year olds.
Answer:

For regression in part a, the probability that a 20 year old mother would have a SGA infant is estimated as 25.010% - 20*0.4515%, which is 16.07%.
For regression in part b, the probability that a 20 year old mother would have a SGA infant is estimated as 0.3211*(0.9662)^20, which is 16.13%.

For regression in part c, the odds that a 20 year old mother would have a SGA infant is estimated as 0.19229. Using the equation that p= odds/(1+odds), the probability that a 20 year old mother would have a SGA infant is estimated as 16.13%.

The sample proportion of SGA infants among 20 year olds is 7.5%.  The three fitted values from the regressions are all higher than the sample proportion. Since there are 29 groups defined by maternal age, while there are only two parameters in each regression, the three regressions are not saturated and need to borrow information to give the fitted values. Therefore, these estimates are different from the sample proportion.
7. Produce a plot of the estimated probability of an SGA infant by age as derived by each of the following methods. Comment on the similarity and difference among the various fitted values form the various analyses performed in problem 6. (Note that Stata allows you to specify multiple Y variables for a single X variable: scatter y1 y2 y3 y4 age)
a. Sample proportions within each unique age: This can be obtained in Stata using the command egen varname= mean(sga), by(age).
b. Estimated probabilities for each age in the data as derived from each of the regression analyses. In Stata, this can be obtained using the simple “post-estimation” command: predict varname.  (But use a different variable name for each fitted value.) 

i. After performing a linear regression, the default action of the “predict” function is to create a variable that contains the estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion.

ii. After performing a Poisson regression, the default action of the “predict” function is to create a variable that contains the exponentiated estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion. (The linear predictor in Poisson regression corresponds to the log “rate”, because Poisson regression uses a log link function.

iii. In logistic regression, the estimated “linear predictor” corresponds to the log odds. Exponentiating that would correspond to the odds. By default, Stata figures that you would really rather have the estimated probability, which is computed as prob = odds / (1 + odds). So, after performing a logistic regression, the default action of the “predict” function is to create a variable that contains the the regression based estimate of the mean. 
Answer:

The scatterplot is as following:
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From the plot above, we can see that the fitted values from Poisson regression and logistic regression are almost the same. And for age groups between 20 and around 32, the fitted values from the two regressions are almost the same as the fitted values from linear regression. However, the fitted values from linear regression are smaller than the other two when the group age is smaller than 20 or larger than 33. The difference may result from the log transformation of the response in Poisson and logistic regression.
And since the three regressions are not saturated and they need to borrow information, the fitted values are different from the sample proportions.
8. Perform a logistic regression analysis of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. Provide formal inference for associations using odds ratio (OR: ratios of odds) and log transformed age.
Answer:

Methods: To evaluate the association between the prevalence of SGA infants across groups defined by logarithmically transformed maternal age by using odds ratio, I used a classical logistic regression model for SGA on logarithmically transformed age. The logarithmically transformed maternal age is the predictor of interest. Based on the approximate normal distribution for logistic regression parameter estimates and Wald statistic, two-sided p value is computed, and 95% confidence interval is constructed. We can use the exponentiation of point estimate and 95% CI of the slope and the two-sided p value to test the association.
Inference: Among the whole dataset, there are 755 subjects, and they all have available SGA and age information. From the logistic regression analysis of the 755 subjects, we estimate that the odds ratio is 0.516 for each 2 fold increase in maternal age, with the older group tending to have smaller odds of SGA. Based on a 95% confidence interval, our data would not be unusual if the true ratio of the odds of SGA is anywhere between 0.260 and 1.024 for each 2 fold increase in maternal age, with the older group having smaller odds of SGA. The observation is not statistically significant at a 0.05 level of significance (two-sided p value=0.058). Therefore, we cannot reject the null hypothesis that the odds of SGA is not associated with logarithmically transformed maternal age.
b. Why might it be reasonable or silly to have performed such an analysis rather than the analysis in problem 6c?
Answer:

In my opinion, it’s silly to perform an analysis using the logarithmically transformed maternal age rather than the analysis in problem 6c. Since age increases in a linear way rather than a multiplicative way, it’s more reasonable to do an analysis in problem 6c.
What’s more, one year difference in age is much easier to be understood than 2 fold increase in age.

Finally, the analysis with untransformed maternal age is easier to be performed than logarithmically transformed maternal age.

Therefore, I would prefer to the analysis in problem 6c.
