Biost 518 / 515, Winter 2015
Homework #3
January 23, 2015, Page 1 of 12

Biost 518: Applied Biostatistics II
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Emerson, Winter 2015
Homework #3
January 23, 2015
129/160 points

Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Monday, February 2, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
· Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
· Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
This homework considers pregnancy outcomes in an observational study of women attending a prenatal clinic in South Africa. Questions in this homework focus most closely on association with delivery of babies that are small for gestational age (SGA). The data can be found on the class web page (follow the link to Datasets) in the file labeled pregout.txt (you will not need any of the longitudinal measurements in the file preglong.txt). Documentation is in the file pregnancy.pdf.
1. 8/10 points Provide suitable descriptive statistics relevant to this analysis.

Method: Other than smoking status and age these two primary predict of interests, we may be interested in sex of the infants and maternal parity. Since sex of infants might associate with whether the infant is small for gestational age, it could be a potential effect modifier. Parity might associate with maternal age and whether the infant is small for gestational age, hence it could be a potential confounder. Indicator variables were created for smoking status (smoker=1, nonsmoker=0) and sex of infant (boy=1, girl=0). Data from 4 subjects missing data for smoking status and sex of infant was excluded only from the analysis involving those variables. In the first table, descriptive statistics are presented within groups defined by whether the babies are small for gestational age. For continuous variables, we include the mean, standard deviation, minimum and maximum. For binary variables (smoking and sex indicators), we present percentages. In the second table, age was stratified into four groups. Descriptive statistics are presented as counts, probability, and odds of being small (not small) for gestational age in each stratum. 
Result: Of the 755 subjects in the dataset, measurements of smoking status and sex of infants are available on 104 of the 105 subjects that are small for gestational age, and available on 647 of the 650 subjects that are not small for gestational age. As depicted in first table, there is a trend that percentages of smokers are higher among babies that are small for gestational age (43% versus 29%). There is a trend that percentages of boys are lower in babies that are small for gestational age (42% versus 51%). Also as presented in the first table, there is a slightly different trend in age and parity of the mothers: mothers of babies that are small for gestational age tends to be younger than mothers of babies that are not small for gestational age (23.85 yrs. versus 24.94 yrs.); and mothers of babies that are small for gestational age tends to have less children before than mothers of babies that are not small for gestational age (0.90 versus 1.13).
As depicted in second table, there is a trend that smokers tend to have higher probability (or odds) of having babies that are small for gestational age than non-smokers (0.1948 versus 0.1135). There is a trend that male infants have lower probability (or odds) to be small for gestational age than female infants (0.1149 versus 0.1630). Also, there is a trend that younger moms have higher probability (or odds) of having babies that are small for gestational age than older moms (0.1637 versus 0.1414 versus 0.1329 versus 0 (in increasing age)). From the descriptive statistics for parity in second table, we cannot see a clear monotone trend of probability (odds) of having babies that are small for gestational age in the sample (0.1672, 0.1333, 0.1053, 0.1538, 0.0435, 0, 0.1667 (in increasing parity)).
	 
	Small for gestational age
	Not small for gestational age
	Overall

	Smoker
	43%; n=104/105
	29%; n=647/650
	31%; n=751/755

	Boy
	42%; n=104/105
	51%; n=647/650
	51%; n=751/755

	Age (yrs)
	23.85 (4.9; 16 - 35); n=105/105
	24.94 (5.45; 14 - 43); n=650/650
	24.79 (5.39; 14 - 43); n=755/755

	Parity
	0.90 (1.11; 0 - 6); n=105/105
	1.13 (1.23; 0 - 6); n=650/650
	1.10 (1.21; 0 - 6); n=755/755


Table 1: Percentages are presented for binary variables. Mean (standard deviation; minimum - maximum) are presented for continuous variables. 

n=number of observations with available measurements / number of subjects in the stratum. 

	 
	Small for gestational age
	Not small for gestational age

	Smoker
	n=45; p=0.1948; o=0.2419
	n=186; p=0.8052; o=4.1333

	Non-smoker
	n=59; p=0.1135; o=0.1280
	n=461; p=0.8865; o=7.8136

	Boy
	n=44; p=0.1149; o=0.1298
	n=339; p=0.8851; o=7.7045

	Girl
	n=60; p=0.1630; o=0.1948
	n=308; p=0.8370; o=5.1333

	Age: 14 - 20 yrs
	n=28; p=0.1637; o=0.1958
	n=143; p=0.8363; o=5.1071

	Age: 21 - 28 yrs
	n=58; p=0.1415; o=0.1648
	n=352; p=0.8585; o=6.0690

	Age: 29 - 35 yrs
	n=19; p=0.1329; o=0.1532
	n=124; p=0.8671; o=6.5263

	Age: 36 - 43 yrs
	n=0; p=0; o=0 
	n=31; p=1; o=inf

	Parity: 0
	n=49; p=0.1672; o=0.2008
	n=244; p=0.8328; o=4.9796

	Parity: 1
	n=32; p=0.1333; o=0.1538
	n=208; p=0.8667; o=6.500

	Parity: 2
	n=14; p=0.1053; o=0.1176
	n=119; p=0.8947; o=8.500

	Parity: 3
	n=8; p=0.1538; o=0.1818
	n=44; p=0.8462; o=5.5

	Parity: 4
	n=1; p=0.0435; o=0.0455
	n=22; p=0.9565; o=22.0000

	Parity: 5
	p=0; o=0
	n=8; p=1; o=inf

	Parity: 6
	n=1; p=0.1667; o=0.2000
	n=5; p=0.8333; o=5.0000



Table 2: Counts, probability, and odds of being small (not small) for gestational age are presented in each stratum. 

2. 22/25 points Perform a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. (Only give a formal report of the inference where asked to.)
a. 10/10 Give full inference regarding the association between SGA and maternal smoking. 

Method: Indictor variables were created for SGA and SMOKER. A robust logistic regression model of delivering a SGA infant (log-transformed odds) as the response and SMOKER (untransformed) as predictor was fit to describe the linear trend in log odds of delivering a SGA infant as a function of smoking behavior. Standard errors were computed using the Huber-White sandwich estimator.  95% confidence intervals and a two sided p valued were computed using the approximately normally distributed Wald statistics. The point estimates of the association were based on the exponentiated slope from the logistic regression. Four subjects with missing data for smoking behavior were excluded from the analysis.
Result: From the robust logistic regression analysis of the 751 subjects having available measurements on SGA and smoking behavior, the estimated odds of delivering a SGA infant for non-smokers is 0.1280 (expoenentiated intercept), and the estimated odds of delivering a SGA infant for smokers is 0.2419. The estimated odds ratio of delivering a SGA infant between smokers and non-smokers is 1.8904 (exponentiated slope). This result is statistically significant at a 0.05 significant level (two sided P = 0.00336), thus we can confidently reject null hypothesis that there’s no difference in odds of delivering a SGA infant between smokers and non-smokers in favor of the hypothesis that the odds of delivering a SGA infant of smokers tends to be higher than non-smokers. A 95% confidence interval suggests that our data would not be unusual if true odds ratio of delivering a SGA infant between smokers and non-smokers is between 1.2360 and 2.8912.
b. 5/5 Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.
Answer: From the regression model estimate: the estimated odds of delivering a SGA infant is 0.1280 for non-smokers and 0.2419 for smokers; the estimated probability of delivering a SGA infant is 0.1135 for non-smokers and 0.1945 for smokers. These estimated are the same as reported descriptive statistics in table 2. Because the logistic regression model is a saturated model, the estimates of odds (or probability) in each group will agree exactly with the sample odds (or probability).
c. 7/10 
There were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.

Answer: From the regression model, the estimated odds of delivering a SGA infant for smokers is 0.2419 (exponentiated intercept), and the estimated odds ratio of delivering a SGA infant between non-smokers and smokers is 0.5290 (exponentiated slope). The values for the intercept and slope are different from results in 2a, however, the results of inference are the same because we are actually doing re-parameterization of the saturated model (linear transformation of the predictor), hence we get same fitted values.
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.

Answer: From the regression model, the estimated odds of delivering a not SGA infant for non-smokers is 7.8139 (exponentiated intercept), and the estimated odds ratio of delivering a not SGA infant between smokers and non-smokers is 0.5290 (exponentiated slope). The values for the intercept and slope are different from results in 2a, however, the results of inference are the same because we are actually doing re-parameterization of the saturated model (linear transformation of the predictor), hence we get same fitted values. 
iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
Answer: From the regression model, the estimated odds of delivering a not SGA infant for smokers is 4.1334 (exponentiated intercept), and the estimated odds ratio of delivering a not SGA infant between non-smokers and smokers is 1.8904 (exponentiated slope). The values for the intercept and slope are different from results in 2a, however, the results of inference are the same because we are actually doing re-parameterization of the saturated model (linear transformation of the predictor), hence we get same fitted values.
3. 22/25 points Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the difference in probabilities for SGA across smoking groups.
3a. 10/10 Method: Indictor variables were created for SGA and SMOKER. A robust linear regression model of delivering a SGA infant (untransformed) as the response and SMOKER (untransformed) as predictor was fit to describe the linear trend in probability of delivering a SGA infant as a function of smoking behavior. Standard errors were computed using the Huber-White sandwich estimator.  95% confidence intervals and a two sided p values were computed using the approximately normally distributed Wald statistics. The point estimates of the association were based on the slope from the robust linear regression. Four subjects with missing data for smoking behavior were excluded from the analysis.

Result: From the robust linear regression analysis of the 751 subjects having available measurements on SGA and smoking behavior, the estimated probability of delivering a SGA infant for non-smokers is 0.1135 (intercept), and the estimated probability of delivering a SGA infant for smokers is 0.1948. The estimated difference in probability of delivering a SGA infant between smokers and non-smokers is 0.0813 (slope). This result is statistically significant at a 0.05 significant level (two sided P = 0.0061), thus we can confidently reject null hypothesis that there’s no difference in probability of delivering a SGA infant between smokers and non-smokers in favor of the hypothesis that the probability of delivering a SGA infant of smokers tends to be higher than non-smokers. A 95% robust confidence interval suggests that our data would not be unusual if true difference in probability of delivering a SGA infant between smokers and non-smokers is between 0.0233 and 0.1394.

3b. 5/5 Answer: From the robust linear regression model estimate: the estimated odds of delivering a SGA infant is 0.1280 for non-smokers and 0.2419 for smokers; the estimated probability of delivering a SGA infant is 0.1135 for non-smokers and 0.1948 for smokers. These estimated are the same as reported descriptive statistics in table 2. Because the Poisson regression model is a saturated model, the estimates of probability (or odds) in each group will agree exactly with the sample probability (or odds).

3c. 7/10 
i). Answer: From the regression model, the estimated probability of delivering a SGA infant for smokers is 0.1948 (intercept), and the estimated difference in probability of delivering a SGA infant between non-smokers and smokers is -0.0813 (slope). The values for the intercept and slope are different from results in 3a, however, the results of inference are the same because we are actually doing re-parameterization of the saturated model (linear transformation of the predictor), hence we get same fitted values.

ii). Answer: From the regression model, the estimated probability of delivering a not SGA infant for non-smokers is 0.8865 (intercept), and the estimated difference in probability of delivering a not SGA infant between smokers and non-smokers is -0.08134 (slope). The values for the intercept and slope are different from results in 3a, however, the results of inference are the same because we are actually doing re-parameterization of the saturated model (linear transformation of the predictor), hence we get same fitted values.

iii). Answer: From the regression model, the estimated probability of delivering a not SGA infant for smokers is 0.8052 (intercept), and the estimated difference in probability of delivering a not SGA infant between non-smokers and smokers is 0.0813 (slope). The values for the intercept and slope are different from results in 3a, however, the results of inference are the same because we are actually doing re-parameterization of the saturated model (linear transformation of the predictor), hence we get same fitted values.
4. 22/25 pointsRepeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the ratio of probabilities for SGA across smoking groups.
4a. 10/10 Method: Indictor variables were created for SGA and SMOKER. A robust Poisson regression model of delivering a SGA infant (log-transformed probability) as the response and SMOKER (untransformed) as predictor was fit to describe the linear trend in log probability of delivering a SGA infant as a function of smoking behavior. Standard errors were computed using the Huber-White sandwich estimator. 95% confidence intervals and a two sided p valued were computed using the approximately normally distributed Wald statistics. The point estimates of the association were based on the exponentiated slope from the Poisson regression. Four subjects with missing data for smoking behavior were excluded from the analysis.

Result: From the robust Poisson regression analysis of the 751 subjects having available measurements on SGA and smoking behavior, the estimated probability of delivering a SGA infant for non-smokers is 0.1135 (expoenentiated intercept), and the estimated probability of delivering a SGA infant for smokers is 0.1948. The estimated ratio of probability of delivering a SGA infant between smokers and non-smokers is 1.7169 (exponentiated slope). This result is statistically significant at a 0.05 significant level (two sided P = 0.00302), thus we can confidently reject null hypothesis that there’s no difference in probability of delivering a SGA infant between smokers and non-smokers in favor of the hypothesis that the probability of delivering a SGA infant of smokers tends to be higher than non-smokers. A robust 95% confidence interval suggests that our data would not be unusual if true ratio of probability of delivering a SGA infant between smokers and non-smokers is between 1.2019 and 2.4527.

4b. 5/5 Answer: From the robust linear regression model estimate: the estimated odds of delivering a SGA infant is 0.1280 for non-smokers and 0.2419 for smokers; the estimated probability of delivering a SGA infant is 0.1135 for non-smokers and 0.1948 for smokers. These estimated are the same as reported descriptive statistics in table 2. Because the robust linear regression model is a saturated model, the estimates of probability (or odds) in each group will agree exactly with the sample probability (or odds).

4c. 7/10
 i). Answer: From the regression model, the estimated probability of delivering a SGA infant for smokers is 0.1948 (exponentiated intercept), and the estimated ratio in probability of delivering a SGA infant between non-smokers and smokers is 0.5824 (exponentiated slope). The values for the intercept and slope are different from results in 4a, however, the results of inference are the same because we are actually doing re-parameterization of the saturated model (linear transformation of the predictor), hence we get same fitted values.
ii). Answer: From the regression model, the estimated probability of delivering a not SGA infant for non-smokers is 0.8865 (exponentiated intercept), and the estimated ratio in probability of delivering a not SGA infant between smokers and non-smokers is 0.9083 (exponentiated slope). The values for the intercept and slope are different from results in 4a, however, the results of inference are the same because we are actually doing re-parameterization of the saturated model (linear transformation of the predictor), hence we get same fitted values.

iii). Answer: From the regression model, the estimated probability of delivering a not SGA infant for smokers is 0.8052 (expoentiated intercept), and the estimated ratio in probability of delivering a not SGA infant between non-smokers and smokers is 1.1010 (exponentiated slope). The values for the intercept and slope are different from results in 4a, however, the results of inference are the same because we are actually doing re-parameterization of the saturated model (linear transformation of the predictor), hence we get same fitted values.
5. 3/10 points How do the analyses performed in problems 2-4 compare to that that would be obtained in a simple two sample comparison of SGA by smoking status (i.e., using methods covered in Biost 517/514.) Explicitly mention where they would be similar or different?
Method: The t test that allows for the possibility of unequal variances was used to compare the probability of delivering a SGA infant between smokers and non-smokers. Estimates of the association were based on the difference in sample means. Standard errors were calculated based on sample variance estimates from each group. 95% confidence intervals and a two sided p valued were computed using the approximately normally distributed Wald statistics. Four subjects with missing data for smoking behavior were excluded from the analysis.

Result: Among 751 subjects having available measurements on SGA and smoking behavior. The sample probability of delivering a SGA infant for non-smokers is 0.1135 and the sample probability of delivering a SGA infant for smokers is 0.1948. The difference of sample probability of delivering a SGA infant between smokers and non-smokers is 0.0813. A 95% confidence interval suggests that our data would not be unusual if the true difference in probability of delivering a SGA infant between smokers and non-smokers is between 0.0231and 0.1395. From the t test that allows the possibility of unequal variances, the two-sided p value P= 0.00628 < 0.05 allows us to reject the null hypothesis of no difference in probability of delivering a SGA infant between smokers and non-smokers in favor of the hypothesis that the probability of delivering a SGA infant tends to be higher for smokers.
The
 estimates are the same as in problem 2-4 since regression models are saturated models therefore the estimates of probability in problem 2-4 will agree exactly with the sample probability in problem 5. However, the methods of estimating standard errors and degrees of freedom are different while the conclusions (inference) are the same.
6. 40/40 pointsPerform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. 10/10 Evaluate associations using risk difference (RD: difference in probabilities).

Method: An indictor variable was created for SGA. A robust linear regression model of delivering a SGA infant (untransformed) as the response and maternal age (untransformed) as predictor was fit to describe the linear trend in probability of delivering a SGA infant as a function of maternal age. . Standard errors were computed using the Huber-White sandwich estimator. 95% confidence intervals and a two sided p valued were computed using the approximately normally distributed Wald statistics. The point estimates of the association were based on the slope from the robust linear regression. 
Result: From the robust linear regression analysis of the 755 subjects having available measurements on SGA and maternal age. We estimate that when comparing two mothers having two different ages, the probability of delivering a SGA infant is 0.0045 lower for each 1-year increment in maternal age. This result is statistically significant at a 0.05 significant level (two sided P = 0.0364), thus we can confidently reject null hypothesis that there’s no difference in probability of delivering a SGA infant across groups defined by maternal age in favor of the hypothesis that the probability of delivering a SGA infant for older mothers tends to be lower than younger mothers. A 95% robust confidence interval suggests that our data would not be unusual if the decrease in probability of delivering a SGA infant between two mothers differ by 1-year increment is between 0.00029 and 0.0087.

b. 10/10 Evaluate associations between risk ratio (RR: ratios of probabilities).
Method: An indictor variable was created for SGA. A robust Poisson regression model of delivering a SGA infant (log-transformed probability) as the response and maternal age (untransformed) as predictor was fit to describe the linear trend in log probability of delivering a SGA infant as a function of maternal age. . Standard errors were computed using the Huber-White sandwich estimator. 95% confidence intervals and a two sided p valued were computed using the approximately normally distributed Wald statistics. The point estimates of the association were based on the exponentiated slope from the Poisson regression. 
Result: From the robust Poisson regression analysis of the 755 subjects having available measurements on SGA and maternal age, we estimate the ratio of probability of delivering a SGA infant between two mothers differ by 1-year age increment is 0.9662. This result is statistically significant at a 0.05 significant level (two sided P = 0.0465), thus we can confidently reject null hypothesis that there’s no difference in probability of delivering a SGA infant across groups defined by maternal age in favor of the hypothesis that the probability of delivering a SGA infant for older mothers tends to be lower than younger mothers. A 95% robust confidence interval suggests that our data would not be unusual if ratio in probability of delivering a SGA infant between two mothers differ by 1-year increment is between 0.9340 and 0.9995.
c. 10/10 Evaluate associations using odds ratio (OR: ratios of odds)

Method: An indictor variables was created for SGA. A robust logistic regression model of delivering a SGA infant (log-transformed odds) as the response and maternal age (untransformed) as predictor was fit to describe the linear trend in log odds of delivering a SGA infant as a function of maternal age. Standard errors were computed using the Huber-White sandwich estimator. 95% confidence intervals and a two sided p valued were computed using the approximately normally distributed Wald statistics. The point estimates of the association were based on the exponentiated slope from the logistic regression. 
Result: From the robust logistic regression analysis of the 755 subjects having available measurements on SGA and maternal age, we estimate odds ratio of delivering a SGA infant between mothers differ by 1-year age increment is 0.9610 (exponentiated slope). This result is statistically significant at a 0.05 significant level (two sided P = 0.0461), thus we can confidently reject null hypothesis that there’s no difference in odds of delivering a SGA infant between smokers and non-smokers in favor of the hypothesis that the odds of delivering a SGA infant of smokers tends to be higher than non-smokers. A 95% confidence interval suggests that our data would not be unusual if true odds ratio of delivering a SGA infant between mothers differ by 1-year age increment is between 0.9242 and 0.9993.
d. 10/10 Using the regression parameter estimates from each of these regressions, provide an estimate of the probability that a 20 year old mother would have a SGA infant. Explain any similarities or differences these estimates might have when compared to the sample proportion of SGA infants among 20 year olds.

Answer: The sample proportion of SGA infants among 20 year olds is 0.075.
a) Simple linear regression:
Fitted probability SGA = 0.2510 - 0.0045 * age = 0.16069 when age = 20
b) Poisson regression:
Log(fitted probability SGA) = -1.13598 - 0.03442 * age

Fitted probability SGA = 0.16132 when age = 20
c) Logistic regression:
Logit(fitted probability SGA) = -0.85316 - 0.03978 * age
Fitted probability  SGA = 0.16127 when age = 20

The fitted probabilities are different from sample probability. Because regression models are not saturated models, we are borrowing information from other groups, therefore the estimated probabilities from regression analysis do not agree exactly with sample probability.

7. 10/10 points Produce a plot of the estimated probability of an SGA infant by age as derived by each of the following methods. Comment on the similarity and difference among the various fitted values form the various analyses performed in problem 6. (Note that Stata allows you to specify multiple Y variables for a single X variable: scatter y1 y2 y3 y4 age)
a. Sample proportions within each unique age: This can be obtained in Stata using the command egen varname= mean(sga), by(age).
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b. Estimated probabilities for each age in the data as derived from each of the regression analyses. In Stata, this can be obtained using the simple “post-estimation” command: predict varname.  (But use a different variable name for each fitted value.) 

i. After performing a linear regression, the default action of the “predict” function is to create a variable that contains the estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion.
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ii. After performing a Poisson regression, the default action of the “predict” function is to create a variable that contains the exponentiated estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion. (The linear predictor in Poisson regression corresponds to the log “rate”, because Poisson regression uses a log link function.
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iii. In logistic regression, the estimated “linear predictor” corresponds to the log odds. Exponentiating that would correspond to the odds. By default, Stata figures that you would really rather have the estimated probability, which is computed as prob = odds / (1 + odds). So, after performing a logistic regression, the default action of the “predict” function is to create a variable that contains the the regression based estimate of the mean. 
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Comments: The fitted values from three different models are similar, they all described a general trend of probability of having a SGA infant with increasing maternal age: older mothers tend to have lower probability of having a SGA infant than younger mothers. However, these fitted values differ from the sample proportions since these regression models are not saturated models, we are borrowing information from other groups. Therefore the fitted values from regression analysis do not agree exactly with sample proportions.

8. Perform a logistic regression analyses of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. 2
/10 Provide formal inference for associations using odds ratio (OR: ratios of odds) and log transformed age.

Method: An indictor variables was created for SGA. A robust logistic regression model of delivering a SGA infant (log-transformed odds) as the response and maternal age (log-transformed) as predictor was fit to describe the linear trend in log odds of delivering a SGA infant as a function of log-transformed maternal age. Standard errors were computed using the Huber-White sandwich estimator. 95% confidence intervals and a two sided p valued were computed using the approximately normally distributed Wald statistics. The point estimates of the association were based on the exponentiated slope from the logistic regression. 
Result: From the robust logistic regression analysis of the 755 subjects having available measurements on SGA and maternal age, we estimate when there is a 1 unit increment in log(age) the odds ratio is 0.3853 (exponentiated slope). This result is not statistically significant at a 0.05 significant level (two sided P = 0.053), thus we fail to reject null hypothesis that there’s no difference in odds of delivering a SGA infant between smokers and non-smokers. A 95% confidence interval suggests that our data would not be unusual if true odds ratio of delivering a SGA infant between log(age) differ by 1 unit increment is between 0.1467 and 1.0123.
b. 0/5 Why might it be reasonable or silly to have performed such an analysis rather than the analysis in problem 6c?
Answer: It might be silly to have performed such an analysis. There is no scientific mechanisms indicate that we should use log-transformation on age and it is hard to interpret estimated intercept and slope with log-transformed predictors. 
�This is a confusing way to present the data. Not wrong – just confusing. On first look, the reader would likely assume that the numerator is number of observations, with the denominator of  number of subjects. Since you are presenting percents, the reader is going to naturally look for a fraction that is associated with the percent reported, and will be confused (like I was initially) that they don’t match up at all.


�Although all of the information is here, this table is actually fairly meaningless because its formatting does not allow for easy comparison across groups (which is the whole reason for creating a table). Look at the tables in the key as an example. Even through they contains as much (and in some cases more) information than your table, the formatting allows the reader to clearly distinguish different values across columns).  -2 points


�Per the key, how the intercept and slopes would differ across models should be mentioned in some way. -1 point per section (total -3) 





�Same issue as above


�Same as above


�This is a conceptual question, not practical, so is the only part that addresses the question. The rest is unnecessary. Since you performed a ttest in the above paragraphs, that gives you 1/3 of the points, but I rounded down as you stated that all three models would correspond to ttest. No mention of chi square or test of probability ratios (although this study has a large sample size, making the differences between the results of the tests small, this concept is the primary driving force for the question). 


�Correct, but consider using larger age differences in order to provide larger slopes. This applies to all three sections of this question.


�2 points for the fact that this is probably accurate, but I couldn’t give any more than that because you did not give which base log you used, so not only can I not recreate it, the interpretation is meaningless. 





