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Biost 518: Applied Biostatistics II
Biost 515: Biostatistics II
Emerson, Winter 2015
Homework #3
January 23, 2015
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Monday, February 2, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
· Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
· Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
This homework considers pregnancy outcomes in an observational study of women attending a prenatal clinic in South Africa. Questions in this homework focus most closely on association with delivery of babies that are small for gestational age (SGA). The data can be found on the class web page (follow the link to Datasets) in the file labeled pregout.txt (you will not need any of the longitudinal measurements in the file preglong.txt). Documentation is in the file pregnancy.pdf.
1. Provide suitable descriptive statistics relevant to this analysis.

Methods: as this problem set is aimed to explore the association between SGA and both mothers’ maternal characteristics and babies’ neonatal situation, I summarize mean, SD, min, max, n of height, age, birth weight and gestational age in SGA, non-SGA and total these three groups respectively. For variable smoker, I present the percentage of smokers in those three groups respectively. 
Results: there are 755 records in total, but 6 height data are missing and 4 for each of smoker, birth weight and sex. As we can see, those with SGA tend to have shorter height, younger age, higher smoking percentage, lower birth weight and shorter gestational age than those who don’t have SGA.
	
	SGA(small for gestational age)

	
	No
	Yes
	total

	Height(cm)
	157.01; 6.54; 106, 176; 650
	154.56; 5.87; 142, 172; 99
	156.68; 6.50; 106, 176; 749

	Age(yr)
	24.94; 5.45; 14, 43; 650
	23.85; 4.90; 16, 35; 105
	24.79; 5.39; 14, 43; 755

	smoker
	28.75; 186/647
	43.27; 45/104
	30.76; 231/751

	birth weight(gm)
	3246.21; 402.13; 2510, 4730; 647
	2231.11; 411.60; 1035, 3780; 104
	3105.6; 534.46; 1035, 4370; 751

	gestational age(week)
	39.38; 1.24; 38, 44; 647
	37.92; 2.20; 30, 42; 103
	39.18; 1.50; 30, 44; 750


For height, age, birth weight and gestational age, summary measures are mean; SD; min, max; n. For smoker, summary measures are percentage; absolute number/total number
2. Perform a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. (Only give a formal report of the inference where asked to.)
a. Give full inference regarding the association between SGA and maternal smoking. 

Methods: in order to compare odds between two groups, logistic regression is to be used to get the association between these two binary variables.
Results: mothers who smoke during pregnancy have 89% higher odds to get a SGA baby than mothers who don’t. This estimation is statistically significant (P=0.003). The 95% CI suggests that this observation is not unusual if the true odds difference is between 24% and 189% with smoking mothers getting higher odds to deliver a SGA baby.
b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.

Results: recode new variable smoke with 0 meaning non-smoker and 1 smoker. We obtain the estimated logistic model as followed:
Log(odds(SGA))=-2.055861+0.6367768*smoke

Odds for smokers: exp(-2.055861+0.6367768)= .24193548
Odds for non-smokers: exp(-2.055861)= .1279826
Probability for smokers: .24193548/(1+.24193548)= .19480519
Probability for non-smokers: .1279826/(1+.1279826)= .1134615
In this cohort study, 45 mothers among 231 smokers get SGA babies at last while 59 among all non-smokers get SGA babies. These percentages (45/231=19.48%; 59/520=11.35%) agree with the probability of getting SGA baby among smoking mothers, 0.19480519 and the probability among non-smokers, which is 0.1134615.
c. There were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.

Results: this time the estimated logistic model will be as followed:

Log(odds(SGA))=β0+ β1*non-smoke
Exp(β0) means the odds of getting SGA among non-smoke=0, which is the odds of getting SGA for smokers.

Exp(β0+ β1) means the odds of getting SGA among non-smoke=1, which is the odds of getting SGA for non-smokers.

The interpretation of intercept and slope get flipped, but the odds and probability for smokers and non-smokers will not change.
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.

Results: this time the estimated logistic model will be as followed:

Log(odds(NOTSGA))=β0+ β1*smoke
Exp(β0) means the odds of not getting SGA among smoke=0, which is the odds of not getting SGA for non-smokers.

Exp(β0+ β1) means the odds of not getting SGA among smoke=1, which is the odds of not getting SGA for smokers.

If we still want to get the odds of getting SGA, just calculate corresponding reciprocal.

The interpretation of intercept and slope treat NOTSGA as reference group now, but the odds and probability of getting SGA for smokers and non-smokers will not change.
iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
Results: this time the estimated logistic model will be as followed:

Log(odds(NOTSGA))=β0+ β1*non-smoke
Exp(β0) means the odds of not getting SGA among non-smoke=0, which is the odds of not getting SGA for smokers.

Exp(β0+ β1) means the odds of not getting SGA among non-smoke=1, which is the odds of not getting SGA for non-smokers.

If we still want to get the odds of getting SGA, just calculate corresponding reciprocal.

The interpretation of intercept and slope treat NOTSGA as reference group now, the utility of intercept and slope get flipped as well, but the odds and probability of getting SGA for smokers and non-smokers will not change.
3. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the difference in probabilities for SGA across smoking groups.
Methods: in order to compare difference of probability between two groups, linear regression is to be used to get the association between these two binary variables.

E(SGA))=β0+ β1*smoke
β0 means the probability of getting SGA among smoke=0, which is the probability of getting SGA for non-smokers.

β0+ β1 means the probability of getting SGA among smoke=1, which is the probability of getting SGA for smokers.

So the difference in probabilities for SGA between smokers and nonsmokers is β1, which is 0.0813437
Results: mothers who smoke during pregnancy have 0.1134615 probability to get a SGA baby. The difference in probabilities for SGA between smokers and nonsmokers is 0.0813437, with smokers having a higher probability to get SGA baby (P=0.003). This difference will not be unusual if the true difference is between 0.0279745 and 0.1347128, with smokers having a higher probability of getting SGA baby. 
i. Results: response variable is still SGA, but predictor turns to non-smoke. This time the estimated linear model will be as followed:
E(SGA))=β0+ β1*non-smoke
β0 means the probability of getting SGA among non-smoke=0, which is the probability of getting SGA for smokers.

β0+ β1 means the probability of getting SGA among non-smoke=1, which is the probability of getting SGA for non-smokers.

So the probability difference of getting SGA babies among smokers subtracted by non-smokers will be - β1
The interpretation of intercept and slope get flipped, but the difference of probability of getting SGA babies between smokers and non-smokers will not change.
ii. Results: response variable changes into NOTSGA, but predictor is still smoke. This time the estimated linear model will be as followed:
E(NOTSGA))=β0+ β1* smoke
β0 means the probability of not getting SGA among smoke=0, which is the probability of not getting SGA for non-smokers. So the probability of getting SGA for non-smokers is (1- β0).

β0+ β1 means the probability of not getting SGA among smoke=1, which is the probability of not getting SGA for smokers. So the probability of getting SGA for smokers is (1- (β0+ β1))

So the probability difference of getting SGA babies among smokers subtracted by non-smokers will be - β1
The interpretation of intercept and slope get flipped, but the difference of probability of getting SGA babies between smokers and non-smokers will not change.
iii. Results: response variable changes into NOTSGA, predictor will change into non-smoke as well. This time the estimated linear model will be as followed:
E(NOTSGA))=β0+ β1* non-smoke
β0 means the probability of not getting SGA among non-smoke=0, which is the probability of not getting SGA for smokers. So the probability of getting SGA for smokers is (1- β0).

β0+ β1 means the probability of not getting SGA among non-smoke=1, which is the probability of not getting SGA for non-smokers. So the probability of getting SGA for non-smokers is (1- (β0+ β1))

So the probability difference of getting SGA babies among smokers subtracted by non-smokers will be β1
The interpretation of intercept and slope get flipped, but the difference of probability of getting SGA babies between smokers and non-smokers will not change.
4. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the ratio of probabilities for SGA across smoking groups.
Methods: in order to compare ratio of probability between two groups, poisson regression is to be used to get the association between these two binary variables.

Log rate(SGA)=β0+ β1*smoke
Exp(β0) means the probability of getting SGA among smoke=0, which is the probability of getting SGA for non-smokers.

Exp(β0+ β1) means the probability of getting SGA among smoke=1, which is the probability of getting SGA for smokers.

So the ratio of probabilities for SGA between smokers and nonsmokers is exp(β1), which is exp(0.5405362), 1.7169272
Results: The ratio of probabilities for SGA between smokers and nonsmokers is 1.7169272, with smokers having 71.69% higher probability to get SGA baby (P=0.006). This ratio will not be unusual if the true difference is between 15.26% and 92.84%, with smokers having a higher probability of getting SGA baby. 
i. Results: response variable is still SGA, but predictor turns to non-smoke. This time the estimated linear model will be as followed:
Log rate(SGA)=β0+ β1* non-smoke
Exp(β0) means the probability of getting SGA among non-smoke=0, which is the probability of getting SGA for smokers.

Exp(β0+ β1) means the probability of getting SGA among non-smoke=1, which is the probability of getting SGA for non-smokers.

So the ratio of probabilities for SGA between smokers and nonsmokers is exp(-β1).
The interpretation of intercept and slope get flipped, but the ratio of probability of getting SGA babies between smokers and non-smokers will not change.
ii. Results: response variable changes into NOTSGA, but predictor is still smoke. This time the estimated linear model will be as followed:
Log rate(NOTSGA)=β0+ β1* smoke
Exp(β0) means the probability of not getting SGA among smoke=0, which is the probability of not getting SGA for non-smokers.

Exp(β0+ β1) means the probability of not getting SGA among smoke=1, which is the probability of not getting SGA for smokers.

So the ratio of probabilities for SGA between smokers and nonsmokers is (1- Exp(β0+ β1))/(1- Exp(β0))
The interpretation of intercept and slope get flipped, but the difference of probability of getting SGA babies between smokers and non-smokers will not change.
iii. Results: response variable changes into NOTSGA, predictor will change into non-smoke as well. This time the estimated linear model will be as followed:
Log rate(NOTSGA)=β0+ β1* non-smoke
Exp(β0) means the probability of not getting SGA among non-smoke=0, which is the probability of not getting SGA for smokers.

Exp(β0+ β1) means the probability of not getting SGA among non-smoke=1, which is the probability of not getting SGA for non-smokers.

So the ratio of probabilities for SGA between smokers and nonsmokers is (1- Exp(β0))/ (1- Exp(β0+ β1))

The interpretation of intercept and slope get flipped, but the difference of probability of getting SGA babies between smokers and non-smokers will not change.
5. How do the analyses performed in problems 2-4 compare to that that would be obtained in a simple two sample comparison of SGA by smoking status (i.e., using methods covered in Biost 517/514.) Explicitly mention where they would be similar or different?

Methods: we can use chi square test between two samples, treating SGA as cases, non-SGA as controls, smokers as Exposed and non-smokers as Unexposed.
Results: RD and RR calculated from chi-square test are both same as the results from linear and poisson regression, but corresponding Cis are different. This might be mainly due to different statistics these test are using. Here chi-square statistics is used to get CI, while in simple regression above, F or t statistics might be used to get CI.

6. Perform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. Evaluate associations using risk difference (RD: difference in probabilities).

Methods: in order to get RD from two groups, linear regression is to be used to get the association between SGA and age.
Results: the probability of delivering a SGA baby decrease 0.45% as mother’s age increase one more year, but this is not statistically significant (P=0.054). 
b. Evaluate associations between risk ratio (RR: ratios of probabilities).
Methods: in order to get RR from two groups, poisson regression is to be used to get the association between SGA and age.
Results: the probability of delivering a SGA baby decrease by 3.4% as mother’s age increase one more year, but this is not statistically significant (P=0.074).

c. Evaluate associations using odds ratio (OR: ratios of odds)

Methods: in order to get OR from two groups, logistic regression is to be used to get the association between SGA and age.
Results: the odds of delivering a SGA baby decrease by 3.9% as mother’s age increase one more year, but this is not statistically significant (P=0.054).

d. Using the regression parameter estimates from each of these regressions, provide an estimate of the probability that a 20 year old mother would have a SGA infant. Explain any similarities or differences these estimates might have when compared to the sample proportion of SGA infants among 20 year olds.

Fitted value in different models:

Linear: 0.1606921

Poisson: 0.1613069

Logistic: 0.1612808

Sample proportion: 0.075

This sample proportion is smaller than all model fitted value. One of the reasons might be all of these models are not statistically significant, so they probably are not the most appropriate model to fit this dataset. Another reason might has something to do with age, which could be an effect modifier. In a certain age interval, it would be relatively secure to deliver baby and thus get low probability to have SGA baby, but when women are too young or too old, both of these two scenario can cause to increased SGA probability. As we can see in the descriptive table, the range of age in this dataset varies from 14 to 43. We might need to stratify by age to get an accurate estimation. Also the number of 20 year old mother in this sample could be a concern when we come to use it to calculate sample proportion. There are only 40 20-year-old women in this sample and only 3 of them have SGA babies, so the small absolute number of event may also lead to atypical sample proportion.
7. Produce a plot of the estimated probability of an SGA infant by age as derived by each of the following methods. Comment on the similarity and difference among the various fitted values form the various analyses performed in problem 6. (Note that Stata allows you to specify multiple Y variables for a single X variable: scatter y1 y2 y3 y4 age)
a. Sample proportions within each unique age: This can be obtained in Stata using the command egen varname= mean(sga), by(age).
b. Estimated probabilities for each age in the data as derived from each of the regression analyses. In Stata, this can be obtained using the simple “post-estimation” command: predict varname.  (But use a different variable name for each fitted value.) 

i. After performing a linear regression, the default action of the “predict” function is to create a variable that contains the estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion.

ii. After performing a Poisson regression, the default action of the “predict” function is to create a variable that contains the exponentiated estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion. (The linear predictor in Poisson regression corresponds to the log “rate”, because Poisson regression uses a log link function.

iii. In logistic regression, the estimated “linear predictor” corresponds to the log odds. Exponentiating that would correspond to the odds. By default, Stata figures that you would really rather have the estimated probability, which is computed as prob = odds / (1 + odds). So, after performing a logistic regression, the default action of the “predict” function is to create a variable that contains the the regression based estimate of the mean. 
Methods: in this multiple scatter plot, red dots stand for the linear estimation, blue for poisson, green for logistic and purple for observed data.

Results: linear, poisson and logistic regression give almost the same estimation, while observed data are more sparse and irregular. That might be due to the heterosdasticity of SGA probability along age changing.

[image: image1.emf]0


.1


.2


.3


10


20


30


40


50


age


Fitted values


Predicted number of events


Pr(sga)


p4




0

.1

.2

.3

10 20 30 40 50

age

Fitted values Predicted number of events

Pr(sga) p4


8. Perform a logistic regression analyses of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. Provide formal inference for associations using odds ratio (OR: ratios of odds) and log transformed age.

Methods: in order to OR from log transformed age groups, logistic regression is to be used on log transformed regressor to get the association between SGA and age.
Results: the odds of  the probability to deliver a SGA baby decrease by 61.47% as mother’s age increase to 2.718 times, but this is not statistically significant (P=0.058).

b. Why might it be reasonable or silly to have performed such an analysis rather than the analysis in problem 6c?
I don’t think it is reasonable to get age log-transformed, because there is no sign suggesting age is changing in multiplicative scale. In the scatter plot, I add this new model in yellow, which doesn’t make big difference from other three models.
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