
Biost 518: Applied Biostatistics II
Biost 515: Biostatistics II
Emerson, Winter 2015
Homework #3
January 23, 2015
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Monday, February 2, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
· Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
· Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
This homework considers pregnancy outcomes in an observational study of women attending a prenatal clinic in South Africa. Questions in this homework focus most closely on association with delivery of babies that are small for gestational age (SGA). The data can be found on the class web page (follow the link to Datasets) in the file labeled pregout.txt (you will not need any of the longitudinal measurements in the file preglong.txt). Documentation is in the file pregnancy.pdf.
1. Provide suitable descriptive statistics relevant to this analysis.
Methods: There were 755 pregnant women with singleton pregnancies being enrolled in this study.  Participants that had available information on smoking status were first categorized as nonsmokers or smokers. Descriptive statistics were determined for each category as well as the entire dataset to describe the overall data. Values of mean, standard deviation, minimum, and maximum were presented for continuous variables (i.e., height, maternal age, number of prior deliveries, birth weight of infants, and gestational age at delivery). The proportion of small babies for gestational age (SGA) and the percentage of boy infant were also presented for each group and the overall population. In addition, the number of missing data for respective variables was provided.
Secondly, probabilities of delivery of SGA babies were presented and compared for different mother groups defined by heights (≤ 157 cm and > 157 cm), maternal age (5-year interval from 14 to 33 years old and age > 33 years), and maternal smoking status (nonsmoker and smoker). If there were missing data in a category, those subjects were omitted from analysis for the respective category. We consider the height of a mother is a potential confounder for the assessment of the association between delivering SGA babies and maternal age. Thus, subjects were stratified by heights. Moreover, the height of a mother could be an effect modifier for the assessment of the association between delivering SGA babies and smoking status. 
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Results: Among the 755 enrolled pregnant women, 4 of those subjects have missing data on the smoking status. For those subjects with available information on the smoking status, 520 of them are nonsmokers and 231 of them are smokers. Descriptive statistics for all the variables provided in the dataset have been obtained for each smoking category as well as the overall population, as shown in Table 1. There are also missing data on height, birth weight of newborns, gestational age at delivery and indicator of boy infant (the number of missing data is included in Table 1 for each group). The statistics for these variables were calculated with the omission of the missing value for each group.

There are no significant differences in mean height, maternal age, number of prior deliveries, and gestational age at delivery between nonsmoker and smoker mothers. It is interesting that the proportion of infants that are boy is slightly higher for nonsmoker mothers (52.3%) compared to smoker mothers (48.1%). The percentage of newborns that are small for gestational age is 11.4% for nonsmoker mothers, whereas, that for smoker mothers is 19.5% which is about 7.2% higher. Moreover, the mean birth weight for babies born to nonsmokers (3165 g) is approximately 6.5% greater than that born to smokers (2972 g).  
Table 2 displays the probabilities of delivering SGA babies within strata defined by heights, maternal age and smoking status. Overall, there is a trend toward younger mothers having higher probabilities of delivering SGA babies and the difference in probabilities is greatest between the age group of 14 – 18 years and the group of 19 – 23 years. Smoking mothers are also higher in the probability of having SGA infants compared to nonsmoking mothers. The probabilities are similar among each stratum defined by heights and smoking status for mothers with age between 14 and 18 years. Within each height group, the probabilities of delivery of SGA babies follow the general trend that mothers with greater ages having a higher probability (with a few exceptions). The difference of probabilities between the oldest group and the youngest group is larger for the taller group. Similarly, within the group defined by smoking status, the probabilities also tend to be lower for older mothers (with a few exceptions).  In the shorter mother group, mothers with maternal smoking have a higher probability of delivering SGA infants. However, in the taller mother group, the probabilities are similar between the two groups defined by smoking status. [image: image27.png]Table 1. Characteristics for Mothers and Babies?

Nonsmokers (N = 520)

Smokers (N =231)

All Mothers (N = 755)

Height (cm)b
Age (Years)b

Small for Gestational Age (%)

Number of Prior Deliveries®

Birthweight of Infant (grams)b

Boy Infant (%)

Gestational Age at Delivery
(weeks)®

157 (6.16; 127 - 175)
(N Missing = 5)

24.6(5.37; 14 - 43)

11.3%

1.06 (1.19;0- 6)

3165 (533.8; 1035 - 4730)

52.3%

39.3(1.55;30- 44)

157 (7.19; 106 - 176)
(N Missing = 1)

25.1(5.35; 15 - 42)

19.5%

1.20(1.27;0- 6)

2972 (512.4; 1410 - 4550)

48.1%

39.0(1.36;33 - 43)
(N Missing = 1)

157 (6.50; 106 - 176)
(N Missing = 6)

24.8(5.39; 14 - 43)

13.9%

1.10(1.21;0- 6)

3106 (534.5; 1035 - 4730)
(N Missing = 4)

51.0%
(N Missing = 4)

39.2 (1.50; 30 - 44)
(N Missing = 5)

2 The number of missing data for each variable is labeled if there is missing data.

b Descriptive statistics presented are the mean (standard deviation; minimum - maximum)



Within all strata defined by age, the proportion of delivering SGA babies is higher for smoking mothers compared to nonsmoking mothers. 
2. Perform a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. (Only give a formal report of the inference where asked to.)
a. Give full inference regarding the association between SGA and maternal smoking. 
Methods: 4 of the 755 enrolled pregnant women had missing data on their smoking status, and those 4 subjects were omitted from this analysis. Logistic regression was used to assess the association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking. In the regression model, the logarithmic transformed odds of delivery SGA babies was the response variable, and the indicator variable of smoker (smoker = 1, nonsmoker = 0) was the predictor variable. The odds of delivering SGA babies for nonsmokers were calculated based on the intercept in the regression model. The 95% CI were determined with the Wald statistic. The slop of the regression model and its 95% CI were employed to calculate the odds ratio between the two groups and the 95% CI of the odds ratio. A test for nonzero slop based on the likelihood ratio test with significant level α = 0.05 was employed to examine whether the odds were the same between the two groups. 
Results: The odds of delivering SGA babies was 0.128 for nonsmoker mothers (N = 520) and that was 0.242 for smoker mothers (N = 231). On average, the odds ratio of delivering SGA babies was 1.89 for the comparison of smokers to nonsmokers. With 95% confidence, the observed data would not be unusual if the true odds ratio were anywhere between 1.24 and 2.89 with smoker mothers having a higher odds of delivering SGA babies. Based on the result of the test for nonzero slop, this observation is statistically significant at a 0.05 level of significance (p = 0.00322). We reject the null hypothesis that odds of delivering SGA babies are the same between mothers with and without maternal smoking.
b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.
Answer: Based on the regression model, the odds of delivering SGA babies are 0.128 (by exponentiating the intercept) and 0.242 (by exponentiating the sum of intercept and slop) for nonsmokers and smokers, respectively. With the conversion p = odds/(1+odds), the probabilities of delivering a SGA infant are 11.3% and 19.5% for nonsmokers and smokers, respectively. 

Because this logistic regression model is a saturated model, the fitted odds with the regression model would equal to the sample odds exactly. And the estimated probability would also equal to the sample probability reported in the descriptive statistics exactly. The observed probabilities that were reported in Table 1 are 11.3% and 19.5% for nonsmokers and smokers, respectively, which agrees to our estimated values, as expected.
c. There were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.
Answer: Suppose in Question (a), the estimated intercept is β0 and the estimated slop is β1. If we change the predictor variable to NONSMOKER (nonsmoker = 1, smoker = 0), the slope would be –β1 (the same relation also holds for the 95CI of slop) and the intercept would be (β0 + β1). The estimates for odds, odds ratio and inference on 95CI of odds ratio and the p value for nonzero slop would be exactly the same as in Question (a).
Because changing the predictor to NONSMOKER from SMOKER is just a linear transformation of the predictor, these changes would not affect our estimates of odds and our inference.
With SMOKER as the predictor, we have the following:

 
[image: image28.png]Table 2. Probabilities of Delivering SGA Babies for Mothers with Different Heights, Maternal Age, and
Smoking Status®

Height <= 157 cm

Height > 157 cm

Overall Height

Overall
Nonsmoker  Smoker Overall Nonsmoker  Smoker Overall Nonsmoker  Smoker vera
[14,18] 21.2% 23.1% 21.7% 23.1% 20.0% 22.6% 22.0% 22.2% 22.1%
’ (N=33) (N=13) (N= 46) (N=26) (N=5) (N=31) | (N=59) (N=18) | (N=77)
119, 23] 7.69% 37.8% 17.2% 11.1% 5.26% 9.38% 9.28% 22.9% 13.6%
. (N=104) (N=45) (N=151) | (N=90) (N=38) (N=128) | (N=194) (N=83) |(N=279)
Age 124, 28] 15.4% 23.8% 18.0% 1.82% 8.82% 4.49% 12.1% 17.1% 13.8%
(vears) ’ (N=91) (N=42) (N=133) | (N=55 (N=34) (N=89) | (N=149) (N=76) |(N=225)
129,33] 9.30% 25.0% 14.3% 5.41% 15.4% 8.00% 9.76% 21.2% 13.0%
' (N=43) (N=20) (N=63) | (N=37) (N=13) (N=50) | (N=82) (N=33) [(N=115)
138, 43] 9.09% 25.0% 12.5% 5.26% 0% 3.03% 6.67% 11.1% 8.00%
' (N=11) (N=4) (N=16) | (N=19) (N=13) (N=33) | (N=30) (N=18) | (N=50)
Overall 12.0% 28.8% 17.2% 8.66% 7.62% 8.31% 11.3% 19.5% 13.9%
(N=284) (N=125) (N=412) | (N=231) (N=105) (N=337) | (N=520) (N=231)(N=755)

2 Descriptive statistics provided are probabilities of delivering SGA babies and number of subjects (missing data were
omitted if there is any) for each category.
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Thus, with NONSMOKER as the predictor, the new slop would be β1 and the new intercept would be (β0 + β1).
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.
Answer: Suppose in Question (a), the estimated intercept is β0 and the estimated slop is β1. If we change the response variable to NOTSGA (NOTSGA = 1, SGA = 0), the slope would be –β1 (the same relation also holds for the 95CI of slop) and the intercept would be -β0 (the same relation also holds for the 95CI of intercept). The estimates for odds, odds ratio and inference on 95CI of odds ratio and the p value for nonzero slop would be exactly the same as in Question (a).

Because the response variable is a binary variable, changing the response viable to NOTSGA from SGA can be considered as a linear transformation of the predictor. These changes would not affect our estimates of odds and our inference.

With SMOKER as the predictor, we have the following:
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Thus, with NONSMOKER as the predictor, the new slop would be –β1 and the new intercept would be –β0.

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
Answer: Suppose in Question (a), the estimated intercept is β0 and the estimated slop is β1. If we change the response variable to NOTSGA (NOTSGA = 1, SGA = 0) and change the predictor variable to NONSMOKER (nonsmoker = 1, smoker = 0), the slope would be –β1 (the same relation also holds for the 95CI of slop) and the intercept would be – (β0 + β1). The estimates for odds, odds ratio and inference on 95CI of odds ratio and the p value for nonzero slop would be exactly the same as in Question (a).

Because the response variable is a binary variable, changing the response viable to NOTSGA from SGA and changing the predicator variable to NONSMOKER can be considered as a linear transformation of the predictor. These changes would not affect our estimates of odds and our inference.

With SMOKER as the predictor, we have the following:
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Thus, with NONSMOKER as the predictor and NONSGA as the response variable, the new slop would be β1 and the new intercept would be – (β0 + β1).
3. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the difference in probabilities for SGA across smoking groups.
a. Give full inference regarding the association between SGA and maternal smoking. 
Methods: 4 of the 755 enrolled pregnant women had missing data on their smoking status, and those 4 subjects were omitted from this analysis. Linear regression using Huber-White estimates of the standard error (robust SE) was used to assess the association between the probability of delivery of infants who were small for gestational age (SGA) and maternal smoking. In the regression model, the probability of delivering SGA babies was the response variable, and the indicator variable of smoker (smoker = 1, nonsmoker = 0) was the predictor variable. The probability of delivery SGA babies for nonsmokers was calculated based on the intercept in the regression model. The 95% CI were determined with the Wald statistic. The slop of the regression model and its 95% CI were employed to calculate the difference in probabilities between the two groups and the 95% CI. A test for nonzero slop with significant level α = 0.05 was employed to examine whether the probabilities were the same between the two groups. 
Results: The probability of delivering SGA babies was 0.113 for nonsmoker mothers (N = 520) and that was 0.195 for smoker mothers (N = 231). On average, the difference in probabilities of delivering SGA babies was 8.13% for the comparison of smokers to nonsmokers. With 95% confidence, the observed data would not be unusual if the true probability difference were anywhere between 2.33% and 13.9% with smoker mothers having a higher probability of delivering SGA babies. Based on the result of the test for nonzero slop, this observation is statistically significant at a 0.05 level of significance (p = 0.0061). We reject the null hypothesis that probability of delivering SGA babies are the same between mothers with and without maternal smoking.
b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.
Answer: Based on the regression model, the probabilities of delivering SGA babies are 0.113 and 0.195 for nonsmokers and smokers, respectively. With the conversion odds = p/(1-p), the odds of delivering a SGA infant are 0.128 and 0.242 for nonsmokers and smokers, respectively. 

Because this linear regression model is a saturated model, the fitted probabilities with the regression model would equal to the sample probabilities reported in the descriptive statistics exactly. And the estimated odds would also equal to the sample odds exactly. The observed probabilities that were reported in Table 1 are 11.3% and 19.5% for nonsmokers and smokers, respectively, which agrees to our estimated values, as expected.
c. There were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.
Answer: Suppose in Question (a), the estimated intercept is β0 and the estimated slop is β1. If we change the predictor variable to NONSMOKER (nonsmoker = 1, smoker = 0), the slope would be –β1 (the same relation also holds for the 95CI of slop) and the intercept would be (β0 + β1). The estimates for probabilities, difference in probabilities and inference on 95CI of odds ratio and the p value for nonzero slop would be exactly the same as in Question (a).

Because changing the predictor to NONSMOKER from SMOKER is just a linear transformation of the predictor, these changes would not affect our estimates of probabilities and our inference.

With SMOKER as the predictor, we have the following:
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Thus, with NONSMOKER as the predictor, the new slop would be β1 and the new intercept would be (β0 + β1).

ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.
Answer: Suppose in Question (a), the estimated intercept is β0 and the estimated slop is β1. If we change the response variable to NOTSGA (NOTSGA = 1, SGA = 0), the slope would be –β1 (the same relation also holds for the 95CI of slop) and the intercept would be (1 - β0) (the same relation also holds for the 95CI of intercept). The estimates for probabilities, difference in probabilities and inference on 95CI of odds ratio and the p value for nonzero slop would be exactly the same as in Question (a).

Because the response variable is a binary variable, changing the response viable to NOTSGA from SGA can be considered as a linear transformation of the predictor. These changes would not affect our estimates of odds and our inference.

With SMOKER as the predictor, we have the following:
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                     = 1– ( β0 + β1 * smoker) = 1 – β0 – β1 * smoker

Thus, with NONSMOKER as the predictor, the new slop would be –β1 and the new intercept would be (1 – β0).

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
Answer: Suppose in Question (a), the estimated intercept is β0 and the estimated slop is β1. If we change the response variable to NOTSGA (NOTSGA = 1, SGA = 0), the slope would be β1 (the same relation also holds for the 95CI of slop) and the intercept would be (1– β0 – β1) (the same relation also holds for the 95CI of intercept). The estimates for probabilities, difference in probabilities and inference on 95CI of odds ratio and the p value for nonzero slop would be exactly the same as in Question (a).

Because the response variable is a binary variable, changing the response viable to NOTSGA from SGA and changing the predictor to NONSMOKER can be considered as a linear transformation of the predictor. These changes would not affect our estimates of odds and our inference.

With SMOKER as the predictor, we have the following:

With SMOKER as the predictor, we have the following:
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Thus, with NONSMOKER as the predictor and NOTSGA as the response variable, the new slop would be β1 and the new intercept would be (1– β0 – β1).

4. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the ratio of probabilities for SGA across smoking groups.
a. Give full inference regarding the association between SGA and maternal smoking. 
Methods: 4 of the 755 enrolled pregnant women had missing data on their smoking status, and those 4 subjects were omitted from this analysis. Poisson regression using Huber-White estimates of the standard error (robust SE) was used to assess the association between the probabilities of delivery of infants who were small for gestational age (SGA) and maternal smoking. In the regression model, the logarithmic transformed probability of delivering SGA babies was the response variable, and the indicator variable of smoker (smoker = 1, nonsmoker = 0) was the predictor variable. The probability of delivery SGA babies for nonsmokers was calculated by exponentiating the intercept in the regression model. The 95% CI were determined with the Wald statistic. The slop of the regression model and its 95% CI were employed to calculate the probability ratio (by exponentiating the slop) between the two groups and the 95% CI. A test for nonzero slop with significant level α = 0.05 was employed to examine whether the probabilities were the same between the two groups. 
Results: The probability of delivering SGA babies was 0.113 for nonsmoker mothers (N = 520) and that was 0.195 for smoker mothers (N = 231). On average, the probability ratio of delivering SGA babies was 1.72 for the comparison of smokers to nonsmokers. With 95% confidence, the observed data would not be unusual if the true probability ratio were anywhere between 1.20 and 2.45 with smoker mothers having a higher probability of delivering SGA babies. Based on the result of the test for nonzero slop, this observation is statistically significant at a 0.05 level of significance (p = 0.00293). We reject the null hypothesis that probabilities of delivering SGA babies are the same between mothers with and without maternal smoking.
b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.
Answer: Based on the regression model, the probabilities of delivering SGA babies are 0.113 (by exponentiating the intercept) and 0.195 (by exponentiating the sum of intercept and slop) for nonsmokers and smokers, respectively. With the conversion odds = p/(1-p), the odds of delivering a SGA infant are 0.128 and 0.242 for nonsmokers and smokers, respectively. 

Because this Poisson regression model is a saturated model, the fitted probabilities with the regression model would equal to the sample probabilities reported in the descriptive statistics exactly. And the estimated odds would also equal to the sample odds exactly. The observed probabilities that were reported in Table 1 are 11.3% and 19.5% for nonsmokers and smokers, respectively, which agrees to our estimated values, as expected.
c. There were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.
Answer: Suppose in Question (a), the estimated intercept is β0 and the estimated slop is β1. If we change the predictor variable to NONSMOKER (nonsmoker = 1, smoker = 0), the slope would be –β1 (the same relation also holds for the 95CI of slop) and the intercept would be (β0 + β1). The estimates for probabilities, difference in probabilities and inference on 95CI of odds ratio and the p value for nonzero slop would be exactly the same as in Question (a).

Because changing the predictor to NONSMOKER from SMOKER is just a linear transformation of the predictor, these changes would not affect our estimates of probabilities and our inference.

With SMOKER as the predictor, we have the following:
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Thus, with NONSMOKER as the predictor, the new slop would be -β1 and the new intercept would be (β0 + β1).

ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.
Answer: Suppose in Question (a), the estimated intercept is β0 and the estimated slop is β1. If we change the response variable to NOTSGA (NOTSGA = 1, SGA = 0), it is not a linear transformation of the predictor of Poisson regression. It would be difficult to get a general formula to express the relation of slops/intercepts between the regressions with SGA and NONSGA as response variable. However, the point estimates for probabilities and ratio of probabilities would be the same as in Question (a). The inference statistics would be slightly different.
With SGA as the response variable, we have the following:

 
[image: image18.wmf]))

|

log(Pr(

SMOKER

SGA

= β0 + β1 * smoker

With NONSGA as the response variable, we have the following:
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iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
Answer: Suppose in Question (a), the estimated intercept is β0 and the estimated slop is β1. If we change the response variable to NOTSGA (NOTSGA = 1, SGA = 0) and change the predictor to NONSMOKER, it is not a linear transformation of the predictor of Poisson regression. It would be difficult to get a general formula to express the relation of slops/intercepts between the regressions with SGA and NONSGA as response variable. However, the point estimates for probabilities and ratio of probabilities would be the same as in Question (a). The inference statistics would be slightly different. The relation in slop/intercept between Question (c)(ii) and Question (c)(iii) would be similar to that between Question (a) and Question (c)(i)
With SGA as the response variable, we have the following:
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And α1 = -γ1 , α0 = γ0 + γ1
5. How do the analyses performed in problems 2-4 compare to that that would be obtained in a simple two sample comparison of SGA by smoking status (i.e., using methods covered in Biost 517/514.) Explicitly mention where they would be similar or different?
Answer: For problem 2, a chi-squared test could be used to evaluate the association of odds of delivering SGA babies with smoking status. And Wald-based statistics can be used to calculate the 95% CI. The table below summaries the correspondences between the statistical outputs of two methods:
	Chi-squared test, Wald statitics for       95% CI 
	Logistic regression without Robust SE, likelihood ratio test
	Difference

	Odds of delivery of SGA babies for Nonsmoker
	Exponentiation of intercept                                    
	No

	Standard error for the odds of delivery of SGA babies for Nonsmoker
	Standard error of Intercept
	Different

	Odds ratio between two groups                                      
	Exponentiation of slope                                           
	No

	Standard error for odds ratio between two groups     
	Standard error of Slop
	Different

	95% CI for odds ratio between two groups                                      
	95% CI for slop                         
	Slightly different

	chi statistics and P value
	chi statistics and P value of test for nonzero slop              
	Slightly different


For problem 3, a chi-squared test could be used to evaluate the association of probability of delivering SGA babies with smoking status. And Wald-based statistics can be used to calculate the 95% CI. The table below summaries the correspondences between the statistical outputs of two methods:
	Chi-squared test, Wald statitics for 95% CI 
	Linear regression that uses Robust SE
	Difference

	Probability of delivery of SGA babies for Nonsmoker
	Intercept                                    
	No

	Standard error for the probability of delivery of SGA babies for Nonsmoker
	Standard error of intercept
	Slightly different

	Difference in probabilities between two groups                                      
	Slope                                           
	No

	Standard error for difference in probabilities between two groups     
	Standard error of slop
	Slightly different

	95% CI for difference in probabilities between two groups                                      
	95% CI for slop                         
	Slightly different

	chi statistics and P value
	chi statistics and P value of test for nonzero slop              
	Slightly different


For problem 4, a chi-squared test could be used to evaluate the association of probability of delivering SGA babies with smoking status. And Wald-based statistics can be used to calculate the 95% CI. The table below summaries the correspondences between the statistical outputs of two methods:
	Chi-squared test, Wald statistics for 95% CI 
	Poisson regression with Robust SE
	Difference

	Probability of delivery of SGA babies for Nonsmoker
	Exponentiation of intercept                                    
	No

	Standard error for the probability of delivery of SGA babies for Nonsmoker
	Standard error of Intercept
	Different

	Probability ratio between two groups                                      
	Exponentiation of slope                                           
	No

	Standard error for probability ratio between two groups     
	Standard error of Slop
	Different

	95% CI for odds ratio between two groups                                      
	95% CI for slop                         
	Slightly different

	chi statistics and P value
	chi statistics and P value of test for nonzero slop              
	Slightly different


6. Perform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. Evaluate associations using risk difference (RD: difference in probabilities).
Methods: Linear regression using Huber-White estimates of the standard error (robust SE) was used to assess the association between the probability of delivery of infants who were small for gestational age (SGA) and maternal age. In the regression model, the probability of delivering SGA babies was the response variable, and maternal age was the predictor variable. The slop of the regression model and its 95% confidence interval (CI) were obtained based on Wald statistics. A test for nonzero slop which allows for the possibility of heteroscedasticity in variances with significant level α = 0.05 was employed to examine whether the probabilities were the same across groups defined by age. 
Results: The linear regression analysis was applied on 755 subjects with maternal age ranging from 14 to 43 years. Based on the result of the regression analysis using Huber-White estimates of the standard error, the probability of delivering SGA babies was an absolute 0.452% lower for the group of older mothers when comparing two groups differing 1 year. With 95% confidence, the observed data would not be unusual if the true risk difference were anywhere between 0.0286% and 0.874% per year difference in age with the group of greater age tending to have a low probability. Based on the result of the test for nonzero slop, this observation is statistically significant at a 0.05 level of significance (p = 0.0364). We reject the null hypothesis that probability of delivering SGA babies is not associated with maternal age and conclude that older age group is associated with a low probability of delivery SGA babies.
b. Evaluate associations between risk ratio (RR: ratios of probabilities).
Methods: Poisson regression using Huber-White estimates of the standard error (robust SE) was used to assess the association between the probability of delivery of infants who were small for gestational age (SGA) and maternal age. In the regression model, the logarithmic transformed probability of delivering SGA babies was the response variable, and maternal age was the predictor variable. The slop of the regression model and its 95% confidence interval (CI) were obtained based on Wald statistics. A test for nonzero slop which allows for the possibility of heteroscedasticity in variances with significant level α = 0.05 was employed to examine whether the probabilities were the same across groups defined by age. 
Results: The Poisson regression analysis was applied on 755 subjects with maternal age ranging from 14 to 43 years. Based on the result of the regression analysis using Huber-White estimates of the standard error, the probability of delivering SGA babies was a relative 3.38% lower for the group of older mothers compared to the group with 1 year younger in age. With 95% confidence, the observed data would not be unusual if the true risk were anywhere between 0.058% and 6.60% lower per year higher in age. Based on the result of the test for nonzero slop, this observation is statistically significant at a 0.05 level of significance (p = 0.0462). We reject the null hypothesis that probability of delivering SGA babies is not associated with maternal age and conclude that older age group is associated with a low probability of delivery SGA babies.
c. Evaluate associations using odds ratio (OR: ratios of odds)
Methods: Logistic regression assuming equal variances was used to assess the association between the odds of delivery of infants who were small for gestational age (SGA) and maternal age. In the regression model, the logarithmic transformed odds of delivering SGA babies was the response variable, and maternal age was the predictor variable. The slop of the regression model and its 95% confidence interval (CI) were obtained based on Wald statistics. A test for nonzero slop which assuming equal variances with significant level α = 0.05 was employed to examine whether the odds were the same across groups defined by age. 
Results: The Logistic regression analysis was applied on 755 subjects with maternal age ranging from 14 to 43 years. Based on the result of the regression analysis assuming equal variances, the odds of delivering SGA babies was a relative 3.90% lower for the group of older mothers compared to the group with 1 year younger in age. With 95% confidence, the observed data would not be unusual if the true odds were anywhere between 0.076% higher and 7.72% lower per year higher in age. Based on the result of the test for nonzero slop, this observation is not statistically significant at a 0.05 level of significance (p = 0.0545). We cannot reject the null hypothesis that probability of delivering SGA babies is not associated with maternal age.
d. Using the regression parameter estimates from each of these regressions, provide an estimate of the probability that a 20 year old mother would have a SGA infant. Explain any similarities or differences these estimates might have when compared to the sample proportion of SGA infants among 20 year olds.
Answer:  Using linear regression model from Question a:


          Pr(SGA|age=20) = 0.251 – 0.00452 * age = 0.251 – 0.00452 * 20 = 0.161

Using Poisson regression mode from Question b:


log(Pr(SGA|age=20)) =  -1.14 – 0.0344 * age =  -1.14 – 0.0344 * 20 = -1.82


Pr(SGA|age=20) = e-1.82 = 0.161
Using logistic regression mode from Question b:


log(odds(SGA|age=20)) =  -0.853 – 0.0398 * age

 =  -0.853 – 0.0398 * 20 = -1.65


odds(SGA|age=20) = e-1.65 = 0.192

Pr(SGA|age=20) = 0.192/(1+0.192) = 0.161
Thus, with all three regression models, the probability that a 20 year old mother would have a SGA infant is estimated as 16.1%. On the other hand, the sample proportion of SGA infants among 20-year old (sample size = 40) is 7.50% (3/40). The estimated value is different from the sample proportion. Because the regression models we used here are not saturated model, the prediction of probability (or odds) for an individual group might not equal exactly to the sample probability (or odds). 
7. Produce a plot of the estimated probability of an SGA infant by age as derived by each of the following methods. Comment on the similarity and difference among the various fitted values form the various analyses performed in problem 6. (Note that Stata allows you to specify multiple Y variables for a single X variable: scatter y1 y2 y3 y4 age)
a. Sample proportions within each unique age: This can be obtained in Stata using the command egen varname= mean(sga), by(age).
See the figure below.
b. Estimated probabilities for each age in the data as derived from each of the regression analyses. In Stata, this can be obtained using the simple “post-estimation” command: predict varname.  (But use a different variable name for each fitted value.) 

i. After performing a linear regression, the default action of the “predict” function is to create a variable that contains the estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion.

ii. After performing a Poisson regression, the default action of the “predict” function is to create a variable that contains the exponentiated estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion. (The linear predictor in Poisson regression corresponds to the log “rate”, because Poisson regression uses a log link function.

iii. In logistic regression, the estimated “linear predictor” corresponds to the log odds. Exponentiating that would correspond to the odds. By default, Stata figures that you would really rather have the estimated probability, which is computed as prob = odds / (1 + odds). So, after performing a logistic regression, the default action of the “predict” function is to create a variable that contains the the regression based estimate of the mean. 
Answer: See figures below.
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Figure 1. Sample probability of delivery of SGA babies for mothers with different ages. The predicted probability from linear regession (Question 6a), Poisson regression (Question 6b), and logistic regression (Question 6c) are also plotted for mothers of different age group.
The estimated values are different from the sample probabilities. Because the regression models we used here are not saturated model, the prediction of probability for an individual group might not equal exactly to the sample probability. The linear regression model estimates the average difference in probabilities per year. The Poisson regression model estimates the average probabilities ratio between two groups differing in age. The logistic regression model estimates the average odds ratio between two groups differing in age. Thus, all the regression models could not predict the probability for an individual group that equaling the sample probability exactly. In addition, the predictions from the three models also differ from each other slightly.
8. Perform a logistic regression analyses of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. Provide formal inference for associations using odds ratio (OR: ratios of odds) and log transformed age.
Methods: Logistic regression assuming equal variances was used to assess the association between the odds of delivery of infants who were small for gestational age (SGA) and log transformed maternal age. In the regression model, the logarithmic transformed odds of delivering SGA babies was the response variable, and the logarithmic transformed maternal age was the predictor variable. The slop of the regression model and its 95% confidence interval (CI) were obtained based on Wald statistics. A test for nonzero slop which assuming equal variances with significant level α = 0.05 was employed to examine whether the odds were the same across groups defined by log transformed age. 
Results: The Logistic regression analysis was applied on 755 subjects with maternal age ranging from 14 to 43 years. Based on the result of the regression analysis assuming equal variances, the odds of delivering SGA babies was a relative 8.69% lower for the group of older mothers with 10% greater in age compared to the younger group. With 95% confidence, the observed data would not be unusual if the true odds were anywhere between 0.323% higher and 16.9% lower for each 10% higher in age. Based on the result of the test for nonzero slop, this observation is not statistically significant at a 0.05 level of significance (p = 0.0584). We cannot reject the null hypothesis that probability of delivering SGA babies is not associated with log transformed maternal age.
b. Why might it be reasonable or silly to have performed such an analysis rather than the analysis in problem 6c?
Answer: I would prefer the analysis performed in problem 6c (log(odds) ~ age). There is nothing wrong to do the regression as log(odds) ~ log(age). However, it is more easily understood by evaluating the odds ratio by difference in age compared to by percentage changes in age. That is, we normally say a 25-year old man is 5 years older than a 20-year old man, rather than is 25% higher in age than a 20-year old man.
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