Biost 518 / 515, Winter 2015
Homework #3
January 23, 2015, Page 1 of 12

Biost 518: Applied Biostatistics II
Biost 515: Biostatistics II
Emerson, Winter 2015
Homework #3

January 23, 2015
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Monday, February 2, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
· Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
· Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
This homework considers pregnancy outcomes in an observational study of women attending a prenatal clinic in South Africa. Questions in this homework focus most closely on association with delivery of babies that are small for gestational age (SGA). The data can be found on the class web page (follow the link to Datasets) in the file labeled pregout.txt (you will not need any of the longitudinal measurements in the file preglong.txt). Documentation is in the file pregnancy.pdf.
1. Provide suitable descriptive statistics relevant to this analysis.

	
	Entire Population
N = 755
	Smokers
N = 231
	Nonsmokers
N = 520

	Height* – mean (SD, min-max), cm
	156.7 (6.5, 106-176)
	156.8 (7.2, 106-176)
	156.6 (6.2, 127-175)

	Age – mean (SD, min-max), years
	24.8 (5.4, 14-43)
	25.1 (5.4, 15-42)
	24.6 (5.4, 14-43)

	Small for gestational age – N (%)
	105 (13.9)
	45 (19.5)
	59 (11.3)

	Parity – mean (SD, min-max)
	1.10 (1.21, 0-6)
	1.19 (1.27, 0-6)
	1.06 (1.19, 0-6)

	Smoker** – N (%)
	231 (30.8)
	--
	--

	Birth weight** – mean (SD, min-max), grams
	3105.6 (534.5, 1035-4730)
	2972.2 (512.3, 1410-4550)
	3164.9 (533.8, 1035-4730)

	Low birth weight baby** – N (%)
	75 (9.99)
	33 (14.3)
	42 (8.1)

	Baby’s sex** – N males (%)
	383 (51.0)
	111 (48.1)
	272 (52.3)

	Gestational age*** – mean (SD, min-max), weeks
	39.18 (1.50, 30-44)
	38.96 (1.36, 33-43)
	39.28 (1.55, 30-44)

	* N=749, 0.79% missing in entire population

** N=751, 0.53% missing in entire population

*** N=750, 0.66% missing in entire population


2. Perform a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. (Only give a formal report of the inference where asked to.)
a. Give full inference regarding the association between SGA and maternal smoking. 

Methods: First we can calculate the sample proportion of SGA in the smokers and nonsmokers, and then we can calculate the sample odds of SGA in smokers and nonsmokers. The ratio of the odds will give us the OR. Using logistic regression for the binary response variable for SGA, we can obtain the odds ratio (the ratio of the odds) of having a SGA baby as predicted by maternal smoking status (smoker/nonsmoker), with Wald based CI. Because the model has two groups (smokers/nonsmokers) and we have two parameters estimated from the logistic regression (B0 and B1), the model is saturated. 

Results:  The sample proportion of SGA in the smokers is 45/231 = 0.1948; odds of SGA in smokers is 0.1948/(1-0.1948) = 0.2419. The sample proportion of SGA in the nonsmokers is 59/520 = 0.1135; the odds of SGA in the nonsmokers is 0.1135/(1-0.1135)=0.1280. The ratio of the odds is 0.2419/0.1280=1.8898. Logistic regression yields an OR (slope) = 1.8904 (95% CI 1.2376 – 2.8875). The intercept is 0.1280 (95% CI 0.0976 – 0.1678), which is the same as the odds of SGA in the nonsmokers. 2-sided p-value = 0.003. 
Inference: Both the proportion and odds of SGA is higher in the smokers than in the nonsmokers. The OR for infants born with SGA is 1.8904 for smokers, which means there is an 89% increase in the odds of SGA for smokers.  With a p-value of 0.003 we would reject the null hypothesis that there is no association between maternal smoking status and infants born with SGA. Our data would not be unusual if the true OR for SGA in smokers is between 1.2376 and 2.8875. 
b. Use the regression model parameter estimates 
to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.

B0 = intercept = odds of SGA in the non-smokers = 0.1280. 
B1 = slope = OR= odds of SGA in smokers/odds of SGA in nonsmokers. Therefore, 1.8904 = x/0.1280 ( x = 0.24197 = odds of SGA in smokers.

Odds = p/(1-p) (Solving for p in smokers): 0.24197 = p/(1-p) ( 0.24197 – 0.24197p = p ( 0.24197 = 1.24197p ( 0.24197/1.24197 = p ( 0.1948 = p 

Odds = p/(1-p) (Solving for p in nonsmokers): 0.1280 = p/(1-p) ( 0.1280 – 0.1280p = p ( 0.1280 = 1.1280p ( 0.1280/1.1280 = p ( 0.1135 = p
In problem 1, the proportion of smokers with SGA was 19.5% and the proportion of nonsmokers with SGA was 11.3%. Because this is a saturated model, the fitted values should match the sample values exactly
. 
c. There were actually 
four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.

Compared to the model using SGA as a response and maternal smoking as the predictor, when SGA is the response but nonsmoker is the predictor, the OR is now <1 because being a non-smoker is protective (being a smoker was harmful in the prior analysis). The OR for SGA for mothers who are nonsmokers is 0.5290 (95% CI 0.3463 – 0.8080), with p = 0.003
. The estimate of the OR is now stating that the odds of SGA are 47.1% lower in nonsmokers than smokers. The p-value is the same for both analyses 
and we would still reject the null hypothesis that there is no association between maternal smoking status and infants born with/without SGA. The intercept is now the odds of SGA for smokers (0.2419) as opposed to nonsmokers
. 
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER. 
response and maternal smoking is the predictor, the OR Compared to the model using SGA as a response and maternal smoking as the predictor
, when NOTSGA is the is now <1 because being a smoker makes it less likely that you will have a NOTSGA (“normal”) infant. The OR for NOTSGA for mothers who are smokers is 0.5290 (95% CI 0.3463 – 0.8080), which is the same as the OR and 95% CI in part i. above (when predictor is nonsmoker and outcome is SGA). The p-value is again 0.003, and we would still reject the null hypothesis that there is no association between maternal smoking status and infants born with/without SGA. The intercept is now 7.8136, which doesn’t seem to correlate to any prior numbers. 
iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
Compared to the model using SGA as a response and maternal smoking as the predictor, when NOTSGA is the response and NONSMOKER is the predictor, the OR is the exact same as the OR and 95% CI (1.8903, 1.2376 – 2.8875).
 The p-value is again 0.003, and we would still reject the null hypothesis that there is no association between maternal smoking status and infants born with/without SGA. The intercept 
is now 4.1333, which doesn’t seem to correlate to any prior numbers.
3. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the difference in probabilities for SGA across smoking groups.
a
. 

Methods: First we can calculate the sample proportion of SGA in the smokers and nonsmokers, and then we can calculate the risk difference by subtracting the p(SGA|smoker) – p(SGA|nonsmoker) = risk difference. Using linear regression for the binary response variable for SGA, we can obtain the risk difference of having a SGA baby as predicted by maternal smoking status (smoker/nonsmoker), with Wald based CI based on robust SE. Because the model has two groups (smokers/nonsmokers) and we have two parameters estimated from the linear regression (B0 and B1), the model is saturated. 

Results:  The sample proportion of SGA in the smokers is 45/231 = 0.1948; the sample proportion of SGA in the nonsmokers is 59/520 = 0.1135. The risk difference (RD) is 0.1948 – 0.1135 = 0.0813. Linear regression yields a coefficient (slope) = 0.0813 (95% CI 0.0233 – 0.1394), which is equal to the risk difference calculated. The intercept is 0.1135 (95% CI 0.0861 – 0.1408), which is the same as the sample proportion of SGA in the nonsmokers. 2-sided p-value = 0.006. 

Inference: The proportion of SGA is higher in the smokers than in the nonsmokers. The RD for infants born with SGA is 0.0813 for smokers versus nonsmokers, which means there is an absolute 8.13% increase in the proportion of infants with SGA for smokers.  With a p-value of 0.006 we would reject the null hypothesis that there is no difference in probability of infants with SGA between smokers and nonsmokers. Our data would not be unusual if the true RD for SGA in smokers is between 0.0233 and 0.1394 (2.33% and 13.94%). 

b.
 

B0 = intercept = probability of SGA in the non-smokers = 0.1135. 

B1 = slope = risk difference = probability of SGA in smokers - probability of SGA in nonsmokers = 0.0813.
Therefore, 0.0813 = x – 0.1135 ( x = 0.0813 + 0.1135 = 0.1948 = probability of SGA in smokers.

Odds = p/(1-p) (Solving for odds in smokers): 0.1948/(1-0.1948) = 0.2419
Odds = p/(1-p) (Solving for odds in nonsmokers): 0.1135/(1- 0.1135) = 0.1280
In problem 1, the proportion of smokers with SGA was 19.5% and the proportion of nonsmokers with SGA was 11.3%. Because this is a saturated model, the fitted values should match the sample values exactly. 
c
. 
i. You create an indicator NONSMOKER 
that the mother was a nonsmoker, and you fit a linear regression model of response SGA on predictor NONSMOKER.

Compared to the model using SGA as a response and maternal smoking as the predictor, when SGA is the response but nonsmoker is the predictor, the RD is now negative because being a non-smoker is protective (being a smoker was harmful in the prior analysis). The RD for SGA for mothers who are nonsmokers is -0.0813 (95% CI -0.1394 - -0.0233), with p = 0.006. The estimate of the RD is now stating that the probability of SGA is 8.13% lower in nonsmokers than smokers (the same absolute value as the prior analysis). The p-value is the same for both analyses and we would still reject the null hypothesis that there is no association between maternal smoking status and infants born with/without SGA. The intercept is now the probability of SGA for smokers (0.1948) as opposed to nonsmokers. 
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a linear regression model of response NOTSGA on predictor SMOKER. 
Compared to the model using SGA as a response and maternal smoking as the predictor, when NOTSGA is the response and maternal smoking is the predictor, the RD is now negative (as in the analysis in part “i” above) because being a smoker makes it less likely that you will have a NOTSGA (“normal”) infant. The RD for NOTSGA for mothers who are smokers is -0.0813 (95% CI -0.1394 - -0.0233), which is the same as the RD and 95% CI in part i. above (when predictor is nonsmoker and outcome is SGA). The p-value is again 0.006, and we would still reject the null hypothesis that there is no association between maternal smoking status and infants born with/without SGA. The intercept is now 0.8865, which doesn’t seem to correlate to any prior numbers. 

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 

Compared to the model using SGA as a response and maternal smoking as the predictor, when NOTSGA is the response and NONSMOKER is the predictor, the RD is the exactly same as the RD (0.0813) 
and 95% CI (0.0233 – 0.1394). The p-value is again 0.006, and we would still reject the null hypothesis that there is no association between maternal smoking status and infants born with/without SGA. The intercept is now 0.8052, which doesn’t seem to correlate to any prior numbers.

4. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the ratio of probabilities for SGA across smoking groups.
a. 

Methods: First we can calculate the sample proportion of SGA in the smokers and nonsmokers, and then we can calculate the risk ratio by dividing the p(SGA|smoker) by p(SGA|nonsmoker). Using Poisson regression for the binary response variable for SGA, we can obtain the risk ratio for having a SGA baby as predicted by maternal smoking status (smoker/nonsmoker), with Wald based CI based on robust SE. Because the model has two groups (smokers/nonsmokers) and we have two parameters estimated from the Poisson regression (B0 and B1), the model is saturated. 

Results:  The sample proportion of SGA in the smokers is 45/231 = 0.1948; the sample proportion of SGA in the nonsmokers is 59/520 = 0.1135. The risk ratio is 0.1948/0.1135 = 1.7163. Poisson regression yields a coefficient (slope) = 0.5405362 (95% CI 0.1847 – 0.8964), which is exponentiated to give the risk ratio: 1.7169 (1.2029 – 2.4508), which is almost exactly equal to the risk ratio calculated from the sample. The intercept is -2.1763 (95% CI -2.4167 - -1.9359) that is exponentiated to 0.1135 (0.0892 – 0.1443), which is the same as the sample proportion of SGA in the nonsmokers. 2-sided p-value = 0.003. 

Inference: The proportion of SGA is higher in the smokers than in the nonsmokers. The risk ratio for infants born with SGA is 1.7163 for smokers versus nonsmokers, which means there is a 71.63% relative increase in the proportion of infants with SGA for smokers.  With a p-value of 0.003 we would reject the null hypothesis that there is no difference in probability of infants with SGA between smokers and nonsmokers. Our data would not be unusual if the true risk ratio for SGA in smokers is between 1.2029 and 2.4508. 

b. 

B0 = intercept. e^B0 = probability of SGA in the non-smokers = 0.1135. 

B1 = slope. e^B1 = risk ratio = probability of SGA in smokers/probability of SGA in nonsmokers = 1.7169.

Therefore, 1.7169 = x/0.1135 ( x = 1.7169 * 0.1135 = 0.19487 = probability of SGA in smokers.

Odds = p/(1-p) (Solving for odds in smokers): 0.19487/(1-0.19487) = 0.2420
Odds = p/(1-p) (Solving for odds in nonsmokers): 0.1135/(1- 0.1135) = 0.1280
In problem 1, the proportion of smokers with SGA was 19.5% and the proportion of nonsmokers with SGA was 11.3%. Because this is a saturated model, the fitted values should match the sample values exactly. 
c
. 

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a linear regression model of response SGA on predictor NONSMOKER.

Compared to the model using SGA as a response and maternal smoking as the predictor, when SGA is the response but nonsmoker is the predictor, the coefficient is now negative (-0.5405), and when exponentiated = 0.5824, because being a non-smoker is protective (being a smoker was harmful in the prior analysis). The risk ratio for SGA for mothers who are nonsmokers is 0.5824 (95% CI 0.4080 – 0.8314), with p = 0.003. The estimate of the risk ratio is now stating that the probability of SGA is 41.76% lower in nonsmokers than smokers. The p-value is the same for both analyses and we would still reject the null hypothesis that there is no association between maternal smoking status and infants born with/without SGA. The intercept when exponentiated (e(-1.635755) = 0.1948) is now the probability of SGA for smokers as opposed to nonsmokers. 

ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a linear regression model of response NOTSGA on predictor SMOKER. 

Compared to the model using SGA as a response and maternal smoking as the predictor, when NOTSGA is the response and maternal smoking is the predictor, the coefficient is now negative (-0.0962) and exponentiated it is <1 (as in the analysis in part “i” above) because being a smoker makes it less likely that you will have a NOTSGA (“normal”) infant. The risk ratio for NOTSGA for mothers who are smokers is e(-0.0962403)= 0.9082 (95% CI 0.84639 – 0.9746). The risk ratio is different from the risk ratio and 95% CI in part i. above. The p-value is now 0.007, and we would still reject the null hypothesis that there is no association between maternal smoking status and infants born with/without SGA. The intercept is now -0.1204, which is exponentiated to 0.8865, which doesn’t seem to correlate to any prior numbers. 

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 

Compared to the model using SGA as a response and maternal smoking as the predictor, when NOTSGA is the response and NONSMOKER is the predictor, the coefficient is exactly the negative of the coefficient from part ii. above; the risk ratio is the exponentiated coefficient: e(0.0962403) = 1.1010 (95% CI e(0.0257)=1.0260 – e(0.1668)=1.1815). The p-value is again 0.007, and we would still reject the null hypothesis that there is no association between maternal smoking status and infants born with/without SGA. The intercept is now -0.2167, which exponentiates to 0.8052, which doesn’t seem to correlate to any prior numbers.

5. How
 do the analyses performed in problems 2-4 compare to that that would be obtained in a simple two sample comparison of SGA by smoking status (i.e., using methods covered in Biost 517/514.) Explicitly mention where they would be similar or different?

Chi-squared analysis gives the same proportion of smokers with SGA and the same proportion of nonsmokers with SGA as all of the analyses. The p- value is the same as the logistic regression. 
The t-test that allows for unequal variances is comparable to linear regression with Robust SE when there are 2 levels of the predictor. The t-test that assumes equal variances is comparable to classical linear regression. The p-values for the t-tests will be the same as the p-values in the comparable linear regression. 
The two sample test of Poisson rates is a Wald type test and is comparable to Poisson regression. The p-values would be the same. 
6. Perform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. Evaluate a
ssociations using risk difference (RD: difference in probabilities).

Methods: Using linear regression for the binary response variable for SGA, we can obtain the risk difference of having a SGA baby as predicted by maternal age (a continuous variable), with Wald based CI based on robust SE. Because the model has a continuous predictor, but we only have two parameters estimated from the linear regression (B0 and B1), the model is not saturated. 

Results: Linear regression yields a coefficient (slope) = -0.0045152 (95% CI -0.0087448 – -0.0002856). The intercept is 0.2510 (95% CI 0.1394 – 0.3626). 
2-sided p-value = 0.036.
Inference: The probability of SGA is 0.0045 lower for each 1 year increase in age. This implies a lower risk of SGA in older mothers. The intercept of 0.2510 is the probability of SGA in a mother who is zero years old (a non-sensical value). The p-value of 0.036 would allow us to reject the null hypothesis that SGA is not associated with maternal age. 
b. Evaluate a
ssociations between risk ratio (ratios of probabilities).
Methods: Using Poisson regression for the binary response variable for SGA, we can obtain the risk ratio for having a SGA baby as predicted by maternal age (a continuous variable), with Wald based CI based on robust SE. Because the model has a continuous predictor, but we only have two parameters estimated from the Poisson regression (B0 and B1), the model is not saturated. 

Results: Poisson regression yields a coefficient (slope) = -0.0344235 (95% CI -0.0682 – -0.0006), which is exponentiated to yield the risk ratio: 0.9662 (95% CI 0.9340 – 0.9994). The intercept is -1.136 (95% CI -1.9572 - -0.3148), which is exponentiated to 0.3211 (95% CI 0.1413 – 0.72997). 2-sided p-value = 0.046.
Inference: The probability of SGA is 3.38% lower for each 1 year increase in age. This implies a lower risk of SGA in older mothers. The p-value of 0.046 would allow us to reject the null hypothesis that SGA is not associated with maternal age. 

c. Evaluate 
associations using odds ratio (OR: ratios of odds)

Methods: Using logistic regression for the binary response variable for SGA, we can obtain the odds ratio for having a SGA baby as predicted by maternal age (a continuous variable), with Wald based CI based on non-Robust SE. Because the model has a continuous predictor, but we only have two parameters estimated from the linear regression (B0 and B1), the model is not saturated. 

Results: Logistic regression yields a coefficient (slope) = odds ratio = 0.9610 (95% CI 0.9228 – 1.0008). The intercept is 0.4261 (95% CI 0.1577 – 1.1514). 2-sided p-value = 0.054.
Inference: The probability of SGA is 3.9% lower for each 1 year increase in age. This implies a lower risk of SGA in older mothers. The p-value of 0.054 would not allow us to reject the null hypothesis that SGA is not associated with maternal age. 

d. Using the regression 
parameter estimates from each of these regressions, provide an estimate of the probability that a 20 year old mother would have a SGA infant. Explain any similarities or differences these estimates might have when compared to the sample proportion of SGA infants among 20 year olds.

Pr (SGA|age=20) = B0 + B1(20)
Linear: 0.2510 + (-0.0045152)(20) = 0.1607 = 16.07%

Logistic: 0.4261 + (0.9610)(20) = 19.65

Poisson: e(B0+B1(x)) = e((-1.136) + (-0.0344235)(20)) = 0.1613 = 16.13%

From the sample, checking for proportion of SGA if mom’s age is 20 yields 7.5%.

7. Produce
 a plot of the estimated probability of an SGA infant by age as derived by each of the following methods. Comment on the similarity and difference among the various fitted values form the various analyses performed in problem 6. (Note that Stata allows you to specify multiple Y variables for a single X variable: scatter y1 y2 y3 y4 age)
a. Sample proportions within each unique age: This can be obtained in Stata using the command egen varname= mean(sga), by(age).
[image: image1.emf]
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b. Estimated probabilities for each age in the data as derived from each of the regression analyses. In Stata, this can be obtained using the simple “post-estimation” command: predict varname.  (But use a different variable name for each fitted value.) 

i. After performing a linear regression, the default action of the “predict” function is to create a variable that contains the estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion.
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ii. After performing a Poisson regression, the default action of the “predict” function is to create a variable that contains the exponentiated estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion. (The linear predictor in Poisson regression corresponds to the log “rate”, because Poisson regression uses a log link function.
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iii. In logistic regression, the estimated “linear predictor” corresponds to the log odds. Exponentiating that would correspond to the odds. By default, Stata figures that you would really rather have the estimated probability, which is computed as prob = odds / (1 + odds). So, after performing a logistic regression, the default action of the “predict” function is to create a variable that contains the the regression based estimate of the mean. 
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8. Perform a logistic regression analyses of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. Provide f
ormal inference for associations using odds ratio (OR: ratios of odds) and log transformed age.

Methods: Using logistic regression for the binary response variable for SGA, we can obtain the odds ratio for having a SGA baby as predicted by log transformed maternal age (a continuous variable), with Wald based CI based on non-Robust SE. Because the model has a continuous predictor, but we only have two parameters estimated from the linear regression (B0 and B1), the model is not saturated.
Results: The OR for having an infant with SGA in 0.3853 (95%CI 0.1435 – 1.0344). The intercept is 3.326 (95% CI 0.1463 – 75.6508). 2-sided p-value = 0.058.
Inference: The probability of SGA is 62% lower for each log-year increase in age. 
However, the CI crosses 1. The p-value of 0.058 would not allow us to reject the null hypothesis that SGA is not associated with log-maternal age.
b. Why m
ight it be reasonable or silly to have performed such an analysis rather than the analysis in problem 6c?
If you log transformed maternal age with log base 2 instead of log base e, then you could have inference about the odds of SGA with doubling of maternal age. 

�Total points: 119.5/160





Interpretations can be improved as well as explanations for methods.








�Points for 1: 3/10 – No methods provided, no discussion provided, table extends out of page margin and not fully viewable and readable. 


�Points for 2a: 10/10 – good job!


�Points for 2b: 2.5/5 – not in scientific wording


�Great, you got the main point.


�Points for 2c: 5/10


�good


�good


�good!


�On the odds scale, the odds intercept will be the reciprocal of the intercept from the reference model, and the OR slope will be the reciprocal of the reference model OR.
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�Good


�On the odds scale, the odds intercept will be the reciprocal of the product of the intercept and slope from the reference model which is what you have. That is, 


1/(0.1279826 × 1.8902582) = 4.1335952
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�Points for 3a: 10/10


�Points for 3b: 2.5/5 – not in scientific wording


�Points for 3c: 5/10


�Fitting response SGA on NONSMOKER will have an intercept equal to the sum of the reference slope and intercept, and it will have a slope opposite in sign of the reference slope


�The new intercept will be 1 minus the intercept for the linear regression from question 3a.


�Good. It will have a slope the same as the reference slope.


�Fitting response NOTSGA on NONSMOKER will have an intercept equal to 1 minus the sum of the reference slope and intercept.


�Points for 4a: 10/10


�Points for 4b: 2.5/5 – not in scientific wording.


�Point for 4c: 10/10


�It does, but in a complicated manner. See the key.


�Points for 5: 10/10


�Points for 6a: 10/10


�???


�Points for 6b: 10/10


�Points for 6c: 10/10


�Points for 6d: 7/10 – similarities and differences not discussed.


�Should be 16.13%


�Points for 7: 5/10 – question half answered. Comments on similarities and differences among fitted values from various analyses not provided.


�Points for 8a: 7/10


�In terms of year scale? 


�Points for 8b: 0/5






