Biost 518 / 515, Winter 2015
Homework #3
January 23, 2015, Page 1 of 9

Biost 518: Applied Biostatistics II
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Emerson, Winter 2015
Homework #3
January 23, 2015
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Monday, February 2, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
· Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
· Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
This homework considers pregnancy outcomes in an observational study of women attending a prenatal clinic in South Africa. Questions in this homework focus most closely on association with delivery of babies that are small for gestational age (SGA). The data can be found on the class web page (follow the link to Datasets) in the file labeled pregout.txt (you will not need any of the longitudinal measurements in the file preglong.txt). Documentation is in the file pregnancy.pdf.
1. Provide suitable descriptive statistics relevant to this analysis.

Methods: Data were collected about maternal characteristics (maternal age, maternal height, maternal smoking status, and parity) and infant characteristics (birth weight, gestational age at birth, sex, and whether or not the infant was small for gestation age, which is defined as being less than the 10th percentile for birth weight at a specific gestational age).  There were 755 women enrolled in this study, and their characteristics were obtained upon enrollment (although 4 subjects were missing data on smoking status, and 6 subjects were missing heights).  All women had singleton pregnancies, so data on their 755 infants were collected at birth (although 4 subjects were missing data on sex, 4 were missing data on birth weight, and 5 were missing data on gestational age).  The 751 subjects with a response for maternal smoking were then categorized into smokers and non-smokers, as seen in Table 1 below.
Table 1.  Descriptive Statistics from this Cohort, Maternal and Infant Characteristics by Maternal Smoking Status
	
	Non-smokers (n = 520)
	Smokers (n = 231)
	All Subjects (n = 755)

	Maternal Characteristics
	
	
	

	   Age (years)*
	24.61 ± 5.37 (14 – 43)
	25.13 ± 5.35 (15 – 42)
	24.79 ± 5.39 (14 – 43)

	   Height (cm)*
	156.64 ± 6.16 (127 – 175) (5 missing)
	156.8 ± 7.19 (106 – 176) (1 missing)
	156.68 ± 6.50 (106 – 176) (6 missing)

	   Smoking status (% smokers)
	0%
	100%
	31% (4 missing)

	   Parity (number of previous births)*
	1.06 ± 1.19 (0 – 6)
	1.19 ± 1.27 (0 – 6)
	1.10 ± 1.21 (0 – 6)

	Infant Characteristics
	
	
	

	   Birth weight (grams)*
	3164.93 ± 533.85 (1035 – 4730)
	2972.16 ± 512.38 (1410 – 4550)
	3105.63 ± 534.46 (1035 – 4730) (4 missing)

	   Gestational age at birth (weeks)*
	39.28 ± 1.55 (30 – 44)
	38.96 ± 1.36 (33 – 43) (1 missing)
	39.18 ± 1.50 (30 – 44) (5 missing)

	   Sex (% male)
	52%
	48%
	49% (4 missing)

	   Small for gestational age (% SGA)
	11%
	19%
	14%


* Statistics presented are mean ± standard deviation (minimum, maximum)

2. Perform a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. (Only give a formal report of the inference where asked to.)
a. Give full inference regarding the association between SGA and maternal smoking.
Methods: Logistic regression was performed using maternal smoking as a predictor and the odds of delivering an infant who was small for gestational age (SGA) as the response variable.  Because data on smoking status was missing for 4 participants, this analysis was run with 751 observations of maternal smoking and 751 observations of whether or not the infant was small for gestational age.  Both smoking status and small for gestation age were treated as binomial variables (for smoking status, a 0 indicated a nonsmoker and 1 indicated a smoker; for SGA status, 0 indicated not SGA and 1 indicated SGA).  Inferential statistics are reported using Wald confidence intervals and considered to be significant with a p-value of < 0.05.

Results: The odds ratio for this comparison is 1.89; therefore, mothers who smoke are more 89% more likely than mothers who don’t smoke to have an SGA infant.  This would not be unusual if the true likelihood were between 23% and 188% higher in mothers who smoke.  This is significant (p = 0.003), so we conclude that mothers who smoke are more likely to have SGA infants than mothers who do not smoke.

b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.

Regression can’t truly be performed in these instances, since the predictor variable has no variance and therefore a slope can’t be calculated.  However, the intercepts for each group can be used to calculate the odds, and therefore the probabilities, of each group having an SGA infant.  The odds of delivering an SGA infant in nonsmoking mothers are 0.128 (the exponentiated intercept for the nonsmoking group), so the probability is 0.128/1.128 = 0.113, or 11.3%.  This is identical to the proportion of SGA infants in the nonsmoking mothers group depicted in the table above.  The odds of delivering an SGA infant in smoking mothers are 0.242 (the exponentiated intercept for the smoking group), so the probability is 0.242/1.242 = 0.195, or 19.5%.  This is identical to the proportion of SGA infants in the smoking mothers group depicted in the table above.
c. There were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.

Because I recoded my variables so that non-smokers in this data set received a value of zero for the original analysis, running this analysis is essentially the opposite.  Instead of asking “what is the odds ratio for having an SGA infant if someone smokes”, you are asking “what is the odds ratio of having an SGA infant if someone does not smoke.”  This is the same as inverting the odds ratio (which is what you get in this case; 1/1.89 = 0.529, which is the slope you get if you run the analysis with NONSMOKER as a predictor and SGA as the response).

ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.

This asks the question, what are the odds of not having an SGA infant if you are a smoker?  Again, this essentially asking the opposite question of the original analysis, so will produce an inverse in the odds ratio (the odds ratio in this case is the same as in part i, 0.529).

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
This is taking the inverse of an inverse, so it gives the same answer as the original model does (the odds ratio is 1.89).
3. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the difference in probabilities for SGA across smoking groups.
Methods: Linear regression was performed using maternal smoking as a predictor and the probability of delivering an infant who was small for gestational age (SGA) as the response variable.  Because data on smoking status was missing for 4 participants, this analysis was run with 751 observations of maternal smoking and 751 observations of whether or not the infant was small for gestational age.  Both smoking status and small for gestation age were treated as binomial variables.  Inferential statistics are reported using 95% confidence intervals computed without robust standard error estimates (which are unnecessary, since both variables are binomials).
Results: The probability of having an SGA infant for mothers who do not smoke is 11.3%, and the probability of having an SGA infant for mothers who do not smoke is 19.5%.  Therefore, the difference in probabilities is 8.2%.  This difference in probabilities would not be unusual if the true difference were 2.8% to 13.5% (higher in mothers who smoke).  This observation is significant (p = 0.003), so we conclude that mothers who smoke are more likely to have an SGA infant.

b. Trying to run a linear regression separately for nonsmokers and smokers cannot be done, as the groups are defined to have either all smokers or all nonsmokers, so there can be no slope to calculate.  However, the intercepts returned by these analyses are equal to the proportion of the groups that have SGA infants (11.3% for nonsmokers and 19.5% for smokers).

c. i. Ultimately, there is no difference in the answer between the original analysis and the analysis using the NONSMOKER variable – both give a difference in probabilities of 8.2%.  However, the slope in this instance is negative, whereas the slope in the original analysis was positive.  The intercept also represents the proportion of smoking mothers who have an SGA infant rather than nonsmoking mothers who have an SGA infant (which was the case in the original analysis).
ii. This also gives the same absolute value of the slope (8.2%), but uses 1-(proportion of nonsmoking mothers who have an SGA infant) as the intercept.

iii. This also gives the same absolute value of the slope (8.2%), but uses 1-(proportion of smoking mothers who have an SGA infant) as the intercept.

4. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the ratio of probabilities for SGA across smoking groups.
Methods: Poisson regression was performed using maternal smoking as a predictor and the probability of delivering an infant who was small for gestational age (SGA) as the response variable.  Because data on smoking status was missing for 4 participants, this analysis was run with 751 observations of maternal smoking and 751 observations of whether or not the infant was small for gestational age.  Both smoking status and small for gestation age were treated as binomial variables.  Inferential statistics are reported using Wald 95% confidence intervals, and are consider to be significant if p < 0.05.

Results: Based on the results of this analysis, smokers have a risk ratio of 1.72 (that is, smokers are 1.72 times more likely than nonsmokers to have an SGA infant).  This would be unusual if the true likelihood were 1.16 to 2.53 times higher for smokers.  This is significant (p = 0.006), so we conclude that smokers are more likely to have SGA infants than nonsmokers.
b. Trying to run a Poisson regression separately for nonsmokers and smokers still cannot be done, as the groups are defined to have either all smokers or all nonsmokers, so there can be no slope to calculate.  However, the exponentiated intercepts returned by these analyses are equal to the proportion of the groups that have SGA infants (11.3% for nonsmokers and 19.5% for smokers).

c. i. This is asking the question, “How likely is a nonsmoking mother having an SGA infant compared to a smoking mother having an SGA infant?”  The absolute value of the slope is the same (0.54), but in this case it is negative, and so we get the inverse of the original analysis, and the relative risk is 0.58.  (1/1.72 = 0.58).
ii. This is asking the question, “How likely is an SGA infant to be born to a smoking mother compared to a nonsmoking mother?”  It is a completely different question from the original analysis and that in part i, so the relative risk here (0.91) is not related to the above values.
iii. This is asking the question, “How likely is an SGA infant to be born to a nonsmoking mother compared to a smoking mother?”  It is therefore the inverse of part ii, so the relative risk is 1.10 (1/0.91).
5. How do the analyses performed in problems 2-4 compare to that that would be obtained in a simple two sample comparison of SGA by smoking status (i.e., using methods covered in Biost 517/514.) Explicitly mention where they would be similar or different?

Questions 2 and 4 rely on a basic 2x2 table:

	
	Not SGA
	SGA

	Nonsmokers
	461
	59

	Smokers
	186
	45


Therefore, running either a logistic or Poisson regression is the same as doing a chi-squared test and looking at the odds ratio (for question 2) or the relative risk (for question 4).

For question 3, you get the same results using a two sample t-test that assumes equal variance (the two groups are smokers and non-smokers).

6. Perform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. Evaluate associations using risk difference (RD: difference in probabilities).

Methods: Linear regression was performed with maternal age as a continuous predictor variable and small for gestational age (SGA) as a binomial response variable.  Inference was performed using 95% confidence intervals calculated using the Huber-White sandwich estimator, and results were considered significant if p < 0.05.

Results: For every year older a mother is, the probability of having an SGA infant decreases by 0.45%.  This would not be unusual if the true decrease in probability was between 0.03% and 0.87%.  This is significant (p = 0.036), therefore, we conclude that the probability of having an SGA infant decreases with age.

b. Evaluate associations between risk ratio (RR: ratios of probabilities).
Methods: Poisson regression was performed with maternal age as a continuous predictor variable and small for gestational age (SGA) as a binomial response variable.  Inference was performed using 95% confidence intervals calculated using robust estimates (Huber-White), and results were considered significant if p < 0.05.

Results: For every year older a mother is, her likelihood of delivering an SGA infant decreases by 3.3%.  This would not be unusual if the true decrease in likelihood were between 0.0006% and 6.6%.  This is significant (p = 0.046), so we conclude that the likelihood of delivering an SGA infant decreases with age.

c. Evaluate associations using odds ratio (OR: ratios of odds)

Methods: Logistic regression was performed with maternal age as a continuous predictor variable and small for gestational age (SGA) as a binomial response variable.  Inference was performed using 95% confidence intervals calculated using robust estimates (Huber-White), and results were considered significant if p < 0.05.

Results: The odds ratio is 0.961; therefore, for every year older a mother is, her odds of delivering an SGA infant decreases by 3.9%.  This would not be unusual if the true decrease in odds were between 0.1% and 7.6%.  This is significant (p = 0.046), so we conclude that the odds of delivering an SGA infant decrease with age.

d. Using the regression parameter estimates from each of these regressions, provide an estimate of the probability that a 20 year old mother would have a SGA infant. Explain any similarities or differences these estimates might have when compared to the sample proportion of SGA infants among 20 year olds.

The proportion of SGA infants born to 20 year old women in this sample is 0.08

The linear regression prediction model predicts that 0.251 – (0.0045) * 20 = 0.16

The Poisson regression prediction model predicts that e^(-1.136 – (0.0344) * 20) = 0.16

The logistic regression prediction model predicts that e^(-0.853 – (0.0398) * 20) = 0.19

A quick glance at the scatterplot below helps explain the discrepancies.  All the regression models used in this analysis assume a linear relationship between maternal age and the proportion of SGA infants, but the relationship is not so obviously linear when looking at the plot.  Therefore, each model overestimates the proportion of SGA infants born to 20 year old mothers.

7. Produce a plot of the estimated probability of an SGA infant by age as derived by each of the following methods. Comment on the similarity and difference among the various fitted values form the various analyses performed in problem 6. (Note that Stata allows you to specify multiple Y variables for a single X variable: scatter y1 y2 y3 y4 age)
a. Sample proportions within each unique age: This can be obtained in Stata using the command egen varname= mean(sga), by(age).
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b. Estimated probabilities for each age in the data as derived from each of the regression analyses. In Stata, this can be obtained using the simple “post-estimation” command: predict varname.  (But use a different variable name for each fitted value.) 

i. After performing a linear regression, the default action of the “predict” function is to create a variable that contains the estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion.
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ii. After performing a Poisson regression, the default action of the “predict” function is to create a variable that contains the exponentiated estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion. (The linear predictor in Poisson regression corresponds to the log “rate”, because Poisson regression uses a log link function.
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iii. In logistic regression, the estimated “linear predictor” corresponds to the log odds. Exponentiating that would correspond to the odds. By default, Stata figures that you would really rather have the estimated probability, which is computed as prob = odds / (1 + odds). So, after performing a logistic regression, the default action of the “predict” function is to create a variable that contains the the regression based estimate of the mean. 
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8. Perform a logistic regression analyses of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. Provide formal inference for associations using odds ratio (OR: ratios of odds) and log transformed age.

Methods: Logistic regression was performed with logarithmically transformed maternal age as a continuous predictor variable and small for gestational age (SGA) as a binomial response variable.  Inference was performed using 95% confidence intervals calculated using robust estimates (Huber-White), and results were considered significant if p < 0.05.

Results: The odds ratio is 0.385; therefore, for every logarithmically transformed year older a mother is, her odds of delivering an SGA infant decreases by 61.5%.  This would not be unusual if the true difference in odds were between 85.3% lower and 1.0% higher per logarithmically transformed year.  This is not significant (p = 0.052), so we cannot reject the null hypothesis that the odds of delivering an SGA infant does not change with age.
b. Why might it be reasonable or silly to have performed such an analysis rather than the analysis in problem 6c?
The problem with the analysis in problem 6c is that there is not clearly a linear relationship between maternal age and the proportion of SGA infants delivered.  However, there is not clearly a multiplicative relationship between these variables either, nor would we expect such a relationship given our current understanding of SGA risk factors.  Furthermore, using logarithmically transformed maternal age data makes analyses harder to understand.  Therefore, I believe using the non-transformed maternal age data is better.
(It is interesting to note that the non-transformed analysis has a statistically significant p-value and the log-transformed analysis does not; however, this is likely due to differences in rounding and should not be used to judge which analysis is better.)

