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1. Provide suitable descriptive statistics relevant to this analysis.

Methods: Descriptive statistics are displayed by size for gestational age, with Small Gestational Age (SGA) referring to when a baby weighs below the 10th percentile for their gestational age, and for the entire sample of 755 subjects. Within each group, we presented the mean, standard deviation, minimum, maximum, and number of missing cases for relevant continuous variables. For binary variables, percentages and number of missing cases are displayed.
Inference: Data is available for 755 women, but 4 (including 1 who had an SGA baby) are missing data on smoking status. Those individuals are excluded from analyses looking at the association between the odds of an SGA infants and mother’s smoking status, though we cannot be certain as to how those dropped subjects affect the generalizability of our results. 6 women were missing data on height (all in the SGA group), 4 were missing data on baby’s sex (1 in the SGA group), 5 were missing data on gestational age (2 in the SGA group), and 4 were missing data on baby’s birthweight (1 in the SGA group).

Of the 755 subjects, 105 had a SGA child and 650 did not have a baby with SGA. The table below presents descriptive statistics for subjects within these categories. Subjects with SGA infants were more likely to be shorter, be younger, be a smoker, have fewer prior deliveries, give birth to a female, give birth earlier, and have lighter babies than subjects without SGA infants. The strongest of these relationships seemed to be smoking status, parity, baby’s sex, and birthweight. Mother’s age is related to parity, so parity cannot be a confounder in that instance. Smoking is related to baby’s birthweight, so birthweight cannot be a confounder in that analysis. 

	 
	Size of Baby by Gestational Age Categories

	 
	Small Gestational Age (n=105)
	Not Small Gestational Age (n=650)
	Overall                   (n=755)

	Mother's Height (cm)
	155 (5.87; 142-172)        Missing = 6
	157 (6.54; 106-176)        Missing = 0
	157 (6.50; 106-176)        Missing = 6

	Mother's Age (yrs)
	23.8 (4.90; 16-35)        Missing = 0
	24.9 (5.45; 14-43)        Missing = 0
	24.8 (5.39; 14-43)        Missing = 0

	Smoker           (% Yes)
	43.3%                           Missing = 1
	28.7%                           Missing = 3
	30.8%                           Missing = 4

	Parity (# prior deliveries)
	0.895 (1.11; 0-6)            Missing = 0
	1.132 (1.23; 0-6)              Missing = 0
	1.099 (1.21; 0-6)           Missing = 0

	Baby's Sex    (% male)
	42.3%                          Missing = 1
	52.4%                           Missing = 3
	51.0%                           Missing = 4

	Gestational Age (weeks)
	37.9 (2.20; 30-42)        Missing = 2
	39.4 (1.24; 38-44)        Missing = 3
	39.2 (1.50; 30-44)        Missing = 5

	Birthweight (grams)
	2231 (412; 1035-3780)    Missing = 1
	3246 (402; 2510-4730)    Missing = 3
	3106 (534; 1035-4730)   Missing = 4


Note: Small Gestational Age occurs when a baby weighs below the 10th percentile for their gestational age. Descriptive statistics presented for continuous variables are the mean (standard deviation; minimum – maximum) and number of missing cases. For binary variables, percentages and number of missing cases are displayed. 
2. Perform a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. (Only give a formal report of the inference where asked to.) 
a. Give full inference regarding the association between SGA and maternal smoking. 

Methods: From a logistic regression analysis of the 751 subjects (4 subjects were missing smoking status: 3 within the not SGA group and 1 in the SGA group), we estimate the odds of SGA babies between 231 smokers and 520 nonsmokers. An odds ratio of 1 was tested with a z test, and 95% confidence intervals and p-values are Wald-based estimates. 

Inference: Using a logistic regression analysis, the estimated odds of an SGA baby is 89.0% higher for smokers than nonsmokers. This observed value is consistent with a true odds ratio of an SGA baby between 1.238 and 2.888 for the comparison of smokers to nonsmokers, based on a 95% Wald confidence interval. Using a z-test on the odds ratio, the two-sided p-value = 0.003 was statistically significant, so we can with high confidence reject the null hypothesis that the distribution of SGA infants is not associated with mother’s smoking status.

b. Use the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1. Explain any differences or similarities.

Answer: We can calculate the odds and probabilities using the parameters obtained from the logistic regression. The odds_N (SGA | Nonsmokers) = eβ0 = 0.128 and odds_S (SGA | Smokers) = eβ0 + β1 = 0.242. Then, the P (SGA | Nonsm) = odds_N / (1+odds_N) = 11.3% and the P (SGA | Smoke) = odds_S / (1+odds_S) = 19.5%.
In the descriptive statistics in problem 1, I presented the probability of being a smoker separately for women who gave birth to SGA infants (43.4%) and those who didn’t (28.7%). I also presented the probability of being a smoker overall (30.8%) and the probability of having an SGA child (105/755 = 13.9%). Thus, the estimates in this question provide further information regarding the odds and probability of delivering an SGA infant dichotomized by smoking status.
c. There were actually four regression analyses that could have been used to answer this question. Explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models :
i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.

ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
Answer: These are all re-parameterizations of the original model, since we are allowed to shift both the outcome and response in logistic regression. For each parameter, the z-statistic is the same magnitude and the p-values are the same regardless of the model.
To see the relationship between the parameters, consider the following models to represent the four cases. 
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Next, we can also see that 
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3. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the difference in probabilities for SGA across smoking groups.  
a. Methods: We performed a linear regression analysis using robust standard errors for 751 subjects (4 subjects were missing smoking status: 3 within the not SGA group and 1 in the SGA group), and we estimate the difference in probability of SGA babies between smokers and nonsmokers. A risk difference of 0 was tested with a t test that allowed for unequal variances, as did the 95% confidence intervals and p-value.

Inference: Using a linear regression that allowed for unequal variances, the estimated difference in probabilities of an SGA baby is 8.13% higher for smokers than nonsmokers. This observed value is consistent with a true risk difference of an SGA baby between 2.33% and 13.9% higher for smokers, based on a 95% confidence interval that uses robust standard errors. Because the two-sided p-value = 0.006 was statistically significant, we can with high confidence reject the null hypothesis that the distribution of SGA infants is not associated with mother’s smoking status.

b. Answer: We can calculate the odds and probabilities using the parameters obtained from the linear regression. The P_N (SGA | Nonsm) = β0 = 11.3% and the P_S (SGA | Smoke) = β0 + β1 = 19.5%. Thus, the odds (SGA | Nonsm) = prob_N / (1-prob_N) = 0.128 and the odds (SGA | Smoke) = prob_S / (1-prob_S) = 0.242.
In the descriptive statistics in problem 1, I presented the probability of being a smoker separately for women who gave birth to SGA infants (43.4%) and those who didn’t (28.7%). I also presented the probability of being a smoker overall (30.8%) and the probability of having an SGA child (105/755 = 13.9%). Thus, the estimates in this question provide further information regarding the odds and probability of delivering an SGA infant dichotomized by smoking status.

c. Answer: 
These are all re-parameterizations of the original model, since we are allowed to shift both the outcome and response in linear regression. For each parameter, the p-value is the same regardless of the model, and the t-statistic for β1 is the same magnitude throughout the models.
To see the relationship between the parameters, consider the following models to represent the four cases. 
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Also, P(SGA | Smoke) = 
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4. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the ratio of probabilities for SGA across smoking groups. 
a. Methods: From a Poisson regression analysis (using robust standard errors) of the 751 subjects (4 subjects were missing smoking status: 3 within the not SGA group and 1 in the SGA group), we estimate the probability of SGA babies between 231 smokers and 520 nonsmokers. A risk ratio of 1 was tested with a z test, and 95% confidence intervals and p-values are Wald-based estimates. 

Inference: Using a Poisson regression analysis that allows for unequal variances, the estimated probability of an SGA baby is 71.7% higher for smokers than nonsmokers. This observed value is consistent with a true risk ratio of an SGA baby between 1.203 and 2.451 for a comparison of smokers to nonsmokers, based on a 95% Wald confidence interval. Using a z-test on the risk ratio, the two-sided p-value = 0.003 was statistically significant, so we can with high confidence reject the null hypothesis that the distribution of SGA infants is not associated with mother’s smoking status.

b. Answer: We can calculate the odds and probabilities using the parameters obtained from the Poisson regression. First, P_N (SGA | Nonsm) = β0 = 11.3% and P_S (SGA | Smoke) = β0 * β1 = 19.5%. Therefore, odds (SGA | Nonsm) = prob_N / (1-prob_N) = 0.128 and odds (SGA | Smoke) = prob_S / (1-prob_S) = 0.242.
In the descriptive statistics in problem 1, I presented the probability of being a smoker separately for women who gave birth to SGA infants (43.4%) and those who didn’t (28.7%). I also presented the probability of being a smoker overall (30.8%) and the probability of having an SGA child (105/755 = 13.9%). Thus, the estimates in this question provide further information regarding the odds and probability of delivering an SGA infant dichotomized by smoking status.
c. Answer: When using a Poisson regression, we are allowed to shift the response but not the outcome when re-parameterizing a model. Scaling an outcome is fine, but shifting does not guarantee comparable results to our initial model. For β1, the z-statistics are the same magnitude and the p-values are the same when comparing between the first two models and the last two models.

To see the relationship between the parameters, consider the following models to represent the four cases. 
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We see that log[P(SGA | Smoke)] = 
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Next, 
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Combining all these gives
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5. How do the analyses performed in problems 2-4 compare to that that would be obtained in a simple two sample comparison of SGA by smoking status (i.e., using methods covered in Biost 517/514.) Explicitly mention where they would be similar or different? 
Answer: To analyze the odds ratio, a chi squared test could have been used rather than a logistic regression analysis. The chi square test allows us to observe the odds of having an SGA baby easily for smokers and nonsmokers (.242 and .128 respectively), whereas it takes slightly more work with the regression analysis. The logistic regression provides us with a p-value (p = 0.003), while the chi square does not test for the odds ratio equal to 1. But otherwise, the odds ratio (1.89 for smokers to nonsmokers) and confidence intervals (1.24 to 2.88) are the same for either analysis.
Similarly, a chi squared test could have been used to analyze the risk difference. The chi square test allows us to observe the probability of having an SGA baby easily for smokers and nonsmokers (.195 and .113 respectively), whereas it takes slightly more work with the regression analysis. The linear regression provides us with a p-value (p = 0.006), while the chi square does not test for the risk difference equal to 0. But otherwise, the risk difference (8.13% higher for smokers) and confidence intervals (2.35% to 13.9%) are the same for either analysis.
Again, a chi squared test could have been used to analyze the risk ratio, rather than a linear regression. The risk ratio (1.717 for smokers to nonsmokers), confidence intervals (1.203 to 2.450), and p-value (p = 0.003) are the same for either analysis.

6. Perform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. Evaluate associations using risk difference (RD: difference in probabilities).

Methods: We performed a linear regression analysis using robust standard errors for the entire 755 subjects, and we estimate the difference in probability of SGA babies for subjects differing by 1 year of age. A risk difference of 0 was tested with a t test that allowed for unequal variances, as did the 95% confidence intervals and p-value.

Inference: Using a linear regression that allowed for unequal variances, the estimated difference in probabilities of an SGA baby is 0.452% higher for younger women for each year difference in age. This observed value is consistent with a true risk difference of an SGA baby between 0.0286% and 0.874% higher for a group of women that is one year younger than another group, based on a 95% confidence interval that uses robust standard errors. Because the two-sided p-value = 0.036 was statistically significant, we can with high confidence reject the null hypothesis that the distribution of SGA infants is not associated with mother’s age.

b. Evaluate associations between risk ratio (RR: ratios of probabilities).
Methods: From a Poisson regression analysis (using robust standard errors) of the entire 755 subjects, we estimate the probability of SGA babies for subjects differing by 1 year of age. A risk ratio of 1 was tested with a z test, and 95% confidence intervals and p-values are Wald-based estimates.
Inference: Using a Poisson regression analysis that allows for unequal variances, the estimated probability of an SGA baby is 3.38% higher for younger women for each year difference in age. This observed value is consistent with a true probability of an SGA baby between 0.0607% and 6.60% higher for a group of women that is one year younger than another group, based on a 95% Wald confidence interval. Using a z-test on the odds ratio, the two-sided p-value = 0.046 was statistically significant, so we can with high confidence reject the null hypothesis that the distribution of SGA infants is not associated with mother’s age.

c. Evaluate associations using odds ratio (OR: ratios of odds)

Methods: From a logistic regression analysis of the entire 755 subjects, we estimate the odds of SGA babies for subjects differing by 1 year of age. An odds ratio of 1 was tested with a z test, and 95% confidence intervals and p-values are Wald-based estimates.  
Inference: Using a logistic regression analysis, the estimated odds of an SGA baby is 3.90% higher for younger women for each year difference in age. This observed value is consistent with true odds of an SGA baby between 0.0764% lower and 7.72% higher for a group of women that is one year younger than another group, based on a 95% Wald confidence interval. Using a z-test on the odds ratio, the two-sided p-value = 0.054 was not statistically significant, so we fail to reject the null hypothesis that the distribution of SGA infants is not associated with mother’s age.

d. Using the regression parameter estimates from each of these regressions, provide an estimate of the probability that a 20 year old mother would have a SGA infant. Explain any similarities or differences these estimates might have when compared to the sample proportion of SGA infants among 20 year olds.

Answer: Using the parameters from the linear regression model, the fitted value for P (SGA | Age=20) is .25100 - .00452 * 20 = .1607.
Using the parameters from the Poisson regression (a separate regression without IRR), the fitted value for 20 year olds relating to the log rate of SGA is -1.13598 - .03442 * 20 = -1.824. Exponentiating this value gives an estimated rate P (SGA | Age=20) = .1613. 
Using the parameters from the logistic regression (a separate logit model), the fitted value for 20 year olds relating to the log odds of SGA is -.8531571 - .0397786* 20 = -1.6487. Exponentiating this value gives an estimated odds of 0.1923. Therefore, the estimated P (SGA | Age=20) = .1613. 

Because age is continuous, these models are not saturated, so the derived probability estimates should not match the sample proportion, which is 3/40 = .0750 for 20 year olds giving birth to SGA infants.

7. Produce a plot of the estimated probability of an SGA infant by age as derived by each of the following methods. Comment on the similarity and difference among the various fitted values form the various analyses performed in problem 6. 
a. Sample proportions within each unique age.
b. Estimated probabilities for each age in the data as derived from each of the regression analyses. 

Answer: We created a plot that examines the estimated probability of an SGA baby by mother’s age. One method was by using the sample proportions within each unique age, and the other was using the estimated probabilities from the linear, Poisson, and logistic regression analyses above. We notice that the sample proportions do not appear to follow a linear trend very well towards the endpoints of ages sampled. There is more variability among the endpoints for younger mothers, and less variability for mothers around 40 years old. We see that the linear predictions created by the Poisson and logistic regressions are quite similar. Also, they seem to deviate from the linear predictions of the linear regression mostly at either extreme of the ages sampled. 
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8. Perform a logistic regression analyses of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. Provide formal inference for associations using odds ratio (OR: ratios of odds) and log transformed age.

Methods: From a logistic regression analysis of the entire 755 subjects (no missing cases), we estimate the odds of SGA babies for subjects differing by 1 unit of log transformed age. An odds ratio of 1 was tested with a z test, and 95% confidence intervals and p-values are Wald-based estimates. 
Inference: Using a logistic regression analysis, the estimated odds of an SGA baby is 38.5% higher for older women for each unit difference in log age. This observed value is consistent with a true odds ratio of an SGA baby between 0.144 and 1.034 for the comparison of older to younger women, based on a 95% Wald confidence interval. Using a z-test on the odds ratio, the two-sided p-value = 0.058 was not statistically significant, so we fail to reject the null hypothesis that the odds of SGA are not associated with mother’s age.

b. Why might it be reasonable or silly to have performed such an analysis rather than the analysis in problem 6c?
Answer: This analysis seems to be rather unreasonable because it is difficult to understand units for log age, so most audiences would not prefer this analysis. Unless it was known that having an SGA baby occurred in a multiplicative fashion, we would not consider taking the log of age to perform such an analysis. And if we did think it was multiplicative, we might consider a Poisson regression rather than a logistic regression.
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