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1. Provide
 suitable descriptive statistics relevant to this analysis.

Methods: Summary statistics (mean, standard deviation minimum, and maximum) for maternal and infant characteristics are presented stratified by small for gestational age (SGA) indicator variable. Subject pairs missing data on any variables (none were missing SGA) were excluded from any analysis involving those variables. No data was missing for SGA, however 10 observations are missing Statistics presented for continuous variables (maternal age, maternal height, parity) include mean, standard deviation, minimum and maximum. Percentages are presented for categorical variables (infant sex, smoking status). Infant birth weight and gestational age were also recorded as other outcome measures, but are not presented here as this analysis is focused on SGA as the outcome. 
Results: The original data set included 755 pregnant women with singleton births. Data on variables included in this analysis (maternal height, smoking status, and infant sex) are missing for 10 participants. Four observations were missing both smoking status and infant sex, one of which represents an SGA infant. There other six observations were missing maternal higher (and no other variables), all of which represent SGA infants. 
Of the 755 pregnant women in the study, 105 (14%) had infants meeting the definition of small for gestational age (SGA). Table 1 presents descriptive statistics for all participants as well as in strata defined by SGA. There is a trend that mothers of SGA infants tend to be younger (23.8 yrs vs 24.9 yrs), have a lower number of prior births (0.9 vs 1.13) and tend to be smokers (43% vs 29%). A higher proportion SGA infants are female as compared to infants not SGA.  Also SGA infants tend to be female (58% vs 48%). 
Table 1. Descriptive statistics by small for gestational age status.

	
	Small for Gestational Age (SGA) 

	
	Mean (SD; Minimum-Maximum) 1

	Maternal & Infant Characteristics
	No

(n=650)
	Yes

(n=105)
	All participants
(n=755)

	Age (yrs) 
	24.9 (5.45; 14-43)
	23.8 (4.90; 16-35)
	24.8 (5.39; 14-43)

	Height (m)2
	1.57 (6.54; 106-176
)
	1.55 (5.87; 142-172)
	1.57 (6.50; 106-176)

	No. of prior births
	1.13 (1.23; 0-6)
	0.9 (1.11; 0-6)
	1.10 (1.21; 0-6)

	Smoker 1,3
	186 (28.6%)
	45 (42.9%)
	231 (30.5%)

	Female Infant 1,3
	308 (47.4%)
	60 (57.1%)
	368 (48.7%)


1 Binary variables are presented in the following format: N (% are smokers).
2Maternal height is missing for 6 subject pairs, all of which represent SGA infants.
3Smoking status and infant sex are both missing in 4 subject pairs, 1 of which represents an SGA infant.
2. Perform a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. (Only give a formal report of the inference where asked to.)
a. Give
 full inference regarding the association between SGA and maternal smoking. 
Methods: Logistic regression was used to evaluate the association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior. Both SGA and smoking behavior are binary variables. Four subject pairs missing maternal smoking behavior were omitted from the analysis. 95% confidence intervals for the odds of an SGA birth among pregnant women who smoke compared to those who don’t smoke were computed using Wald statistics
. 
Results: A
 logistic regression analysis estimates that among pregnant women who smoke, the odds of the birth of SAG infant is 89% higher when compared to pregnant women who don’t smoke. A 95% confidence interval suggests that our estimate is not unusual if the true odds of a SGA birth was 1.24 to 2.89 fold increase among pregnant smokers compared to non smokers.  A two sided p value < 0.003 for the logistic regression estimate compared to an alpha=0.05 allows us to reject the null hypothesis that the odds ratio is 1. 
b. Use
 the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1? Explain any differences or similarities.
Model odds(SGA|Smoker)=1.890(smoker)+0.1279

Model logodds(SGA|smoker)=0.63678(smoker) +(-2.05586)
	
	Odds of SGA
	Probability of SGA

	
	Calculation
	Estimate
	Calculation
	Estimate

	Non-smokers

smoker=0
	=1.890(0)+0.1279
=exp(-2.05586)
	0.128
	=0.128/(1+0.128)
	0.113

	Smokers

smoker=1
	=1.89*0.128
=exp(0.63678-2.05586)
	0.242
	=0.242/(1+0.242)
	0.195


The odds of SGA among smokers is equivalent to total number of SGA infants among smokers over the number of non SGA infants among smokers (45)/(186). The probability of SGA among smokers is equivalent to the same calculation but substituting the all participants for non SGA as the denominator (45)/(231). You could calculate the same numbers for non-smokers using 1 minus the proportion of smokers presented in table 1, substituting the crude number of non-smokers in each group. For odds, (105-45)/(650-186) and for the probability, (105-45)/(755-231
).
c. There
 were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a logistic regression model of response SGA on predictor NONSMOKER.

A model using nonsmoker as the predictor will produce slope estimates that are the inverse (1/estimate) of the model estimates produced when using maternal smoking as the predictor. This is also true for the 95% CI for the slope. The intercept will not be the inverse, but will be the odds of SGA among smokers that we calculated in part b (0.242)
 (this was not seen in the original model but can be obtained as seen in part b). 
The biggest change is in the interpretation of the comparison groups. You will see a relative decrease in the odds of SGA among nonsmokers compared to smokers because the result will be protective when using nonsmokers as the predictor. The original model interpretation was the relative increase in odds of SGA among smokers compared to nonsmokers. The p value and interpretation from hypothesis tests will remain exactly the same.  
ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a logistic regression model of response NOTSGA on predictor SMOKER.

A model using notsga as the outcome will produce slope and intercept estimates that are the inverse (1/estimate) of the model estimates produced when predicting sga. This is also true for the 95% CI of both the slope and intercept. 
The biggest change this makes in the interpretation is the comparison groups. You will see a relative decrease in the odds of not SGA among smokers compared to nonsmokers because the result will be protective when using not SGA as the outcome. The original model interpretation was the relative increase in odds of SGA among smokers compared to nonsmokers. The p value and interpretation from hypothesis tests will remain exactly the same.  

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 
A model using NOTSGA as the outcome and nonsmoker as the predictor will produce slope that is the inverse (1/estimate) of the model estimates produced when. The 95% CI for the slope will also be an inverse for the original model. The intercept will be the inverse of the estimate calculated in part b for the odds of SGA among smokers (1/0.242) (this was not seen in the original model). 

The biggest change this makes in the interpretation is the comparison groups
. You will see a relative increase in the odds of not SGA among nonsmokers compared to smokers. The direction is the same because you are have inverted both the predictor and the outcome. The original model interpretation was the relative increase in odds of SGA among smokers compared to nonsmokers. The p value and interpretation from hypothesis tests will remain exactly the same.  

3. Repeat
 problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the difference in probabilities for SGA across smoking groups.
a. Give full inference regarding the association between SGA and maternal smoking. 
Methods: Linear regression was used to evaluate the difference between the probabilities of infants who were small for gestational age (SGA) across maternal smoking behavior groups. Both SGA and smoking behavior are binary variables. Analysis used the Huber-White sandwich estimator to compute standard error, and thus did not presume constant variances across groups. Four subject pairs missing maternal smoking behavior were omitted from the analysis. 95% confidence intervals for the difference in probabilities of an SGA birth among pregnant women who smoke and those who don’t smoke were computed using Wald statistics
.

Results: A
 linear regression analysis estimates that among pregnant women who smoke, the probability of the birth of SAG infant is 0.0813 units higher than among pregnant women who don’t smoke. A 95% confidence interval suggests that our estimate is not unusual if the true difference in probabilities of a SGA birth was 0.0233 to 0.139 units higher among pregnant smokers compared to none smokers.  Such a result is statistically significant (two sided p value <
 0.006) when compared to an alpha=0.05, allowing us to reject the null hypothesis that there is no difference in probabilities between the two groups. 
b. Use
 the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1? Explain any differences or similarities.

Model (SGA|Smoker)=0.0813437(smoker)+0.1134615
	
	Odds of SGA
	Probability of SGA

	
	Calculation
	Estimate
	Calculation
	Estimate

	Non-smokers

smoker=0
	=0.113/(1-0.113)
	0.127
	=0.0813(0)+0.1134
	0.113

	Smokers

smoker=1
	=0.195/(1-0.195)

	0.242
	=0.0813(1)+0.1134
	0.195


The odds of SGA among smokers is equivalent to total number of SGA infants among smokers over the number of non SGA infants among smokers (45)/(186). The probability of SGA among smokers is equivalent to the same calculation but substituting the all participants for non SGA as the denominator (45)/(231). You could calculate the same numbers for non-smokers using 1 minus the proportion of smokers presented in table 1, substituting the crude number of non-smokers in each group. For odds, (105-45)/(650-186) and for the probability, (105-45)/(755-231).
c. There
 were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a linear regression model of response SGA on predictor NONSMOKER.

A model using nonsmoker as the predictor will produce slope estimates that are the same magnitude as the estimates produced using SMOKER predictor. However, the estimates using the NONSMOKER predictor are negative estimates. This is also true for the 95% CI for the slope. The intercept will not be the negative estimate, but will be the probability of SGA among smokers that we calculated in part b (0.195) (this was not in the original model). 

The biggest change is in the interpretation of the comparison groups. 
You will see a absolute decrease in the probability of SGA among non-smokers compared to smokers because the result will be protective when using nonsmokers as the predictor. The original model interpretation was the absolute increase in probability of SGA among smokers compared to nonsmokers. The p value and interpretation from hypothesis tests will remain exactly the same.  

ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a linear regression model of response NOTSGA on predictor SMOKER.

A model using notsga as the outcome will produce a slope estimate that is negative but has the same magnitude as the model estimates produced when predicting sga. This is also true for the 95% CI. The intercept in the model using NOTSGA will be 1 minus the intercept in the original model using SGA (1-0.113=0.887). This transformation will also be true for the 95% CI.  

The biggest change this makes in the interpretation is the comparison groups. You will see a absolute decrease in the probability of not SGA among smokers compared to nonsmokers because the result will be protective when using not SGA as the outcome. The original model interpretation was the absolute increase in probability of SGA among smokers compared to nonsmokers. The p value and interpretation from hypothesis tests will remain exactly the same.  

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 

A model using notsga as the outcome and nonsmoker as the predictor will produce a slope estimate and 95% CI that are the exactly the same as the original model (0.0813). The intercept estimate will be the 1 minus the probability of SGA among smokers (1-0.195=0.805) (this was not seen in the original model). 

The biggest change this makes in the interpretation is the comparison groups. You will see a absolute increase in the odds of not SGA among nonsmokers compared to smokers. The direction is the same because you are have inverted both the predictor and the outcome. The original model interpretation was the relative increase in odds of SGA among smokers compared to nonsmokers. The p value and interpretation from hypothesis tests will remain exactly the same.  

4. Repeat problem 2, except consider a statistical regression analysis evaluating an association between the odds of delivery of infants who were small for gestational age (SGA) and maternal smoking behavior by evaluating the ratio of probabilities for SGA across smoking groups.
a. Give
 full inference regarding the association between SGA and maternal smoking. 
Methods: Poisson regression was used to evaluate the ratio of probabilities for small for gestational age (SGA) infants across maternal smoking behavior groups. Both SGA and smoking behavior are binary variables. Analysis used the Huber-White sandwich estimator to compute standard error, and thus did not presume constant variances across groups. Four subject pairs missing maternal smoking behavior were omitted from the analysis. 95% confidence intervals for the ratio of probabilities of an SGA birth among pregnant women who smoke and those who don’t smoke were computed using Wald statistics
.

Results: A
 Poisson regression analysis estimates that among pregnant women who smoke, the probability of the birth of SAG infant is a relative 71.7% increase when compared to pregnant women who don’t smoke. A 95% confidence interval suggests that our estimate is not unusual if the true ratio of probabilities of a SGA birth was 1.20 to 2.45 fold increase among pregnant smokers compared to none smokers.  Such a result is statistically significant (two sided p value <
 0.003) when compared to an alpha=0.05, allowing us to reject the null hypothesis that the ratio of probabilities between the two groups is equal to 1.
b. Use
 the regression model parameter estimates to provide estimates of both the odds and the probability of delivering a SGA infant separately for smokers and nonsmokers. How do these estimates compare with simple descriptive statistics as you might have reported in problem 1? Explain any differences or similarities.
Model (SGA|Smoker)=0.0813437(smoker)+0.1134615

	
	Odds of SGA
	Probability of SGA

	
	Calculation
	Estimate
	Calculation
	Estimate

	Non-smokers

smoker=0
	=0.113/(1-0.113)
	0.127
	=exp(-2.176)
	0.113

	Smokers

smoker=1
	=0.195/(1-0.195)


	0.242
	=exp(0.5405(1)-2.176)
	0.195


The odds of SGA among smokers is equivalent to total number of SGA infants among smokers over the number of non SGA infants among smokers (45)/(186). The probability of SGA among smokers is equivalent to the same calculation but substituting the all participants for non SGA as the denominator (45)/(231). You could calculate the same numbers for non-smokers using 1 minus the proportion of smokers presented in table 1, substituting the crude number of non-smokers in each group. For odds, (105-45)/(650-186) and for the probability, (105-45)/(755-231).
c. There
 were actually four regression analyses that could have been used to answer this question. I am betting that all students would have fit a regression model with SGA as response and the indicator of maternal smoking as the predictor. Presuming that you did indeed fit that model, explain the similarities and differences between the estimates and inference you would have obtained for the following three additional models (You do not need to run these analyses, if you can tell me how they differ without doing so. It is of course okay to run the analyses if it will help you recognize the more general principles.):

i. You create an indicator NONSMOKER that the mother was a nonsmoker, and you fit a poisson regression model of response SGA on predictor NONSMOKER.

A model using nonsmoker as the predictor will produce slope estimates that are the inverse (1/estimate) of the model estimates produced when using maternal smoking as the predictor. This is also true for the 95% CI for the slope. The intercept will not be the inverse, but will be the probability of SGA among smokers that we calculated in part b (0.195) (this was not seen in the original model but can be obtained as seen in part b). 

The biggest change is in the interpretation of the comparison groups. You will see a relative decrease in the odds of SGA among nonsmokers compared to smokers because the result will be protective when using nonsmokers as the predictor. The original model interpretation was the relative increase in probability of SGA among smokers compared to nonsmokers. The p value and interpretation from hypothesis tests will remain exactly the same.  

ii. You create an indicator NOTSGA that the infant was not small for gestational age, and you fit a poisson regression model of response NOTSGA on predictor SMOKER.

A model using NOTSGA as the outcome will not produce slope or an intercept seen in the original regression. However, they can be calculated using the parameter estimates from the original regression. The slope estimate will be 1 minus the probability of SGA among smokers over 1 minus the probability of SGA among non-smokers (1-0.195)/(1-0.113). The intercept will be 1 minus probability of SGA among non-smokers that we calculated in part b (1-0.113=0.887) (this was not seen in the original model but can be obtained as seen in part b). 

The biggest change this makes in the interpretation is the comparison groups. You will see a relative decrease in the probabilities of not SGA among smokers compared to nonsmokers because the result will be protective when using not SGA as the outcome. The original model interpretation was the relative increase in probability of SGA among smokers compared to nonsmokers. The p value is also larger here, but the interpretation from hypothesis tests will remain exactly the same.  

iii. You fit a regression model of response NOTSGA on predictor NONSMOKER. 

A model using NOTSGA as the outcome will not produce slope or an intercept seen in the original regression. However, they can be calculated using the parameter estimates from the original regression. The slope estimate will be 1 minus the probability of SGA among non-smokers over 1 minus the probability of SGA among smokers (1-0.113)/(1-0.195). The intercept will be 1 minus probability of SGA among smokers that we calculated in part b (1-0.195=0.805) (this was not seen in the original model but can be obtained as seen in part b). 

The biggest change this makes in the interpretation is the comparison groups. You will see a relative increase in the probability of not SGA among nonsmokers compared to smokers. The direction is the same because you are have inverted both the predictor and the outcome. The original model interpretation was the relative increase in probability of SGA among smokers compared to nonsmokers. The p value is slightly higher here, but the interpretation from hypothesis tests will remain exactly the same.  
5. How
 do the analyses performed in problems 2-4 compare to that that would be obtained in a simple two sample comparison of SGA by smoking status (i.e., using methods covered in Biost 517/514.) Explicitly mention where they would be similar or different?
The analyses performed in problems 2 and 4 are
 comparable to Cochran–Mantel–Haenszel test for independence. The 95% CI confidence intervals and ratio estimates estimate from the MH test are very similar to the exponentiated slopes from the logistic and poison regressions.  The pvalue is also identical for the regressions and MH test. 

Additionally the linear regression in problem 3 would be identical to a two sample z test for proportion. 

· The intercept from the linear regression will equal the probability of SGA among maternal smokers as reported in the z-test output. 
· The slope from the linear regression will equal the difference in probabilities of SGA across groups of maternal smokers as reported in the z-test output.

· The standard error and 95% CI for the intercept and the slope will not be exactly equal but will approximate the SE and 95% CI for the probability of SGA among smokers and the difference in probabilities of SGA across groups of smokers, respectively, as reported in the t-test output. 
· The z score and the pvalue for the for the slope will also be similar but not exact.

6. Perform a regression analysis of the distribution of the prevalence of SGA infants across groups defined by the continuous measure of maternal age. In all cases we want formal inference. (Note: In problem 7, I am asking you to plot the estimated probabilities of SGA infants from each of these regression models. Hence, you will want to make sure you estimate those fitted values following each regression.)
a. Evaluate
 associations using risk difference (RD: difference in probabilities).
Methods: Linear regression was used to evaluate the difference in probabilities of infants who were small for gestational age (SGA) across groups defined by maternal age in years. Analysis used the Huber-White sandwich estimator to compute standard error, and thus did not presume constant variances across groups. 95% confidence intervals for the difference in the probabilities of an SGA birth across groups defined by age of pregnant women were computed using Wald statistics
.

Results: A linear regression analysis estimates the difference in the probability an SGA infant between two groups of pregnant women differing by 1 year in age to be 0.00452
 points lower among the older group. A 95% confidence interval suggests that our estimate is not unusual if the true difference in probabilities of a SGA birth was between 0.000286 and 0.00874 points lower among the 1 year older group of women. Such a result is statistically significant (two sided p value <
 0.036) when compared to an alpha=0.05, allowing us to reject the null hypothesis that there is no difference in probabilities between the two groups. 
b. Evaluate
 associations between risk ratio (RR: ratios of probabilities).
Methods: Poisson regression was used to evaluate the ratio of probabilities for small for gestational age (SGA) infants across groups defined by 1 year of maternal age. Analysis used the Huber-White sandwich estimator to compute standard error, and thus did not presume constant variances across groups. 95% confidence intervals for the ratio of probabilities of a SGA birth among groups of pregnant women differing by 1 year of age were computed using Wald statistics
.

Results: A poisson regression analysis estimates the ratio in the probability an SGA infant between two groups of pregnant women differing by 1 year in age to be a 3.38% relative decrease among the older group. A 95% confidence interval suggests that our estimate is not unusual if the true difference in probabilities of a SGA birth was between a 0.0607% and 6.60%
 relative decrease among the 1 year older group of women. Such a result is statistically significant (two sided p value < 0.046) when compared to an alpha=0.05, allowing us to reject the null hypothesis that the ratio of probabilities between the two groups is equal to 1. 
c. Evaluate
 associations using odds ratio (OR: ratios of odds)

Methods: Logistic regression was used to evaluate the ratio of odds for small for gestational age (SGA) infants across groups defined by 1 year of maternal age. 95% confidence intervals for the ratio of the odds of a SGA birth among groups of pregnant women differing by 1 year of age were computed using Wald statistics.
Results: A logistic regression analysis estimates the ratio in the odds of a SGA infant between two groups of pregnant women differing by 1 year in age to be a 3.90% relative decrease among the older group. A 95% confidence interval suggests that our estimate is not unusual if the true difference in probabilities of a SGA birth was between 7.72%
 relative decrease and 0.0764% relative increase (OR between 0.923 and 1.000767) among the 1 year older group of women. Such a result is not statistically significant (two sided p value < 0.054) when compared to an alpha=0.05, and thus leads us not to reject the null hypothesis that the ratio of odds between the two groups is equal to 1. 

d. Using
 the regression parameter estimates from each of these regressions, provide an estimate of the probability that a 20 year old mother would have a SGA infant. Explain any similarities or differences these estimates might have when compared to the sample proportion of SGA infants among 20 year olds.
	Fitted value for probability of a 20 year old mother would have a SGA infant

	
	Linear regression
	Poisson regression
	Logistic regression

	Calculation
	=-0.004515*20  + 0.250997
	=exp (-0.034424*20  - 1.1359)
	=[exp (-0.03978*20  - 0.8532)] 
[1+exp (-0.03978*20  - 0.8532)] 


	Estimate
	0.161
	0.161
	0.161


Within our sample: there are 40 20 yo mothers, 3 (7.5%) of which had SGA infants. All three models estimate fitted values of 16.1% probability that a 20 year old mother will have a SGA infant, and estimate twice that of the prevalence seen in our sample
. 
7. Produce
 a plot of the estimated probability of an SGA infant by age as derived by each of the following methods. Comment on the similarity and difference among the various fitted values form the various analyses performed in problem 6. (Note that Stata allows you to specify multiple Y variables for a single X variable: scatter y1 y2 y3 y4 age)
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a. Sample proportions within each unique age: This can be obtained in Stata using the command egen varname= mean(sga), by(age).
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The fitted values from the regressions in question 6 all are indicating a trend of a small decrease in risk of SGA with increasing age. This is demonstrated on this scatter plot. However there appears to be more of an S-shape curve rather than a linear relationship. The poisson and logistic regressions estimate about a 3.0% relative decrease in the probability of SGA per year increase in age. The linear regression estimates and absolute decrease in the risk of SGA by 0.5% per every year increase in age. This is more difficult to see on this graph because the relationship between age and proportion of SGA within each unique age is not quite linear. 
Here you can also see that the proportion of 20 year old mothers with SGA infants is lower than the proportion in other ages close to 20. This explains why the models predict a probability f a 20 year old mother having a SGA infant twice that of our actual proportion (seen in 6d). 

b. Estimated probabilities for each age in the data as derived from each of the regression analyses. In Stata, this can be obtained using the simple “post-estimation” command: predict varname.  (But use a different variable name for each fitted value.) 
i. After performing a linear regression, the default action of the “predict” function is to create a variable that contains the estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion.
The slope of this line is equal to the fitted value for slope in the linear regression. With the increase in each year of age the probability of SGA decreases by an absolute 0.5% probability (0.005).
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ii. After performing a Poisson regression, the default action of the “predict” function is to create a variable that contains the exponentiated estimated “linear predictor”, which corresponds to the regression based estimate of the mean. With a binary response variable, the mean response is the proportion. (The linear predictor in Poisson regression corresponds to the log “rate”, because Poisson regression uses a log link function.
This is the line was models the exponentiated slope (exp(slope)) fitted value produced by the poisson regression. With the increase in one year of age the probability of SGA decreases by a relative 2.9%. 
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Regression estimates of SGA by Age: Poisson regression


iii. In logistic regression, the estimated “linear predictor” corresponds to the log odds. Exponentiating that would correspond to the odds. By default, Stata figures that you would really rather have the estimated probability, which is computed as prob = odds / (1 + odds). So, after performing a logistic regression, the default action of the “predict” function is to create a variable that contains the regression based estimate of the mean.
This line represents the change in probability across a change of 1 year maternal age as calculated from an odds ratio estimate. This is harder to see from the from the logistic regression model. You can see however that it is similar to the poisson regression estimated exp(slope) and roughly approximated by the slope from the linear regression. 
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Regression estimates of SGA by Age: Poisson regression


8. Perform a logistic regression analyses of the distribution of the prevalence of SGA infants across groups defined by the logarithmically transformed maternal age.

a. Provide
 formal inference for associations using odds ratio (OR: ratios of odds) and log transformed age.
Methods: Logistic regression was used to evaluate the ratio of odds for small for gestational age (SGA) infants across log base 2 transformed age group. 95% confidence intervals and two sided p-value were computed using Wald statistics. 
Results: A logistic regression analysis estimates the ratio in the odds of a SGA infant across two groups differing in a relative 2 fold increase in maternal age to be a 48% relative decrease among the older group. A 95% confidence interval suggests that our estimate is not unusual if the true ratio in odds of a SGA birth was between 74% relative decrease and 2.6% relative increase (OR between 0.260 and 1.0237) for a 2 fold increase in mothers age. Such a result is not statistically significant (two sided p value < 0.058) when compared to an alpha=0.05, and thus leads us not to reject the null hypothesis that the ratio of odds between the two groups is equal to 1. 
b. Why
 might it be reasonable or silly to have performed such an analysis rather than the analysis in problem 6c?
It would be reasonable to perform a logistic regression using a log transformed age if you were interested in age on the multiplicative scale. This might be a reasonable assumption at certain parts of life, but in general we discuss age on the additive scale in a (1 year additive increase). An analysis of age on the multiplicative scale would be ‘silly’ in this case and difficult to interpret in a meaningful way.  
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