Biost 518 / 515, Winter 2015
Homework #4
February 2, 2015, Page 5 of 11

84 out of 105 points
Biost 518: Applied Biostatistics II
Biost 515: Biostatistics II
Emerson, Winter 2015
Homework #4
February 2, 2015
Written problems: To be submitted as a MS-Word compatible file to the class Catalyst dropbox by 9:30 am on Monday, February 9, 2014. See the instructions for peer grading of the homework that are posted on the web pages. 
On this (as all homeworks) Stata / R code and unedited Stata / R  output is TOTALLY unacceptable. Instead, prepare a table of statistics gleaned from the Stata output. The table should be appropriate for inclusion in a scientific report, with all statistics rounded to a reasonable number of significant digits. (I am interested in how statistics are used to answer the scientific question.)

Unless explicitly told otherwise in the statement of the problem, in all problems requesting “statistical analyses” (either descriptive or inferential), you should present both
· Methods: A brief sentence or paragraph describing the statistical methods you used. This should be using wording suitable for a scientific journal, though it might be a little more detailed. A reader should be able to reproduce your analysis. DO NOT PROVIDE Stata OR R CODE.
· Inference: A paragraph providing full statistical inference in answer to the question. Please see the supplementary document relating to “Reporting Associations” for details.
This homework investigates associations between death from any cause and age, sex, and serum bilirubin in a population of patients with primary biliary cirrhosis who were enrolled in a randomized clinical trial (RCT) of D-penicillamine. The data can be found on the class web page (follow the link to Datasets) in the file labeled liver.txt. Documentation is in the file liver.doc. 
1. Provide suitable descriptive statistics pertinent to the scientific questions addressed in this homework
.

Methods:  We present univariate and bivariate descriptive statistics for the censoring distribution, survival (of death from any cause) distribution, serum bilirubin levels, and subject age and sex. For the continuous variables bilirubin and age we present the mean, standard deviation, minimum, maximum and number missing. We also present the 25th, 50th, and 75th percentiles of serum bilirubin levels, our predictor of interest. For the binary variable sex we present the proportion of females and number missing. 
Since our outcome of interest (death by any cause) is a censored variable, we cannot present the usual descriptive statistics that we would present for uncensored data and instead need to use Kaplan-Meier (KM) methods. We present the estimated minimum and maximum follow-up times. We also present the KM estimated 10th percentile, 20th percentile, and 50th percentile for the survival distribution, as well as the restricted mean survival time (our KM estimated survival curve does not go to zero since our latest follow-up time (4,795 days or 13.1 years) corresponds to a censoring event rather than a death, so we report the area under the KM estimated survival curve up to 13.1 years). 
Only slight modifications were made to the data to divide serum bilirubin, a continuous variables, into categories so that we can present KM estimates of the survival distribution (10th, 20th, and 50th percentile; estimated 2 and 5 year survival probabilities; and restricted mean survival restricted to 3,157 days (8.65 years), the smallest of the maximum censoring times within each of the bilirubin groups) within each of these groups (Table 1 and Figure 1). Bilirubin is divided into categories based on a multiplicative scale (0-1 (mg/dl), 1-2 (mg/dl), 2-4 (mg/dl), 4-8 (mg/dl), and 8+ (mg/dl), where the categories include their lower bound but do not include their upper bound) because we believe that in liver disease bilirubin will build up on a multiplicative scale. In Table 1 we also present descriptive statistics for age and sex within these groups because we believe these variables may be potential confounders. We also provide KM estimates of the survival distribution across age groups (split into decades: <40, 40-50, 50-60, etc.) in Figure 2 and across sex in Figure 3 because we believe these variables are potential confounders. We present all estimates of survival and censored times in both days and years because our data includes information on the number of days and we have no way to be sure how many leap years occurred during the time frame of our study; thus, we can only approximate the roughly equivalent number of years by dividing by 365.
Inference: We have data for 418 subjects with primary biliary cirrhosis (PBC), a form of liver disease, who took part in a randomized clinical trial exploring the possible use of D-penicillamine as a treatment for PBC. Our dataset includes measurements for many variables, including demographic variables for the subjects (age (in years) and sex), various measurements of liver function (such as serum bilirubin levels (mg/dl)), assigned treatment group (D-penicillamine or placebo), and outcome (follow-up time (in days) and indication of whether death was observed during the course of the study). Our analysis will focus on the question of whether death from any cause is associated with age, sex, and/or serum bilirubin levels among these patients with PBC. We will ignore all other variables throughout this assignment, although it is important to note that we probably do not want to be ignoring important variables such as treatment assigned (which is a potential confounder or precision variable) and thus in ignoring these variables we may not truly be answering the question we hope to answer or may be losing precision. 
As mentioned above, only slight modifications were made to the dataset. We created categorical variables based on bilirubin levels and age for the purpose of descriptive statistics. We are missing the sex of 106 subjects, but are missing no observations for bilirubin, age, follow-up time, or death status. We ignore missingness for the other variables that are not involved in our analysis and missing observations for sex will be ignored only when that variable is involved in the analysis at hand.
As mentioned above, we have data for 418 subjects, 161 of whom were observed to die during the course of this study. The follow-up times for these subjects ranged from 41 days (when the first death occurred) to 4,795 days (a censored event). The average survival time during the first 13.1 years was 3,050 days (about 8.36 years) and the median survival time was 3,395 days (about 9.30 years).  For more details see Table 1.
We have bilirubin measurements for all 418 subjects. The average serum bilirubin among these subjects is 3.22 mg/dl (standard deviation = 4.41, min = 0.3, max = 28 (mg/dl)). The fact that all measurements are greater than zero means that we will have no issues in later analyses should we decide to log-transform bilirubin. The 25th percentile serum bilirubin level is 0.8 mg/dl, the median is 1.4 mg/dl, and the 75th percentile is 3.4 mg/dl. It is important to notice that the mean serum bilirubin level is not in the center of the range of the data (it is much closer to the minimum), nor is it in the center of the interquartile range (it is much closer to the third quartile), nor is it very similar to the median (it is more than twice as large) and the standard deviation is large relative to the mean (in fact, it is larger). All of these observations indicate that the distribution of serum bilirubin levels is very right-skewed in our dataset, which is not unexpected given what we knew a priori about the behavior of serum bilirubin in humans with PBC.
The average age at randomization of our 418 subjects was 50.7 years (standard deviation = 10.4, min = 26.3, max = 78.4 years). As mentioned above, we were missing sex for 106 subjects. For those 106 subjects we are also missing information for many of our other variables, including treatment, stage, cholesterol, and many more. Among these 106, the average bilirubin was 3.12 mg/dl, the average age was 52.9 years, and 34.0% were observed to die of any cause during our study. Of the remaining 312 for whom we are not missing sex, a large proportion (0.885) were female, which is not surprising given what we know about the relationship between sex and PBC.
Table 1 and Figure 1, below, provide KM estimates of the survival distribution within and across groups defined by baseline serum bilirubin levels. The percentiles for these survival distributions were calculated by looking to see at which time the survival probability reached or fell below that probability. Two year survival probabilities are estimated survival probabilities at 730 days and 5 year survival probabilities at 1,825 days.
From Table 1 we see that the estimated restricted mean, 10th percentile, 20th percentile and median survival times were highest for the groups having the lowest baseline bilirubin levels and lowest for groups having the highest baseline bilirubin levels, with a general decreasing trend in survival time across groups of increasing baseline bilirubin. Similarly, both two and five year survival probabilities were highest for groups having the lowest baseline bilirubin and lowest for groups having the highest baseline bilirubin. These trends are also evident in Figure 1, which shows the KM estimates of the distribution of time until death from any cause stratified by baseline serum bilirubin levels (with estimated survival curves for each bilirubin group drawn with a unique color and line type). We see in Figure 1 that the survival probabilities are consistently lowest for the groups having higher baseline bilirubin levels across time.
We decided a priori that age is a potential confounder or precision variable in this dataset, as we believe it to be causally associated with death by any cause. From Table 1, we do not see any clear patterns in average age of subjects across groups defined by baseline serum bilirubin levels. However, in Figure 2 (which shows KM estimates of the distribution of time until death from any cause stratified by age), we see expected trends in survival across groups defined by age: the survival probabilities are consistently lowest for the groups having higher baseline age across time. We could also have created a table similar to Table 1 where we presented descriptive statistics for survival, bilirubin, and sex stratified by age groups. However, most of the estimates we would present (10th percentile, 20th percentile, and median survival and 2 and 5 year survival probabilities) can be estimated just by looking at Figure 2. All of this indicates that age is a precision variable in this dataset and should be accounted for in further analyses to gain precision.
We also decided a priori that sex is a potential confounder or precision variable in this dataset, as we believe it to be causally associated with death by any cause. From Table 1, we do not see any clear patterns in sex of subjects across groups defined by baseline serum bilirubin levels, but we do see that there are some bilirubin groups with smaller proportions of females (such as the group with 4-8 mg/dl; see Table 1). In Figure 3 (which shows KM estimates of the distribution of time until death from any cause stratified by sex), we see expected trends in survival across groups defined by sex: the survival probabilities are consistently lowest for the males across time. We could also have created a table similar to Table 1 where we presented descriptive statistics for survival, bilirubin, and age stratified by sex. However, most of the estimates we would present (10th percentile, 20th percentile, and median survival and 2 and 5 year survival probabilities) can be estimated just by looking at Figure 3. Since the association between sex and risk of death is so strong, even small imbalances in the distribution of sex across bilirubin groups could lead to confounding. We certainly should adjust for sex in our analyses.
[image: image1.png]3
&
<3

@

T
=
z

@

10

00 02 04 06 08

Figure 1. Survival by Bilirubin Levels
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Figure 2. Survival by Age
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Figure 3. Survival by Sex
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Table 1. Descriptive statistics for death by any cause, age, and sex across the entire sample and within groups defined by multiplicative increases in serum bilirubin levels. Statistics presented for continuous uncensored variables are mean (standard deviation; minimum-maximum). Statistics presented for binary uncensored variables are proportion and number missing. For censored variables we report KM estimates of restricted mean surivival time, median survival, the 10th and 20th percentile of the estimated surivival distribution, and estimated 2 and 5 year probabilities. 
	
	Serum Bilirubin Levels

	
	0-1 (mg/dl)
	1-2 (mg/dl)
	2-4 (mg/dl)
	4-8 (mg/dl)
	8+ (mg/dl)
	Any Level

	Number of Subjects
	142
	107
	78
	48
	43
	418

	Number of Deaths
	20
	30
	44
	32
	35
	161

	Restricted Mean Survival Time (days)

(average number of days alive during first 3,157 days)
	2,928
	2,682
	2,052
	1,598
	1,048
	2,370

	Median Survival Time (days)
	NA
	4,191
	2,081
	1,350
	797
	3,395

	10th Percentile Survival (days)
	2,090
	1,212
	552
	326
	77
	611

	20th Percentile Survival (days)
	3,584
	2,111
	786
	597
	216
	1,152

	2 Year Survival Probability
	0.97
	0.95
	0.85
	0.77
	0.60
	0.88

	5 Year Survival Probability
	0.93
	0.87
	0.53
	0.33
	0.16
	0.70

	
	
	
	
	
	
	

	Age (years)
	51.2 (9.80; 30.6 - 75)
	50.6 (10.8; 26.3 - 76.7)
	50.2 (11.4; 29.6 - 71.9)
	50.9 (11.6; 30.9 - 78.4)
	50.6 (8.84; 33.2 - 70.6)
	50.7 (10.5; 26.3 - 78.4)

	Female (%)
	93.3%, missing: 38 of 142
	88.3%, missing: 30 of 107
	82.5%, missing: 15 of 78
	78.9%, missing: 10 of 48
	96.7%, missing: 13 of 43
	88.5%, missing: 106 of 418


2. In prior homeworks using the Cardiovascular Health Study datasets, we were able to use logistic regression to investigate associations between mortality and various covariates. Why might such an approach not seem advisable with these data? (Consider the extent to which such analyses might be confounded and/or lack precision
.)
Methods: To use logistic regression to investigate associations between mortality and various covariates we would need to create an indicator variable for death before 533 days (1.46 years), our minimum censored time. We know for each subject whether he or she was alive or dead at this time, but after 1.46 years we are not able to know the time of death for subjects who were censored. Then we could run logistic regression with death before 1.46 years as our response and our covariates of interest as our predictors.
Inference: In previous homeworks we had to look at the relationship between covariates and mortality at the time of our first censored observation. However in this case that first censored observation comes quite soon (after only 1.46 years). So, we would lose efficiency by analyzing our data in such a way because we would be ignoring all the data we have concerning the more precise time of death for many of our subjects.
We may also be concerned about lack of precision and/or confounding. If we recruit both prevalent and incident cases, then those subjects will likely differ in their follow-up times and prevalent cases may be more likely to have shorter follow-up times and die before 1.46 years. It is also very possible that these subjects will have different baseline bilirubin levels, for example, because prevalent cases are more likely to have more advanced disease. Also it seems like follow-up time could be causally associated with mortality: the longer we follow-up these subjects with advanced liver disease, the higher probability of death we might expect for them. It is also possible that follow-up time is associated with covariates such as bilirubin (subjects with low baseline bilirubin are perhaps less likely to die right away and thus more likely to have longer follow-up times) and patterns of censoring may differ across groups (perhaps men are more likely to drop out of the study and thus be censored or subjects in liver failure may be removed from the trial so that more drastic measures can be taken to try to stop the progression of their liver disease).
3. Perform a statistical regression analysis evaluating an association between serum bilirubin and all-cause mortality by comparing the instantaneous risk (hazard) of death over the entire period of observation across groups defined by serum bilirubin modeled as a continuous variable. 
a. Include a full report of your inference about the association
.
Methods: We conduct Cox proportional hazards regression with robust standard errors, baseline serum bilirubin levels as our predictor and a survival object (a combination of follow-up time and whether the subject was censored or observed to die at that time) as our response to compare the distributions of time to death from any cause (specifically, the hazard) across groups defined by baseline serum bilirubin levels. A point estimate for the hazard ratio for two groups that differ by 1 mg/dl in baseline bilirubin is based on the exponentiated estimated slope from this proportional hazards regression. Wald-based statistics and Huber-White sandwich estimators (for standard errors) are used to get 95% confidence intervals for that hazard ratio and two-sided p-values for a hypothesis test testing the null hypothesis that estimated slope is zero (or equivalently that the estimated hazard ratio is one).

Inference: From this proportional hazards regression model, we estimate that the ratio of hazards comparing two groups that differ in 1 mg/dl in baseline bilirubin is 1.152. In other words, we estimate that the hazard (or instantaneous risk of death) is 15.2% higher in relative value for groups with 1 mg/dl higher baseline bilirubin. Based on a 95% confidence interval, this observed hazard ratio (1.152) would not be unusual if the true hazard were between 12.1% higher and 18.5% higher in relative value for groups with 1 mg/dl higher baseline bilirubin. A two-sided hypothesis test (with null hypothesis that this hazard ratio is equal to one) yields a two-sided p-value less than 0.0001 so we reject the null hypothesis and conclude that there is an association between instantaneous risk of death by any cause and baseline serum bilirubin levels.

b. For each population defined by serum bilirubin value, compute the hazard ratio relative to a group having serum bilirubin of 1 mg/dL. (This will be used in problem 6). If HR is the hazard ratio (use the actual hazard ratio estimate) obtained from your regression model, this can be effected by the Stata code

gen fithrA = HR ^ (bili – 1)

It could also be computed by creating a centered bilirubin variable, and then using the Stata predict command




gen cbili = bili – 1
stcox cbili
predict fithrA  
Methods: To estimate the hazard ratio for any value of baseline serum bilirubin value ([image: image5.png]bili



) relative to a group having baseline bilirubin of 1 mg/dl, we use the equation

Hazard Ratio (billi mg/dl vs 1 mg/dl) = [image: image6.png]1,152%8-1




 
Inference: These fitted values are plotted in Question 6. 

4. Perform a statistical regression analysis evaluating an association between serum bilirubin and all-cause mortality by comparing the instantaneous risk (hazard) of death over the entire period of observation across groups defined by serum bilirubin modeled as a continuous logarithmically transformed variable. 

a. Why might this analysis be preferred a priori
?
Answer: We have (scientific) reason to believe that liver disease will act multiplicatively on bilirubin. In other words, we expect that bilirubin levels will build up multiplicatively as PBC progresses. Thus, a log transformation of bilirubin will better capture the differences across levels of bilirubin. 

b. Include a full report of your inference about the association
.
Methods: We conduct Cox proportional hazards regression with robust standard errors, log (base 2) transformed baseline serum bilirubin levels as our predictor and a survival object (a combination of follow-up time and whether the subject was censored or observed to die at that time) as our response to compare the distributions of time to death from any cause (specifically, the hazard) across groups defined by baseline serum bilirubin levels. A point estimate for the hazard ratio for two groups that differ by a 2-fold relative difference in baseline bilirubin is based on the exponentiated estimated slope from this proportional hazards regression. Wald-based statistics and Huber-White sandwich estimators (for robust standard errors) are used to get 95% confidence intervals for that hazard ratio and two-sided p-values for a hypothesis test testing the null hypothesis that the estimated regression slope is zero (or equivalently that the estimated hazard ratio is one).

Inference: From this proportional hazards regression model, we estimate that the ratio of hazards comparing two groups that differ in a 2-fold relative difference in baseline bilirubin is 1.985. In other words, we estimate that the hazard (or instantaneous risk of death) is 98.5% higher in relative value for groups with 2 times higher baseline bilirubin. Based on a 95% confidence interval, this observed hazard ratio (1.985) would not be unusual if the true hazard were between 1.781 and 2.212 times higher in relative value for groups with 2 times higher baseline bilirubin. A two-sided hypothesis test (with null hypothesis that this hazard ratio is equal to one) yields a two-sided p-value less than 0.0001 so we reject the null hypothesis and conclude that there is an association between risk of death by any cause and baseline serum bilirubin levels.

c. For each population defined by serum bilirubin value, compute the hazard ratio relative to a group having serum LDL of 1 mg/dL. (This will be used in problem 6). If HR is the hazard ratio (use the actual hazard ratio estimate) obtained from your regression model, this can be effected by the Stata code 
gen logbili = log(bili)

stcox logbili
fithrB = HR ^ (logbili)

(Note that the log(1) = 0 when using any base, so there is no need to rescale by the bilirubin values. Note also that you might want to use a different base in your logarithmic transformation in order to facilitate more natural reporting of effects.)  
Methods: To estimate the hazard ratio for any value of baseline serum bilirubin value ([image: image8.png]bili



) relative to a group having baseline bilirubin of 1 mg/dl, we use the equation
Hazard Ratio (billi mg/dl vs 1 mg/dl) = [image: image9.png]1.0985/092 b1t




 Inference: These fitted values are plotted in Question 6.
5. One approach to testing to see whether an association between the response and the predictor of interest is adequately modeled by an untransformed continuous variable is to add some other transformation to the model and see if that added covariate provides statistically significant improved “fit” of the data. In this case, we could test for “linearity” of the bilirubin association with the log hazard ratio by including both the untransformed and log transformed bilirubin. (Other alternatives might have been bilirubin and bilirubin squared, but in this case our a priori interest in the log bilirubin might drive us to the specified analysis.) 

a. Provide full inference related to the question of whether the association is linear
.
Methods: We conduct Cox proportional hazards regression with robust standard errors, untransformed baseline serum bilirubin levels and log (base 2) transformed baseline serum bilirubin levels as our predictors and a survival object (a combination of follow-up time and whether the subject was censored or observed to die at that time) as our response to compare the distributions of time to death from any cause (specifically, the hazard) across groups defined by baseline serum bilirubin levels. A test for whether the association between instantaneous risk of death from any cause (hazard) and bilirubin is linear is equivalent to testing whether the slope for the log transformed bilirubin term in this regression model is equal to zero. To conduct such a two-sided hypothesis test we use Wald-based statistics and Huber-White sandwich estimators (for robust standard errors). We also get a point estimate for this slope from the proportional hazards regression model and use the same Wald-based statistics and Huber-White sandwich estimator methods to construct 95% confidence intervals for the slope.
Inference: From this proportional hazards regression model, we estimate that the slope for the log (base 2) transformed baseline serum bilirubin levels is 0.820. Based on a 95% confidence interval, this observed estimated slope (0.820) would not be unusual if the true slope were between 0.603 and 1.037. A two-sided hypothesis test (with null hypothesis that this slope is equal to zero) yields a very small two-sided (p < 0.0001) so we reject the null hypothesis and conclude that there is evidence that the true association between risk of death by any cause and baseline serum bilirubin is not adequately modeled by untransformed bilirubin. In other words, we conclude that there is evidence that the true association between log hazard ratio and baseline serum bilirubin is not linear.

b. Again, save the fitted values from this model by obtaining the estimated HRs relative to a group with bilirubin of 1 mg/dl. (This will be used in problem 6.)

Methods: To estimate the hazard ratio for any value of baseline serum bilirubin value ([image: image11.png]bili



) relative to a group having baseline bilirubin of 1 mg/dl, we use the equation

Hazard Ratio (billi mg/dl vs 1 mg/dl) = [image: image12.png]g) B203+10g, (31 -0.0333+(Btli-1)




Inference: These fitted values are plotted in Question 6.

6. Display a graph with the fitted hazard ratios from problems 3 - 5. Comment on any similarities or differences of the fitted values from the three models
.

Methods: We plot the fitted hazard ratios from questions 3 - 5 versus the baseline serum bilirubin levels present in our dataset in Figure 4, below.

Inference: All three models show increasing fitted hazard ratios as bilirubin increases away from 1 mg/dl and all three agree in their fitted values when the serum bilirubin level is 1 mg/dl. Then for bilirubin levels between 1 and about 20 mg/dl, the models from questions 4 and 5 (involving log transformed bilirubin) give larger fitted hazard ratios than does the model from question 3. It is also interesting to note that the fitted hazard ratios for model 4 increase linearly as bilirubin increases away from 1 mg/dl, while the fitted hazard ratios for model 3 appear to increase exponentially and the fitted hazard ratios for model 5 increase but at a decreasing rate. The fitted hazard ratios are most similar for models 4 and 5 as bilirubin ranges from 1 mg/dl to 15 mg/dl.
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7. We are interested in considering analyses of the association between all cause mortality and serum bilirubin after adjustment for age and sex.

a. What evidence is present in the data that would make you think that either sex or age might have confounded the association between death and bilirubin? (In real life, we would ideally decide whether to adjust for potential confounding in our pre-specified statistical analysis plan (SAP
)).

Methods: To assess potential confounding, we need to demonstrate that the variable of interest is causally associated with our response (time to death by any cause) independent of our predictor of interest (baseline bilirubin levels) and is not in the causal pathway of interest. Additionally, we need to check whether the variable of interest is associated with our predictor of interest in our sample. We might consider looking at stratified descriptive statistics (see Table 1, Figure 2, and Figure 3) to answer such questions, besides appealing to our prior scientific knowledge about the relationship between age, sex, and death by any cause.

Inference: In Figures 2 and 3, above, we saw that the survival distributions certainly vary across groups defined by age and sex. Appealing to our prior scientific knowledge about the relationship between age, sex, and death by any cause we also would expect that these variables would be causally associated with our response independent of baseline serum bilirubin levels and outside the causal pathway of interest. In Table 1 we saw that the distribution of age does not vary much across groups defined by bilirubin, so we do not have strong evidence that age is associated with our predictor of interest in our sample. In Table 1 we do see that the distribution of sex varies a bit across groups defined by bilirubin, with the proportion of females being particularly low among subjects with baseline bilirubin between 4 and 8 mg/dl and between 2 and 4 mg/dl compared to the other bilirubin-defined groups. It is hard to say whether this evidence is strong enough to declare that there is an association between sex and bilirubin in our sample. However, since the association between sex and death by any cause is so strong, even slight differences in the distribution of sex across groups defined by bilirubin can still lead to overall confounding. Thus we should certainly adjust for sex in our analyses.
b. What evidence is present in the data that would make you think that either sex or age might have added precision to the analysis of the association between death and bilirubin? (In real life, we would ideally decide whether to adjust in our pre-specified SAP
).

Methods: To assess whether a variable is a precision variable, we need to demonstrate that the variable of interest is causally associated with our response (time to death by any cause) independent of our predictor of interest (baseline bilirubin levels) and is not in the causal pathway of interest. Additionally, unlike for addressing potential confounding, we need to check whether the variable of interest is independent of our predictor of interest in our sample. We might consider looking at stratified descriptive statistics (see Table 1, Figure 2, and Figure 3) to answer such questions, besides appealing to our prior scientific knowledge about the relationship between age, sex, and death by any cause.

Inference: In Figures 2 and 3, above, we saw that the survival distributions certainly vary across groups defined by age and sex. Appealing to our prior scientific knowledge about the relationship between age, sex, and death by any cause we also would expect that these variables would be causally associated with our response independent of baseline serum bilirubin levels and outside the causal pathway of interest. In Table 1 we saw that the distribution of age does not vary much across groups defined by bilirubin, so we do not have strong evidence that age is associated with our predictor of interest in our sample. Thus it seems that age may be a precision variable and adjusting for age in our analysis should add precision. In Table 1 we do see that the distribution of sex varies a bit across groups defined by bilirubin, with the proportion of females being particularly low among subjects with baseline bilirubin between 4 and 8 mg/dl and between 2 and 4 mg/dl compared to the other groups. It is hard to say whether this evidence is strong enough to declare that there is an association between sex and bilirubin. In Part A), above, we argued that sex may be a confounding variable in this dataset. Regardless, we should certainly adjust for sex in our analyses and expect that in doing so we may also gain some precision.

c. Provide full inference regarding an association between death and bilirubin after adjustment for sex and age
.

Methods: We conduct Cox proportional hazards regression with robust standard errors, log (base 2) transformed baseline serum bilirubin levels, age, and sex as our predictors and a survival object (a combination of follow-up time and whether the subject was censored or observed to die at that time) as our response to compare the distributions of time to death from any cause (specifically, the hazard) across groups defined by baseline serum bilirubin levels. A point estimate for the average hazard ratio for two groups that differ by a 2-fold relative difference in baseline bilirubin, holding age and sex constant, is based on the exponentiated estimated slope from this proportional hazards regression. Wald-based statistics and Huber-White sandwich estimators (for robust standard errors) are used to get 95% confidence intervals for that hazard ratio and two-sided p-values for a hypothesis test testing the null hypothesis that estimated slope is zero (or equivalently that the estimated hazard ratio is one).
Inference: From this proportional hazards regression model, we estimate that the ratio of hazards comparing two groups that differ in a 2-fold relative difference in baseline bilirubin, holding age and sex constant, is 2.109. In other words, we estimate that the hazard (or instantaneous risk of death) is 2.109 times higher in relative value for groups with 2 times higher baseline bilirubin, holding sex and age constant. Based on a 95% confidence interval, this observed hazard ratio (2.109) would not be unusual if the true hazard were between 1.840 and 2.417 times higher in relative value for groups with 2 times higher baseline bilirubin, holding sex and age constant. A two-sided hypothesis test (with null hypothesis that this hazard ratio is equal to one) yields a very small p-value (p < 0.0001) so we reject the null hypothesis and conclude that there is an association between instantaneous risk of death by any cause and baseline serum bilirubin levels, after adjusting for sex and age.

8. Note that in the above analyses, we completely ignored the intervention in the RCT? What impact could this have had on our results
?

We would expect that the distribution of death by any outcome will differ across groups defined by the intervention. Specifically, we would hope to see that the hazard is lower in the treatment group compared to the placebo group. Thus, our prior scientific knowledge informs us that treatment is likely causally associated with our response (death by any cause) independent of baseline bilirubin levels and outside our causal pathway of interest. So, treatment is a potential confounder or precision variable and really should be accounted for in our analyses. [However, it is interesting to note that there is no clear association between treatment and survival in our sample (see Figure 5, below). Perhaps this is to be expected, but based on my own (limited) scientific knowledge, I would have expected that the treatment would be causally associated with risk of death by any cause in the population and that we would also see this association in our sample. Thus a priori I would still have worried about treatment as a potential confounder or precision variable.]
In the case that the treatment is not associated with our predictor of interest (bilirubin), which we expect might be the case since this is a RCT, treatment would be a precision variable. Then, by not adjusting for treatment our analyses above will have lost precision.

However, it may be the case that there is an imbalance in the distribution of bilirubin across treatment groups due to the random nature of randomization. If treatment is in fact strongly associated with risk of death, then even a slight imbalance in the distribution of bilirubin across treatment groups would lead to confounding. In that case, treatment would be a confounder and by not adjusting for treatment our analyses above will not have been answering the same questions we were hoping to answer (i.e., is there an association between bilirubin and death by any cause?).
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�10 points


�8 points. The difference in the sample size is not discussed.


�8 points. 95%CI is wrong


�5 points


�10 points


�10 points


�8 points.  The discussion on better fitting is lacking.


�10 points


�5 points.  No regression results.


�10 points


�0 points.  RCT is not confounding in this study since it is randomized.






