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Lecture Outline

• Quiz

• Matching / Stratification vs Regression

• Directly Standardized Rates
– Probability Models for Incidence of Disease
– Example: Colorectal Cancer Incidence in US Whites
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Quiz
(Pre-test and Survey)

U.S. Colorectal Cancer by Country of Birth

4

Matching / Stratification vs
Regression
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Recall: Adjustment for Covariates

• We “adjust” for other covariates
– Model effect modification
– Address confounding
– Gain precision

• Define groups according to
– Predictor of interest, and
– Other covariates

• Compare the distribution of response across groups which
– differ with respect to the Predictor of Interest, but
– are the same with respect to the other covariates

• “holding other variables constant” 6

Recall: Comparing models
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Recall: General Results

• These questions can not be answered precisely in the general 
case

• However, in linear regression we can derive exact results

• These will serve as a basis for later examination of
– Logistic regression
– Poisson regression
– Proportional hazards regression

8

Recall: Linear Regression

• Difference in interpretation of slopes

– β1 = Diff in mean Y for groups differing by 1 unit in X
• (The distribution of W might differ across groups being compared)

– γ1 = Diff in mean Y for groups differing by 1 unit in X, but agreeing in 
their values of W

  iiiii WXWXYE  210,  :Model Adjusted 

  iii XXYE  10     :Model Unadjusted 
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Recall: Relationships: True Slopes
• The slope of the unadjusted model will tend to be

• Hence, true adjusted and unadjusted slopes for X are estimating the 
same quantity only if

– ρXW = 0   (X and W are truly uncorrelated), OR

– (no association between W and Y after adjusting for X)
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Recall: Relationships: True SE
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Binary W : Notation

• We can use this notation to explore the benefits of matched 
analyses

• Suppose Y1i measures “cases” having Z1i = 1 and W1i = w1i = 0,1
– Suppose n11 and n10 count the number with W1i = 1 and W1i = 0, 

respectively

• Suppose Y0i measures “cases” having Z1i = 0 and W1i = w1i = 0,1
– Suppose n01 and n00 count the number with W0i = 1 and W0i = 0, 

respectively

• (Note: In the following I presume homoscedasticity
– This will not generally be the case with binary data)
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Binary W : Marginal Distribution
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Binary W : Unadjusted Analysis
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Binary W : Analyses Within Subgroups
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Combining Across Subgroups

• Based on the properties of independent, normally distributed 
estimates
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Binary W : Average Across Subgroups

• We can use any weighted average
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Binary W : Average Across Subgroups

• Optimal choice minimizes variance
– (Solution would differ when we have heteroscedasticity)
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Example: Mortality by Previous CVD, Sex

• Using inflammatory markers data set
– Mortality within 4 years is known for everyon

• Descriptive statistics
– Males:      20.7% if previous CHD; 11.7% if not – RD 0.090
– Females: 14.7% if previous CHD;    4.9% if not – RD 0.098

• Adjusted analysis could average the subgroup specific RD
– Weight 50-50? According to M:F ratio in the age range?
– (Assume no effect modification?)
– (Average over effect modification?)

19

(Frequency) Matching

• We can use this notation to explore the benefits of matched 
analyses

• Suppose Y1i measures “cases” having Z1i = 1 and W1i = w1i = 0,1
– Suppose n11 and n10 count the number with W1i = 1 and W1i = 0, 

respectively

• We then choose “controls” having  Z0i = 0 and W0i = w1i = 0,1 and 
measure Y0i
– We will thus have n01 = n11 and n00 = n10

20

Binary W : Frequency Matching

• Optimal choice minimizes variance
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Generalizations: Stratifications

• Stratified analyses: 
– Analyze within each subgroup
– Average the results across subgroups

• When averaging across subgroups
– If there is no effect modification, then we are free to choose 

weights to minimize variance (maximize precision)
– If there is effect modification, we will get different answers 

according to which weights we use
• Often we use population based weights so our answer will be 

relevant to some population of interest

22

Generalizations: Matching

• Frequency matching
– We ensure that the marginal distribution of each covariate is the 

same across POI groups
– Matching on fixed effects

• Individual matching
– We ensure that the joint distribution (including interactions) of the 

matching variables are the same across POI groups
– Matching on fixed effects or random effects

• Fixed effects: e.g., age, sex, height, weight, smoking behavior
• Random effects: e.g., hospital, family, community of residence

23

Comparison to Regression

• We use regression to
– Borrow information across groups
– Form contrasts (e.g., slope) measuring associations

• As a rule, we can perform stratified analyses within regression
– Fit dummy variables for each stratum

• Does not borrow information across strata
– May have to weight strata appropriately in a weighted regression
– May have to consider how variances are estimated

• Only within subgroups, or
• Borrow information about variance across groups

– (With binary response variables, issues about variance will also
have to consider mean-variance relationships and adequacy of 
model) 24

Example: Mortality by Previous CVD, Sex

• Descriptive statistics
– Males:      20.7% if previous CHD; 11.7% if not – RD 0.090
– Females: 14.7% if previous CHD;    4.9% if not – RD 0.098

. regress deadin4 male prevdis m_prevdis
|          Robust

deadin4 |  Coef.  Std. Err.   t    P>|t|     [95% Conf. Interval]
male |  .0675   .0094     7.16   0.000     .0491    .0860

prevdis |  .0979   .0158     6.18   0.000     .0669    .1289

m_prevdis | -.0080   .0243    -0.33   0.742    -.0557    .0397
_cons |  .0492   .0045    11.04   0.000     .0404    .0579

. regress deadin4 male prevdis, robust

|               Robust

deadin4 |   Coef. Std. Err.   t    P>|t|     [95% Conf. Interval]

male |   .0656   .0090     7.33   0.000     .0481    .0832

prevdis |   .0940   .0121     7.75   0.000     .0702    .1177

_cons |   .0499   .0046    10.84   0.000     .0409    .0589
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Probability Models for
Incidence of Disease

26

Risk Sets

• Most often, we recognize that the probability of an event depends 
in some way upon time

• In many cases, that time dependence is something we merely 
want to adjust for as we compare different groups
– It is not as important to contrast the event probability over time

• We thus find it convenient to couch many of our analyses of 
binary data in terms that also consider “time to event”

27

Incidence and Mortality Rates (Hazards)

• We are often interested in the rate (over time) at which individuals 
convert from being “event-free” to having had the event
– Time can be calendar time, age, study time …
– (They differ in what we call time zero)

• At each point in time, we essentially compute a proportion
– Denominator: Individuals who are currently “event-free”
– Numerator: Among those in the denominator, who converts in the 

next instant

• Referred to as 
– Epidemiology: incidence and mortality rates, force of mortality
– Statistics and probability: hazard function 28

Age Effects on Mortality
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Age Effects on Mortality

30

Birth Cohort Effects on Mortality

• Survival curves 1900 to 2100 by 50 year increments

31

Calendar Year Effects on Mortality

32

Hazard Function Notation

• For each individual in some group of interest, T measures the 
time the event will occur
– Y(t) is thus an indicator that the event has occurred prior to t
– T might be infinity
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Hazard Rate Based Inference

• When the changing conversion rate is just a nuisance to our 
primary question, we still have to worry that time might be
– An effect modifier and/or
– A confounder and/or
– A precision variable.

• Most often we choose some way to adjust for those roles by
– Using weighted averages of the hazard (e.g., standardized rates)
– Adjusting in a regression model

• Poisson models adjusting for person-time at risk
• Proportional hazards regression models
• Parametric regression models

34

(Cumulative) Incidence and Mortality

• Sometimes we choose a specific interval of time of greatest 
interest
– E.g., incidence of cancer within one year, teenage mortality

• Usually estimated with a simple proportion
– Denominator: Individuals who are “event-free” at time a
– Numerator: Individuals experiencing event between a and b

• It does relate to the hazard
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(Cumulative) Incidence Based Inference

• Note that if the hazard function is (nearly) constant over some 
small period of time then

• This “piecewise exponential” model is often used as a basis for 
inference
– The “exponential distribution” has a constant hazard
– The exponential distribution is “memorylessness”

• Independent intervals are independent
– Within or between individuals

– Also be thought of as Poisson approximation to binomial and/or 
times between events in Poisson process
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Person-year Based Analyses

• We divide time into small intervals
– Small age intervals will have common risk 
– Small follow-up time intervals

• We estimate person-years of observation
– Each person may contribute to several categories
– Sum across individuals for each category

• Estimate risk within those intervals

• Compare risk ratio across POI groups
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Directly Standardized Rates

• Stratum specific weights chosen based on population
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Quiz Answers

39

Example:
Incidence of Colorectal Cancer

by Birthplace

40

Example

• We are interested in exploring the incidence of colorectal cancer 
by birthplace among whites in the US

• Cases identified through the SEER registry 1973-1987

• Available data
– US, 25 non-US, unknown
– Age in 5 year groups
– Sex

• Denominator data from US census data
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Analysis Model

• Effect modification in question?

• Potential confounding?
– Variables causally associated with cancer incidence
– Variable associated with birthplace in sample

• Precision?

42

Analysis Model

• Effect modification in question?
– Analysis within sex subgroups?

• Potential confounding? 
– Variables causally associated with cancer incidence
– Variable associated with birthplace in sample
– Age?

• Precision?

43

Associations with SEER
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Associations with Response (log)
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Associations with POI
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Associations with POI
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Example

• We need to worry about
– How we summarize over age
– Confounding by age across country of birth
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Associations with POI

0 20 40 60 80 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

C ancer Inc idence by  SE E R (US  born  w h ites)

Age (years)

C
an

ce
r I

nc
id

en
ce



Lecture 6: Matching Stratification October 15, 2013

Categorical Data Analysis, AUT 2013 13

49
0 20 40 60 80 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Cancer Incidence by non-US Birthplace (whites)

Age (years)

C
an

ce
r I

nc
id

en
ce

50

Example

• We need to worry about missing data

• Missing completely at random

• Missing at random

• Missing not at random
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