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Q 2-7: 30/30

Q 8: 5/10

Q 9: 5/10

Total 40/50
Emerson, Autumn 2013

Homework #1
September 26, 2013

Written problems due at 5 pm, Thursday, October 3, 2013. Homeworks must be submitted electronically according to the instructions that will be distributed via email.

This homework explores the role of screening studies in promoting the accuracy of the process of identifying and quantifying risk factors for disease.

The goal of the drug approval process should be 
1. To have a low probability of approving drugs that do not work,
2. To have a high probability of approving drugs that do work, and
3. To have a high probability that an approved drug does work.

Now suppose we decide to perform a experiment or series of experiments, and to approve the drug whenever the estimated treatment effect (perhaps standardized to some Z  score) exceeds a pre-defined threshold. When stated in statistical jargon, these goals become
1. To have a low type I error  when a null hypothesis of no treatment effect is true,
2. To have a high statistical power Pwr= 1- (so  is the type II error) when some alternative hypothesis is true, and
3. To have a high positive predictive value PPV = (number of approved effective drugs) / (number of approved drugs).

We can examine the interrelationships of these statistical design criteria in the context of a RCT where we let θ denote our treatment effect, and we presume that an ineffective drug has θ = 0, and an effective drug has some θ > 0.

In the “frequentist” inference most often used in RCT, we typically choose some value for the “level of significance” (or type I error) . This will be the probability of approving the drug when θ = 0.

Most often, we base our decisions on some estimate of the treatment effect that is known to be approximately normally distributed


In experimental design, we sometimes choose a sample size n and then compute the power of the study to detect a particular alternative hypothesis. When our null hypothesis corresponds to θ = 0, the power of a particular design depends upon the type I error , the variability of the data V, the true value of the treatment effect θ, and the sample size n according to the following formula:
		(Eq. 1)
where Z  is a random variable having the standard normal distribution, and the constant z1- is the 1- quantile of the standard normal distribution such that Pr( Z < z1-) = 1 - . 

In other settings, we choose a desired power Pwr = 1 - , and then compute a sample size according to the value of  using the following formula (which again presumes a null hypothesis of θ = 0):
				(Eq. 2)
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]where we again use the quantiles of the standard normal distribution. The following table provides values of z1- for selected values of :

	
	0.005
	0.01
	0.025
	0.05
	0.10
	0.20

	z1-
	2.575829
	2.326348
	1.959964
	1.644854
	1.281552
	0.841621



More generally, we can obtain an arbitrary quantile using statistical software. The commands to obtain the z1- quantile when  = 0.075 in three commonly used programs are:
· (Stata)      di invnorm(1 – 0.075)
· (R)       qnorm(1 – 0.075)
· (Excel)    norminv(1 – 0.075, 0 , 1)

Similarly, we can obtain Pr( Z < c) for arbitrary choices of c using statistical software. The commands to obtain Pr( Z < c) when c = 1.75 in three commonly used programs are:
· (Stata)      di norm(1.75)
· (R)       pnorm(1.75)
· (Excel)    normdist(1.75, 0 , 1, TRUE)

 Bayes Rule can be used to compute the PPV from  and , providing we know the prior probability  that a treatment would work (this prior probability might be thought of as the proportion of effective treatments among all treatments that we would consider testing—sort of a prevalence of good treatments):
		(Eq. 3)

In this homework, we consider a couple examples of two different strategies of testing for experimental treatments:
1. Strategy 1: Test each treatment in one large “pivotal” RCT.
2. Strategy 2: Test each treatment in one small “pilot” RCT that screens for promising treatments. Any treatment that passes this screening phase, is then tested more rigorously in one larger “confirmatory” RCT.

To compare “apples with apples”:
· We pretend that we have 500,000 patients with disease X to use when evaluating ideas that we have formulated for treating disease X.
· We further pretend that 10% of our ideas correspond to drugs that truly work (so  = 0.10), and all those truly effective drugs provide the same degree of benefit θ = 1 to patients with disease X. The other 90% of our ideas correspond to drugs that provide no benefit to the patients (so θ = 0).
· In every RCT, the true variability of the patient data corresponds to V =  63.70335.


Problems using Strategy 1: Only Pivotal RCT
1. (A: Pivotal) Suppose we choose a type I error of  = 0.025 and a power of 97.5% (so  = 0.025) under the alternative hypothesis that the true treatment effect is θ = 1.
a. What sample size n will be used in each RCT? 	       979  

b. How many of our ideas will we be able to test? 	     _511
         500,000  / 979 = 510.7
c. How many of those tested ideas will be truly beneficial drugs? 	              51
        511 x 0.10 = 51.1
d. How many of the tested beneficial drugs will have significant results? 	               50
51 x 0.975 = 49.7
e. How many of those tested ideas will be truly ineffective drugs? 	        460
511 – 51 = 460
f. How many of the tested ineffective drugs will have significant results?	          12
460 x 0.025 = 11.5
g. How many of the tested drugs will have significant results?	        62
50 + 12 = 62
h. What proportion of the drugs with significant results will be truly beneficial? 	  0.8065 
50 / 62 = 0.8065   or 
2. (B: Pivotal) Suppose we choose a type I error of  = 0.025 and a power of 80.0% (so  = 0.20) under the alternative hypothesis that the true treatment effect is θ = 1.	Comment by Author: 5/5
a. What sample size n will be used in each RCT? 
	__500___
b. How many of our ideas will we be able to test? 
500,000  /500=1000	__1000__
c. How many of those tested ideas will be truly beneficial drugs? 
1000*0.1=100	__100__
d. How many of the tested beneficial drugs will have significant results? 
100*0.8=80	___80__
e. How many of those tested ideas will be truly ineffective drugs? 
1000-100=900	___900_
f. How many of the tested ineffective drugs will have significant results?
900*0.025=22.5	_____23__
g. How many of the tested drugs will have significant results?
23+80=103	___103_
h. What proportion of the drugs with significant results will be truly beneficial?
80/103=0.7767	__0.7767_
3. [bookmark: OLE_LINK3](C: Pivotal) Suppose we choose a type I error of  = 0.05 and a power of 80.0% (so  = 0.20) under the alternative hypothesis that the true treatment effect is θ = 1.	Comment by Author: 5/5
a. What sample size n will be used in each RCT? 
=393.8	___394_
b. How many of our ideas will we be able to test? 
500,000/394=1269.0	__1269__
c. How many of those tested ideas will be truly beneficial drugs? 
1269*0.1=126.9	_127___
d. How many of the tested beneficial drugs will have significant results? 
127*0.8=101.6	__102_
e. How many of those tested ideas will be truly ineffective drugs?
1269-127= 1142	__1142_
f. How many of the tested ineffective drugs will have significant results?
1142*0.05=57.1	__57_
g. How many of the tested drugs will have significant results?
57+102=159	__159__
h. What proportion of the drugs with significant results will be truly beneficial?	
102/159=  0.6415                                                                                            _0.6415__ 
Problems using Strategy 2: Screening pilot RCT, followed by Confirmatory RCT
4. (D: Screening pilot study) Suppose we choose a type I error of  = 0.025 and a sample size of n = 100 for each pilot RCT. 	Comment by Author: 5/5
a. Under the alternative hypothesis θ = 1, what is the power? 
Power
	_0.2398__
b. If we use 350,000 patients in pilot RCT, how many ideas will we test? 
350,000/100=3500	_3500_
c. How many of those tested ideas will be truly beneficial drugs? 
3500*0.1=350	__350__
d. How many of the tested beneficial drugs will have significant results?
350*0.2398= 83.9179	__84_
e. How many of those tested ideas will be truly ineffective drugs? 
3500-350=3150	__3150_
f. How many of the tested ineffective drugs will have significant results?
3150*0.025=78.75	_79_
g. How many of the tested drugs will have significant results?
79+84=163	_163_
h. What proportion of the drugs with significant results will be truly beneficial?
84/163=0.5148	_0.5148 
5. (D: Confirmatory trials) Suppose we choose a type I error of  = 0.025 and use all remaining patients in the confirmatory trials of each drug that had significant results in problem 4.	Comment by Author: 5/5
a. How many confirmatory RCT will be performed? 	__163__
b. What sample size n will be used in each RCT? 
(500,000-350,000)/163=920.2454	_920__
c. Under the alternative hypothesis θ = 1, what is the power? 
Power
	__0.9671_
d. How many confirmatory RCTs will be for truly beneficial drugs? 
	__84___
e. How many of the tested beneficial drugs will have significant results? 
84*0.9671=81.2364	_81_
f. How many confirmatory RCTs will be for truly ineffective drugs? 	___79__
g. How many of the tested ineffective drugs will have significant results?
79*0.025=1.975	___2__
h. How many of the tested drugs will have significant results?
81+2=83	___83__
i. What proportion of the drugs with significant results will be truly beneficial?	
81/83=0.9759	__0.9759_ 
6. 
(E: Screening pilot study) Suppose we choose a type I error of  = 0.10 and a power of 85.0% (so  = 0.15) under the alternative hypothesis that the true treatment effect is θ = 1. 
a. What sample size n will be used in each RCT? 	Comment by Author: 5/5
	__342_
b. If we use 350,000 patients in pilot RCT, how many ideas will we test? 
350000/342=1023.39	__1023_
c. How many of those tested ideas will be truly beneficial drugs? 
1023*0.1=102.3	___102__
d. How many of the tested beneficial drugs will have significant results? 
102*0.85=86.7	__87__
e. How many of those tested ideas will be truly ineffective drugs? 
1023-102=921	_921__
f. How many of the tested ineffective drugs will have significant results?
921*0.10=92.1	__92__
g. How many of the tested drugs will have significant results?
92+87=179	__179__
h. What proportion of the drugs with significant results will be truly beneficial?	
87/179=0.4860	__0.4860__ 
7. (E: Confirmatory trials) Suppose we choose a type I error of  = 0.025 and use all remaining patients in the confirmatory trials of each drug that had significant results in problem 6.
a. How many confirmatory RCT will be performed? 	__179__	Comment by Author: 5/5
b. What sample size n will be used in each RCT? 
150000/179=837.989	__838_
c. Under the alternative hypothesis θ = 1, what is the power? 
Power=
=1-0.04776=0.95224	__0.952_
d. How many confirmatory RCTs will be for truly beneficial drugs?                  __87_
e. How many of the tested beneficial drugs will have significant results? 
87*0.95224=82.8449	__82_
f. How many confirmatory RCTs will be for truly ineffective drugs? 	__92_
g. How many of the tested ineffective drugs will have significant results?
92*0.025=2.3	___3__
h. How many of the tested drugs will have significant results?
3+82=84	__85__
i. What proportion of the drugs with significant results will be truly beneficial?	
82/85=0.9011	__0.9647_ 
Comparisons

8. Of the 5 different strategies considered (problems 1, 2, 3, 4 and 5, or 6 and 7) which do you think best and why?	Comment by Author: 5/10
Correctly identified the program-wise type I error, power and positive predictive value

Did not discuss # of drugs, # of hypotheses confirmed or data needed to evaluate safety and generalizability	Comment by Author: Regrade: I agree with the grader.
Given the goals outlined in the drug trials, Strategy 4&5 is the best because this combination of strategy has the lowest type I error, highest power and highest predictive value positive. This means, using this strategy would have the lowest probability of approving an ineffective drug, highest probability of approving a truly effective drug and highest probability of an approved drug to truly effective.  See below for detailed comparison among these strategies.
	Goal
	Prob 1
	Prob 2
	Prob 3
	Prob 4&5
	Prob 6&7

	#1 low 
	0.025
	0.025
	0.05
	0.025
	0.10

	#2 high power
	0.975
	0.80
	0.80
	0.9671
	0.85

	#3 high PPV
	0.8125
	0.7767
	0.6415
	0.9759
	0.9647


 

9. The above exercises considered “drug discovery” with randomized clinical trials. What additional issues have to be considered when we are using observational data to explore and try to confirm risk factors for particular diseases?	Comment by Author: 5/10
Correctly identified confounding and multiple comparisons as potential problems.

Missed out confirmatory studies, and statistical principles of identifying risk factors or confirming drug benefit	Comment by Author: Regrade: 4/10.

One of the biggest concerns of using observational data as opposed to a randomized trial is confounding: factors both related to the predictor and outcome (and not on the causal pathway) may not have been measured by the study or the measure used for the confounder is not perfect, in whichever case the association observed will be confounded. 
The other issue more common in observational study is the inflated type I error due to multiple comparisons made on multiple predictors/outcomes.  Unless the power is inflated by the same multiplicative factor, the inflated type I error will result in a higher chance of observing a significant association when the null hypothesis is true. 
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    (Eq. 1)   where  Z    is a random variable having the standard normal distribution, and t he constant  z 1 -    is the 1 -    quantile of the standard normal distribution   such that Pr(  Z   <   z 1 -  ) = 1  -    .    

