


Biost 536: Categorical Data Analysis in Epidemiology
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Homework #1
September 26, 2013

Written problems due at 5 pm, Thursday, October 3, 2013. Homeworks must be submitted electronically according to the instructions that will be distributed via email.

This homework explores the role of screening studies in promoting the accuracy of the process of identifying and quantifying risk factors for disease.

The goal of the drug approval process should be 
1. To have a low probability of approving drugs that do not work,
2. To have a high probability of approving drugs that do work, and
3. To have a high probability that an approved drug does work.

Now suppose we decide to perform an experiment or series of experiments, and to approve the drug whenever the estimated treatment effect (perhaps standardized to some Z  score) exceeds a pre-defined threshold. When stated in statistical jargon, these goals become
1. To have a low type I error  when a null hypothesis of no treatment effect is true,
2. To have a high statistical power Pwr= 1- (so  is the type II error) when some alternative hypothesis is true, and
3. To have a high positive predictive value PPV = (number of approved effective drugs) / (number of approved drugs).

We can examine the interrelationships of these statistical design criteria in the context of a RCT where we let θ denote our treatment effect, and we presume that an ineffective drug has θ = 0, and an effective drug has some θ > 0.

In the “frequentist” inference most often used in RCT, we typically choose some value for the “level of significance” (or type I error) . This will be the probability of approving the drug when θ = 0.

Most often, we base our decisions on some estimate of the treatment effect that is known to be approximately normally distributed



In experimental design, we sometimes choose a sample size n and then compute the power of the study to detect a particular alternative hypothesis. When our null hypothesis corresponds to θ = 0, the power of a particular design depends upon the type I error , the variability of the data V, the true value of the treatment effect θ, and the sample size n according to the following formula:

		(Eq. 1)
where Z  is a random variable having the standard normal distribution, and the constant z1- is the 1- quantile of the standard normal distribution such that Pr( Z < z1-) = 1 - . 

In other settings, we choose a desired power Pwr = 1 - , and then compute a sample size according to the value of  using the following formula (which again presumes a null hypothesis of θ = 0):

				(Eq. 2)
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]where we again use the quantiles of the standard normal distribution. The following table provides values of z1- for selected values of :

	
	0.005
	0.01
	0.025
	0.05
	0.10
	0.20

	z1-
	2.575829
	2.326348
	1.959964
	1.644854
	1.281552
	0.841621



More generally, we can obtain an arbitrary quantile using statistical software. The commands to obtain the z1- quantile when  = 0.075 in three commonly used programs are:
· (Stata)      di invnorm(1 – 0.075)
· (R)       qnorm(1 – 0.075)
· (Excel)    norminv(1 – 0.075, 0 , 1)

Similarly, we can obtain Pr( Z < c) for arbitrary choices of c using statistical software. The commands to obtain Pr( Z < c) when c = 1.75 in three commonly used programs are:
· (Stata)      di norm(1.75)
· (R)       pnorm(1.75)
· (Excel)    normdist(1.75, 0 , 1, TRUE)

 Bayes Rule can be used to compute the PPV from  and , providing we know the prior probability  that a treatment would work (this prior probability might be thought of as the proportion of effective treatments among all treatments that we would consider testing—sort of a prevalence of good treatments):

		(Eq. 3)

In this homework, we consider a couple examples of two different strategies of testing for experimental treatments:
1. Strategy 1: Test each treatment in one large “pivotal” RCT.
2. Strategy 2: Test each treatment in one small “pilot” RCT that screens for promising treatments. Any treatment that passes this screening phase, is then tested more rigorously in one larger “confirmatory” RCT.

To compare “apples with apples”:
· We pretend that we have 500,000 patients with disease X to use when evaluating ideas that we have formulated for treating disease X.
· We further pretend that 10% of our ideas correspond to drugs that truly work (so  = 0.10), and all those truly effective drugs provide the same degree of benefit θ = 1 to patients with disease X. The other 90% of our ideas correspond to drugs that provide no benefit to the patients (so θ = 0).
· In every RCT, the true variability of the patient data corresponds to V =  63.70335.


Problems using Strategy 1: Only Pivotal RCT
1. (A: Pivotal) Suppose we choose a type I error of  = 0.025 and a power of 97.5% (so  = 0.025) under the alternative hypothesis that the true treatment effect is θ = 1.
a. What sample size n will be used in each RCT? 	       979  


b. How many of our ideas will we be able to test? 	     _511
         500,000  / 979 = 510.7
c. How many of those tested ideas will be truly beneficial drugs? 	              51
        511 x 0.10 = 51.1
d. How many of the tested beneficial drugs will have significant results? 	               50
51 x 0.975 = 49.7
e. How many of those tested ideas will be truly ineffective drugs? 	        460
511 – 51 = 460
f. How many of the tested ineffective drugs will have significant results?	          12
460 x 0.025 = 11.5
g. How many of the tested drugs will have significant results?	        62
50 + 12 = 62
a.  What proportion of the drugs with significant results will be truly beneficial? 	  0.8065 

50 / 62 = 0.8065   or 
2. (B: Pivotal) Suppose we choose a type I error of  = 0.025 and a power of 80.0% (so  = 0.20) under the alternative hypothesis that the true treatment effect is θ = 1.
a. 
What sample size n will be used in each RCT? 499.99 ~	500
b. How many of our ideas will we be able to test? 
500,000/500 = 1,000	1,000
c. How many of those tested ideas will be truly beneficial drugs?
1,000 x 0.10 = 100	100
d. How many of the tested beneficial drugs will have significant results? 	
100*0.80 = 80	80
e. How many of those tested ideas will be truly ineffective drugs? 	
1,000 – 100 = 900	900
f. How many of the tested ineffective drugs will have significant results?	
900*0.025 = 22.5	23
g. How many of the tested drugs will have significant results?	
80+23 = 103	103
h. What proportion of the drugs with significant results will be truly beneficial?	
80/103 = 0.7767	77.6%

5/5
3. [bookmark: OLE_LINK3](C: Pivotal) Suppose we choose a type I error of  = 0.05 and a power of 80.0% (so  = 0.20) under the alternative hypothesis that the true treatment effect is θ = 1.
a. What sample size n will be used in each RCT? 	

 393.84	394
b. How many of our ideas will we be able to test? 	
500,000/394 = 1269.03	1269
c. How many of those tested ideas will be truly beneficial drugs? 	
1269*0.10 = 126.9	127
d. How many of the tested beneficial drugs will have significant results? 
127*0.80 = 101.6	102
e. How many of those tested ideas will be truly ineffective drugs? 	
1269 – 127 = 1142	1142
f. How many of the tested ineffective drugs will have significant results?	
1142 * 0.05 = 57.1	57
g. How many of the tested drugs will have significant results?	
102 + 57 = 159.1	159
h. What proportion of the drugs with significant results will be truly beneficial?	
102 / 159 = 0.6415	64%

5/5

Problems using Strategy 2: Screening pilot RCT, followed by Confirmatory RCT
4. (D: Screening pilot study) Suppose we choose a type I error of  = 0.025 and a sample size of n = 100 for each pilot RCT. 
a. Under the alternative hypothesis θ = 1, what is the power? 


 =  = 

1-Pr(0.7071) = 1-0.76024783 = 0.2398	24%

b. If we use 350,000 patients in pilot RCT, how many ideas will we test? 	
350,000 / 100 = 3,500	3,500
c. How many of those tested ideas will be truly beneficial drugs? 	
3,500 * 0.10 = 350	350
d. How many of the tested beneficial drugs will have significant results? 	
350 * 0.2398 = 83.93	84
e. How many of those tested ideas will be truly ineffective drugs? 	
3,500 – 350 = 3150	3,150
f. How many of the tested ineffective drugs will have significant results?	
3,150 * 0.025 = 78.75	79
g. How many of the tested drugs will have significant results?	
84 + 79 = 163	163
h. What proportion of the drugs with significant results will be truly beneficial?	
84 /163 = 0.5153	52% 

5/5

5. (D: Confirmatory trials) Suppose we choose a type I error of  = 0.025 and use all remaining patients in the confirmatory trials of each drug that had significant results in problem 4.
a. How many confirmatory RCT will be performed?  	163
b. What sample size n will be used in each RCT? 	
            (500,000 – 350,000)/163 = 920.24	920

c. Under the alternative hypothesis θ = 1, what is the power? 	


            =  = 

                            1-Pr(-1.8403) = 1-0.0328621 = 0.9671	97%
d. How many confirmatory RCTs will be for truly beneficial drugs? 	
	84
e. How many of the tested beneficial drugs will have significant results? 	
84 * 0.9671 = 81.23	81
f. How many confirmatory RCTs will be for truly ineffective drugs? 	
163 -84 = 79	79
g. How many of the tested ineffective drugs will have significant results?	
79 * 0.025 = 1.9750	2
h. How many of the tested drugs will have significant results?	
81 + 2 = 83	83
i. What proportion of the drugs with significant results will be truly beneficial?	
81 / 83= 0.9759	98% 

5/5

6. (E: Screening pilot study) Suppose we choose a type I error of  = 0.10 and a power of 85.0% (so  = 0.15) under the alternative hypothesis that the true treatment effect is θ = 1. 
a. What sample size n will be used in each RCT? 	

 342.24	342
b. If we use 350,000 patients in pilot RCT, how many ideas will we test? 	
350,000 / 342 = 1023.39	1023
c. How many of those tested ideas will be truly beneficial drugs? 	
1023 * 0.10 = 102.3	102
d. How many of the tested beneficial drugs will have significant results? 	
102 * 0.85 = 86.7	87
e. How many of those tested ideas will be truly ineffective drugs? 	
1023 – 102 = 921	921
f. How many of the tested ineffective drugs will have significant results?	
921 * 0.10 = 92.1	92
g. How many of the tested drugs will have significant results?	
87 + 92 = 179	179
h. What proportion of the drugs with significant results will be truly beneficial?	
 87 / 179 = 0.4860	49%  

5/5

7. (E: Confirmatory trials) Suppose we choose a type I error of  = 0.025 and use all remaining patients in the confirmatory trials of each drug that had significant results in problem 6.
a. How many confirmatory RCT will be performed? 	179
b. What sample size n will be used in each RCT? 	
500,000 – 350,000 = 150,000 => 150,000/179 = 837.98	838
c. Under the alternative hypothesis θ = 1, what is the power? 	


            =  = 

                            1-Pr(-1.6669) = 1-0.04776715 = 0.9522	95%
d. How many confirmatory RCTs will be for truly beneficial drugs? 	87
e. How many of the tested beneficial drugs will have significant results? 	
87 * 0.9522 = 82.84	83
f. How many confirmatory RCTs will be for truly ineffective drugs? 	
179 – 87 = 92	92
g. How many of the tested ineffective drugs will have significant results?	
92 * 0.025 = 2.3	2
h. How many of the tested drugs will have significant results?	
83 + 2 = 85	85
i. What proportion of the drugs with significant results will be truly beneficial?
83/85 = 0.9765	98%

5/5

 Comparisons

1. Of the 5 different strategies considered (problems 1, 2, 3, 4 and 5, or 6 and 7) which do you think best and why?

The best strategy is the approach used in problems 4 and 5 because it yields the highest power possible to be able to detect a treatment effect, and 98% of the drugs with significant results will be truly beneficial. In this strategy we used a screen and confirm approach, a priori we presumed a certain treatment effect in the screening phase. When we progressed to the confirmatory phase we essentially “stayed the course” and powered for the same treatment effect, we set a rigorous alpha and obtained the highest power possible. As a result we increased the PVP.  

This strategy is better than the one used in problems 6 and 7 because it avoids issues with publication bias and regression to the mean, which can occur when you power based on the treatment effect of the screening/pilot study.	Comment by Author: TA grade: 2/10 

Agree with student grader comments

There is no evidence of publication bias or regression to the mean in these strategies. You did mention the final PVP, but 6 and 7 have the advantage of additional safety data and protections to the hypothetical drug company. See Scott’s key for more details. 2/10

2. The above exercises considered “drug discovery” with randomized clinical trials. What additional issues have to be considered when we are using observational data to explore and try to confirm risk factors for particular diseases?	Comment by Author: TA grade: 4/10 

Again agree with student grader comments

When observational data is used to explore and confirm risk factors for diseases we must consider issues such as the multiple comparison problem and confounding.  In observational studies we usually explore many outcomes and exposures and perform various analyses. However by doing so, we also increase the number of statistically significant comparisons (associations) due to type 1 errors.  As a result there is a high chance of accepting an association between a risk factor and disease when one does not truly exist.  We cannot simply inflate the alpha unless we inflate the power by the same multiplicative factor as well, which is not possible to do. Another issue that must be considered when analyzing and interpreting observational data is confounding, or when the effect of an exposure or risk factor is mixed with the effect of another factor.  Even if the estimate is valid we may incorrectly conclude that the risk factor is directly associated to the disease.

Confounding is always an issue, but the multiple comparison problem should not exist in well-done observational studies. You did not mention sample size, availability of RCT data, or multiple confirmatory studies. 4/10
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