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Emerson, Autumn 2013

Homework #1
September 26, 2013

This homework explores the role of screening studies in promoting the accuracy of the process of identifying and quantifying risk factors for disease.

The goal of the drug approval process should be 
1. To have a low probability of approving drugs that do not work,
2. To have a high probability of approving drugs that do work, and
3. To have a high probability that an approved drug does work.

[bookmark: _GoBack]Now suppose we decide to perform a experiment or series of experiments, and to approve the drug whenever the estimated treatment effect (perhaps standardized to some Z  score) exceeds a pre-defined threshold. When stated in statistical jargon, these goals become
1. To have a low type I error  when a null hypothesis of no treatment effect is true,
2. To have a high statistical power Pwr= 1- (so  is the type II error) when some alternative hypothesis is true, and
3. To have a high positive predictive value PPV = (number of approved effective drugs) / (number of approved drugs).

We can examine the interrelationships of these statistical design criteria in the context of a RCT where we let θ denote our treatment effect, and we presume that an ineffective drug has θ = 0, and an effective drug has some θ > 0.

In the “frequentist” inference most often used in RCT, we typically choose some value for the “level of significance” (or type I error) . This will be the probability of approving the drug when θ = 0.

Most often, we base our decisions on some estimate of the treatment effect that is known to be approximately normally distributed



In experimental design, we sometimes choose a sample size n and then compute the power of the study to detect a particular alternative hypothesis. When our null hypothesis corresponds to θ = 0, the power of a particular design depends upon the type I error , the variability of the data V, the true value of the treatment effect θ, and the sample size n according to the following formula:

		(Eq. 1)
where Z  is a random variable having the standard normal distribution, and the constant z1- is the 1- quantile of the standard normal distribution such that Pr( Z < z1-) = 1 - . 

In other settings, we choose a desired power Pwr = 1 - , and then compute a sample size according to the value of  using the following formula (which again presumes a null hypothesis of θ = 0):

				(Eq. 2)
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]where we again use the quantiles of the standard normal distribution. The following table provides values of z1- for selected values of :

	
	0.005
	0.01
	0.025
	0.05
	0.10
	0.20

	z1-
	2.575829
	2.326348
	1.959964
	1.644854
	1.281552
	0.841621



More generally, we can obtain an arbitrary quantile using statistical software. The commands to obtain the z1- quantile when  = 0.075 in three commonly used programs are:
· (Stata)      di invnorm(1 – 0.075)
· (R)       qnorm(1 – 0.075)
· (Excel)    norminv(1 – 0.075, 0 , 1)

Similarly, we can obtain Pr( Z < c) for arbitrary choices of c using statistical software. The commands to obtain Pr( Z < c) when c = 1.75 in three commonly used programs are:
· (Stata)      di norm(1.75)
· (R)       pnorm(1.75)
· (Excel)    normdist(1.75, 0 , 1, TRUE)

 Bayes Rule can be used to compute the PPV from  and , providing we know the prior probability  that a treatment would work (this prior probability might be thought of as the proportion of effective treatments among all treatments that we would consider testing—sort of a prevalence of good treatments):

		(Eq. 3)

In this homework, we consider a couple examples of two different strategies of testing for experimental treatments:
1. Strategy 1: Test each treatment in one large “pivotal” RCT.
2. Strategy 2: Test each treatment in one small “pilot” RCT that screens for promising treatments. Any treatment that passes this screening phase, is then tested more rigorously in one larger “confirmatory” RCT.

To compare “apples with apples”:
· We pretend that we have 500,000 patients with disease X to use when evaluating ideas that we have formulated for treating disease X.
· We further pretend that 10% of our ideas correspond to drugs that truly work (so  = 0.10), and all those truly effective drugs provide the same degree of benefit θ = 1 to patients with disease X. The other 90% of our ideas correspond to drugs that provide no benefit to the patients (so θ = 0).
· In every RCT, the true variability of the patient data corresponds to V =  63.70335.


Problems using Strategy 1: Only Pivotal RCT
1. (A: Pivotal) Suppose we choose a type I error of  = 0.025 and a power of 97.5% (so  = 0.025) under the alternative hypothesis that the true treatment effect is θ = 1.
a. What sample size n will be used in each RCT? 	       979  


b. How many of our ideas will we be able to test? 	     _511
         500,000  / 979 = 510.7
c. How many of those tested ideas will be truly beneficial drugs? 	              51
        511 x 0.10 = 51.1
d. How many of the tested beneficial drugs will have significant results? 	               50
51 x 0.975 = 49.7
e. How many of those tested ideas will be truly ineffective drugs? 	        460
511 – 51 = 460
f. How many of the tested ineffective drugs will have significant results?	          12
460 x 0.025 = 11.5
g. How many of the tested drugs will have significant results?	        62
50 + 12 = 62
h. What proportion of the drugs with significant results will be truly beneficial? 	  0.8065 

50 / 62 = 0.8065   or 
2. (B: Pivotal) Suppose we choose a type I error of  = 0.025 and a power of 80.0% (so  = 0.20) under the alternative hypothesis that the true treatment effect is θ = 1.
a. What sample size n will be used in each RCT? 	_500_
n=[(1.959964+0.841621)^2 * 63.70335]/1^2
b. How many of our ideas will we be able to test? 	_1000_
500,000/500 = 
c. How many of those tested ideas will be truly beneficial drugs? 	_100_
1000 * 0.10=
d. How many of the tested beneficial drugs will have significant results? 	_80_
100 * 0.8=
e. How many of those tested ideas will be truly ineffective drugs? 	_900_
1000 – 100=
f. How many of the tested ineffective drugs will have significant results?	_22.5_
900 * 0.025
g. How many of the tested drugs will have significant results?	_102.5_
80+22.5
h. What proportion of the drugs with significant results will be truly beneficial?	_0.78_ 
80/102.5
3. [bookmark: OLE_LINK3](C: Pivotal) Suppose we choose a type I error of  = 0.05 and a power of 80.0% (so  = 0.20) under the alternative hypothesis that the true treatment effect is θ = 1.
a. What sample size n will be used in each RCT? 	___394____
n=[(1.644854+0.841621)^2 * 63.70335]/1^2= 393.85
b. How many of our ideas will we be able to test? 	___1269____
500,000/394
c. How many of those tested ideas will be truly beneficial drugs? 	____127___
1269*0.10=126.9
d. How many of the tested beneficial drugs will have significant results? 	___102____
127*0.8=101.6
e. How many of those tested ideas will be truly ineffective drugs? 	_1142______
1269-127=
f. How many of the tested ineffective drugs will have significant results?	_57_____
1142*0.05= 57.1
g. How many of the tested drugs will have significant results?	__159_____
102+57
h. What proportion of the drugs with significant results will be truly beneficial?	__0.64____ 
Problems using Strategy 2: Screening pilot RCT, followed by Confirmatory RCT
4. (D: Screening pilot study) Suppose we choose a type I error of  = 0.025 and a sample size of n = 100 for each pilot RCT. 
a. Under the alternative hypothesis θ = 1, what is the power? 	__0.24_____

 Pr[Z<1.959964 – (1*sq.rt.(100/63.70335))] =0.7070569173 give Pr(Z…)= 0.76023445
1-.76023445= 0.23976555
b. If we use 350,000 patients in pilot RCT, how many ideas will we test? 	__3500_____
350,000/100
c. How many of those tested ideas will be truly beneficial drugs? 	__350_____
3500*0.10
d. How many of the tested beneficial drugs will have significant results? 	_84______
350*0.24
e. How many of those tested ideas will be truly ineffective drugs? 	__3150_____
3500-350
f. How many of the tested ineffective drugs will have significant results?	__79_____
3150*0.025=78.75
g. How many of the tested drugs will have significant results?	__163_____

h. What proportion of the drugs with significant results will be truly beneficial?	__0.515_____ 
5. (D: Confirmatory trials) Suppose we choose a type I error of  = 0.025 and use all remaining patients in the confirmatory trials of each drug that had significant results in problem 4.
a. How many confirmatory RCT will be performed? 	___163____

b. What sample size n will be used in each RCT? 	____920___
150,000/163=920.25
c. Under the alternative hypothesis θ = 1, what is the power? 	___0.967____

 Pr[Z<1.959964 – (1*sq.rt.(920/63.70335))] = -1.84029134
 give Pr(Z…)= .03286274
1-0.03286274= 0.96713726

d. How many confirmatory RCTs will be for truly beneficial drugs? 	__84_____

e. How many of the tested beneficial drugs will have significant results? 	____81___
84*0.967=81.24
f. How many confirmatory RCTs will be for truly ineffective drugs? 	__79_____

g. How many of the tested ineffective drugs will have significant results?	___2____
79*0.025=1.975
h. How many of the tested drugs will have significant results?	____83___

i. What proportion of the drugs with significant results will be truly beneficial?	___0.976____ 
6. 
(E: Screening pilot study) Suppose we choose a type I error of  = 0.10 and a power of 85.0% (so  = 0.15) under the alternative hypothesis that the true treatment effect is θ = 1. 
a. What sample size n will be used in each RCT? 	____342___
            n=[(1.281552+1.0364334)^2 * 63.70335]/1^2= 342.28
b. If we use 350,000 patients in pilot RCT, how many ideas will we test? 	__1023_____
350,000/342=1023.39
c. How many of those tested ideas will be truly beneficial drugs? 	__102_____
1023*0.10=102.3
d. How many of the tested beneficial drugs will have significant results? 	____87___
102*0.85=86.7
e. How many of those tested ideas will be truly ineffective drugs? 	____921___
1023-102
f. How many of the tested ineffective drugs will have significant results?	__92_____
921*0.1=92.1
g. How many of the tested drugs will have significant results?	___179____

h. What proportion of the drugs with significant results will be truly beneficial?	___0.486____ 
7. (E: Confirmatory trials) Suppose we choose a type I error of  = 0.025 and use all remaining patients in the confirmatory trials of each drug that had significant results in problem 6.
a. How many confirmatory RCT will be performed? 	___179____

b. What sample size n will be used in each RCT? 	____838___
150,000/179=837.99
c. Under the alternative hypothesis θ = 1, what is the power? 	_____0.95__

 Pr[Z<1.959964 – (1*sq.rt.(838/63.70335))] = -1.666980196
 give Pr(Z…)= .04775917
1-0.04775917= 0.95224083

d. How many confirmatory RCTs will be for truly beneficial drugs? 	___87____

e. How many of the tested beneficial drugs will have significant results? 	___83____
87*0.95=82.65
f. How many confirmatory RCTs will be for truly ineffective drugs? 	____92___

g. How many of the tested ineffective drugs will have significant results?	__2_____
92*0.025=2.3
h. How many of the tested drugs will have significant results?	____85___
i. What proportion of the drugs with significant results will be truly beneficial?	___0.976____ 
Comparisons

8. Of the 5 different strategies considered (problems 1, 2, 3, 4 and 5, or 6 and 7) which do you think best and why?	Comment by Author: TA grade: 4/10 

Also missing discussion of absolute number of drugs adopted and amount of data for safety analyses 

Given that we’re using the same number of subjects, one of the 2-stage strategies is clearly best, as they conclude with the highest proportion of significant drugs that are truly beneficial. I personally prefer 4 and 5 because that involves fewer Phase III trials, 163 instead of 179, so that saves time and money.

Did not mention the program-wise type I error or program-wise power

-3

9. The above exercises considered “drug discovery” with randomized clinical trials. What additional issues have to be considered when we are using observational data to explore and try to confirm risk factors for particular diseases?	Comment by Author: TA grade: 6/10 

A little more discussion of the process of using observational data to confirm a hypothesis would be good. Observational data can motivate an RCT to confirm a hypothesis. 

The prime concern in any observational study is confounding by uncontrolled and potentially unmeasured risk factors. We must be aware that variables we measure may be proxies for unmeasured factors, which has been a huge issue in studies of healthy lifestyle and nutrition. People also may alter their hypotheses based on observations, so multiple studies with similar findings are important to confirm results.

Did not mention similarities between statistical principles of observational analysis and RCTs
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