Supplemental written problems due Monday, March 8, 2004 at the beginning of class.

Let $X_i, i = 1, ..., n$ be i.i.d. random variables with mean μ and variance $\sigma^2 < \infty$, and let $Y_i, i = 1, ..., m$ be i.i.d. random variables with mean ν and variance $\tau^2 < \infty$. We shall assume that as $n \to \infty$, the ratio $n/(m+n) \to \lambda$.

- 1. Suppose the X_i 's are normally distributed. Use Basu's theorem to prove that the sample mean \overline{X} is independent of the sample variance s_X^2 . (Hint: Consider first the case where σ^2 is known. Examine the complete sufficient statistic for μ and the distribution of s_X^2 . Then argue that the independence of the sample mean and the sample variance will not be altered by the lack of knowledge of σ^2 .)
- 2. Now suppose that the X_i 's have the Bernoulli distribution. Show that the sample mean and sample variance are not independent in this problem.
- 3. Suppose the X_i 's and Y_i 's are normally distributed.
 - a. Find the likelihood ratio test for $H_0: \mu = \nu$ versus $H_1: \mu \neq \nu$ when $\sigma^2 = \tau^2$.
 - b. Show that the Wald and score tests are equivalent to the LR test in this problem.
 - c. What is the small sample distribution for the test in part a? What is the critical value of a level α test?
- 4. Now consider the general nonparametric problem (i.e., we only know the means and variances, not the parametric distribution).
 - a. What is the asymptotic distribution of the test statistic you derived in problem 3? Do not presume that the variances are equal for this problem.
 - b. Show that the test you derived in problem 3 is not necessarily level α when testing $H_0: \mu = \nu$ versus $H_1: \mu \neq \nu$. Show that it is level α when testing $H_0^*: \mu = \nu$ AND $\sigma^2 = \tau^2$ versus $H_1^*: \mu \neq \nu$ OR $\sigma^2 \neq \tau^2$.
 - c. Show that the test you derived in problem 3 is not consistent when testing $H_0^*: \mu = \nu$ AND $\sigma^2 = \tau^2$ versus $H_1^*: \mu \neq \nu$ OR $\sigma^2 \neq \tau^2$.?